
O’Reilly Media Inc.

Current Perspectives from O’Reilly Media

Artificial
Intelligence
Now

D
42

67

theaiconf.com

Early adopters of applied AI have a unique opportunity to invent new
business models, reshape industries, and build the impossible.

Put AI to work — right now.

AI is moving fast.
Don’t fall behind.

https://conferences.oreilly.com/artificial-intelligence/?cmp=pd-data-confreg-home-lgen_free_report_ad

O’Reilly Media, Inc.

Artificial Intelligence Now
Current Perspectives from

O’Reilly Media

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-97762-0

[LSI]

Artificial Intelligence Now
by O’Reilly Media, Inc.

Copyright © 2017 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com/safari). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editor: Tim McGovern
Production Editor: Melanie Yarbrough
Proofreader: Jasmine Kwityn

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

February 2017: First Edition

Revision History for the First Edition
2017-02-01: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Artificial Intelli‐
gence Now, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the authors disclaim all responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is sub‐
ject to open source licenses or the intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with such licenses and/or
rights.

http://oreilly.com/safari

Table of Contents

Introduction. ix

Part I. The AI Landscape

1. The State of Machine Intelligence 3.0. 3
Ready Player World 4
Why Even Bot-Her? 5
On to 11111000001 6
Peter Pan’s Never-Never Land 7
Inspirational Machine Intelligence 8
Looking Forward 9

2. The Four Dynamic Forces Shaping AI. 11
Abundance and Scarcity of Ingredients 11
Forces Driving Abundance and Scarcity of Ingredients 15
Possible Scenarios for the Future of AI 17
Broadening the Discussion 20

Part II. Technology

3. To Supervise or Not to Supervise in AI?. 25

4. Compressed Representations in the Age of Big Data. 29
Deep Neural Networks and Intelligent Mobile Applications 29

iii

Succinct: Search and Point Queries on Compressed Data
Over Apache Spark 31

Related Resources 32

5. Compressing and Regularizing Deep Neural Networks. 33
Current Training Methods Are Inadequate 33
Deep Compression 34
DSD Training 36
Generating Image Descriptions 39
Advantages of Sparsity 40

6. Reinforcement Learning Explained. 41
Q-Learning: A Commonly Used Reinforcement Learning

Method 43
Common Techniques of Reinforcement Learning 45
What Is Reinforcement Learning Good For? 47
Recent Applications 47
Getting Started with Reinforcement Learning 48

7. Hello, TensorFlow!. 49
Names and Execution in Python and TensorFlow 50
The Simplest TensorFlow Graph 51
The Simplest TensorFlow Neuron 54
See Your Graph in TensorBoard 55
Making the Neuron Learn 56
Flowing Onward 59

8. Dive into TensorFlow with Linux. 61
Collecting Training Images 62
Training the Model 63
Build the Classifier 64
Test the Classifier 64

9. A Poet Does TensorFlow. 69

10. Complex Neural Networks Made Easy by Chainer. 77
Chainer Basics 78
Chainer’s Design: Define-by-Run 79
Implementing Complex Neural Networks 83
Stochastically Changing Neural Networks 85
Conclusion 86

iv | Table of Contents

11. Building Intelligent Applications with Deep Learning and
TensorFlow. 87
Deep Learning at Google 87
TensorFlow Makes Deep Learning More Accessible 88
Synchronous and Asynchronous Methods for Training

Deep Neural Networks 88
Related Resources 89

Part III. Homebuilt Autonomous Systems

12. How to Build a Robot That “Sees” with $100 and TensorFlow. . . . 93
Building My Robot 93
Programming My Robot 98
Final Thoughts 99

13. How to Build an Autonomous, Voice-Controlled,
Face-Recognizing Drone for $200. 101
Choosing a Prebuilt Drone 101
Programming My Drone 102
Architecture 103
Getting Started 103
Flying from the Command Line 104
Flying from a Web Page 104
Streaming Video from the Drone 105
Running Face Recognition on the Drone Images 106
Running Speech Recognition to Drive the Drone 107
Autonomous Search Paths 108
Conclusion 109

Part IV. Natural Language

14. Three Three Tips for Getting Started with NLU. 113
Examples of Natural Language Understanding 114
Begin Using NLU—Here’s Why and How 115
Judging the Accuracy of an Algorithm 116

15. Training and Serving NLP Models Using Spark. 119
Constructing Predictive Models with Spark 120
The Process of Building a Machine Learning Product 120

Table of Contents | v

Operationalization 122
Spark’s Role 123
Fitting It into Our Existing Platform with IdiML 129
Faster, Flexible Performant Systems 131

16. Capturing Semantic Meanings Using Deep Learning. 133
Word2Vec 135
Coding an Example 137
Training the Model 138
fastText 139
Evaluating Embeddings: Analogies 140
Results 141

Part V. Use Cases

17. Bot Thots. 145
Text Isn’t the Final Form 145
Discovery Hasn’t Been Solved Yet 146
Platforms, Services, Commercial Incentives, and

Transparency 147
How Important Is Flawless Natural Language Processing? 148
What Should We Call Them? 149

18. Infographic: The Bot Platforms Ecosystem. 151

19. Creating Autonomous Vehicle Systems. 155
An Introduction to Autonomous Driving Technologies 156
Autonomous Driving Algorithms 157
The Client System 163
Cloud Platform 167
Just the Beginning 169

Part VI. Integrating Human and Machine Intelligence

20. Building Human-Assisted AI Applications. 173
Orchestra: A Platform for Building Human-Assisted AI

Applications 173
Bots and Data Flow Programming for Human-in-the-Loop

Projects 174

vi | Table of Contents

Related Resources 175

21. Using AI to Build a Comprehensive Database of Knowledge. . . . 177
Building the Largest Structured Database of Knowledge 178
Knowledge Component of an AI System 178
Leveraging Open Source Projects: WebKit and Gigablast 179
Related Resources 180

Table of Contents | vii

Introduction

The phrase “artificial intelligence” has a way of retreating into the
future: as things that were once in the realm of imagination and fic‐
tion become reality, they lose their wonder and become “machine
translation,” “real-time traffic updates,” “self-driving cars,” and more.
But the past 12 months have seen a true explosion in the capacities
as well as adoption of AI technologies. While the flavor of these
developments has not pointed to the “general AI” of science fiction,
it has come much closer to offering generalized AI tools—these tools
are being deployed to solve specific problems. But now they solve
them more powerfully than the complex, rule-based tools that pre‐
ceded them. More importantly, they are flexible enough to be
deployed in many contexts. This means that more applications and
industries are ripe for transformation with AI technologies.

This book, drawing from the best posts on the O’Reilly AI blog,
brings you a summary of the current state of AI technologies and
applications, as well as a selection of useful guides to getting started
with deep learning and AI technologies.

Part I covers the overall landscape of AI, focusing on the platforms,
businesses, and business models are shaping the growth of AI. We
then turn to the technologies underlying AI, particularly deep learn‐
ing, in Part II. Part III brings us some “hobbyist” applications: intel‐
ligent robots. Even if you don’t build them, they are an incredible
illustration of the low cost of entry into computer vision and auton‐
omous operation. Part IV also focuses on one application: natural
language. Part V takes us into commercial use cases: bots and auton‐
omous vehicles. And finally, Part VI discusses a few of the interplays

ix

https://www.oreilly.com/topics/ai

between human and machine intelligence, leaving you with some
big issues to ponder in the coming year.

x | Introduction

PART I

The AI Landscape

Shivon Zilis and James Cham start us on our tour of the AI land‐
scape, with their most recent survey of the state of machine intelli‐
gence. One strong theme: the emergence of platforms and reusable
tools, the beginnings of a canonical AI “stack.” Beau Cronin then
picks up the question of what’s coming by looking at the forces
shaping AI: data, compute resources, algorithms, and talent. He
picks apart the (market) forces that may help balance these require‐
ments and makes a few predictions.

CHAPTER 1

The State of
Machine Intelligence 3.0

Shivon Zilis and James Cham

Almost a year ago, we published our now-annual landscape of
machine intelligence companies, and goodness have we seen a lot of
activity since then. This year’s landscape has a third more companies
than our first one did two years ago, and it feels even more futile to
try to be comprehensive, since this just scratches the surface of all of
the activity out there.

As has been the case for the last couple of years, our fund still obses‐
ses over “problem first” machine intelligence—we’ve invested in 35
machine intelligence companies solving 35 meaningful problems in
areas from security to recruiting to software development. (Our
fund focuses on the future of work, so there are some machine intel‐
ligence domains where we invest more than others.)

At the same time, the hype around machine intelligence methods
continues to grow: the words “deep learning” now equally represent
a series of meaningful breakthroughs (wonderful) but also a hyped
phrase like “big data” (not so good!). We care about whether a
founder uses the right method to solve a problem, not the fanciest
one. We favor those who apply technology thoughtfully.

What’s the biggest change in the last year? We are getting inbound
inquiries from a different mix of people. For v1.0, we heard almost
exclusively from founders and academics. Then came a healthy mix
of investors, both private and public. Now overwhelmingly we have

3

http://oreil.ly/2hsdP8i
http://bit.ly/2jtnZX3

heard from existing companies trying to figure out how to trans‐
form their businesses using machine intelligence.

For the first time, a “one stop shop” of the machine intelligence stack is
coming into view—even if it’s a year or two off from being neatly for‐
malized. The maturing of that stack might explain why more estab‐
lished companies are more focused on building legitimate machine
intelligence capabilities. Anyone who has their wits about them is
still going to be making initial build-and-buy decisions, so we fig‐
ured an early attempt at laying out these technologies is better than
no attempt (see Figure 1-1).

Figure 1-1. Image courtesy of Shivon Zilis and James Cham, designed
by Heidi Skinner (a larger version can be found on Shivon Zilis’ web‐
site)

Ready Player World
Many of the most impressive looking feats we’ve seen have been in
the gaming world, from DeepMind beating Atari classics and the
world’s best at Go, to the OpenAI Gym, which allows anyone to
train intelligent agents across an array of gaming environments.

The gaming world offers a perfect place to start machine intelligence
work (e.g., constrained environments, explicit rewards, easy-to-
compare results, looks impressive)—especially for reinforcement
learning. And it is much easier to have a self-driving car agent go a

4 | Chapter 1: The State of Machine Intelligence 3.0

http://heidiskinner.com
http://www.shivonzilis.com
http://www.shivonzilis.com
https://gym.openai.com
http://bit.ly/2jtqNmT

trillion miles in a simulated environment than on actual roads. Now
we’re seeing the techniques used to conquer the gaming world mov‐
ing to the real world. A newsworthy example of game-tested tech‐
nology entering the real world was when DeepMind used neural
networks to make Google’s data centers more efficient. This begs
questions: What else in the world looks like a game? Or what else in
the world can we reconfigure to make it look more like a game?

Early attempts are intriguing. Developers are dodging meter maids
(brilliant—a modern day Paper Boy), categorizing cucumbers, sort‐
ing trash, and recreating the memories of loved ones as conversa‐
tional bots. Otto’s self-driving trucks delivering beer on their first
commercial ride even seems like a bonus level from Grand Theft
Auto. We’re excited to see what new creative applications come in
the next year.

Why Even Bot-Her?
Ah, the great chatbot explosion of 2016, for better or worse—we
liken it to the mobile app explosion we saw with the launch of iOS
and Android. The dominant platforms (in the machine intelligence
case, Facebook, Slack, Kik) race to get developers to build on their
platforms. That means we’ll get some excellent bots but also many
terrible ones—the joys of public experimentation.

The danger here, unlike the mobile app explosion (where we lacked
expectations for what these widgets could actually do), is that we
assume anything with a conversation interface will converse with us at
near-human level. Most do not. This is going to lead to disillusion‐
ment over the course of the next year but it will clean itself up fairly
quickly thereafter.

When our fund looks at this emerging field, we divide each technol‐
ogy into two components: the conversational interface itself and the
“agent” behind the scenes that’s learning from data and transacting
on a user’s behalf. While you certainly can’t drop the ball on the
interface, we spend almost all our time thinking about that behind-
the-scenes agent and whether it is actually solving a meaningful
problem.

We get a lot of questions about whether there will be “one bot to rule
them all.” To be honest, as with many areas at our fund, we disagree
on this. We certainly believe there will not be one agent to rule them

Why Even Bot-Her? | 5

http://bit.ly/2jtqNmT
http://bit.ly/DeepMindEfficiency
http://tcrn.ch/2hsere6
http://tcrn.ch/2hsere6
http://bit.ly/CucumberFarmer
http://tcrn.ch/2gIsuOp
http://tcrn.ch/2gIsuOp
http://bit.ly/SpeakMemoryVerge
http://bit.ly/SpeakMemoryVerge
http://bit.ly/DriverlessDeliv

all, even if there is one interface to rule them all. For the time being,
bots will be idiot savants: stellar for very specific applications.

We’ve written a bit about this, and the framework we use to think
about how agents will evolve is a CEO and her support staff. Many
Fortune 500 CEOs employ a scheduler, handler, a research team, a
copy editor, a speechwriter, a personal shopper, a driver, and a pro‐
fessional coach. Each of these people performs a dramatically differ‐
ent function and has access to very different data to do their job.
The bot/agent ecosystem will have a similar separation of responsi‐
bilities with very clear winners, and they will divide fairly cleanly
along these lines. (Note that some CEOs have a chief of staff who
coordinates among all these functions, so perhaps we will see exam‐
ples of “one interface to rule them all.”)

You can also see, in our landscape, some of the corporate functions
machine intelligence will reinvent (most often in interfaces other
than conversational bots).

On to 11111000001
Successful use of machine intelligence at a large organization is sur‐
prisingly binary, like flipping a stubborn light switch. It’s hard to do,
but once machine intelligence is enabled, an organization sees
everything through the lens of its potential. Organizations like Goo‐
gle, Facebook, Apple, Microsoft, Amazon, Uber, and Bloomberg
(our sole investor) bet heavily on machine intelligence and have its
capabilities pervasive throughout all of their products.

Other companies are struggling to figure out what to do, as many
boardrooms did on “what to do about the internet” in 1997. Why is
this so difficult for companies to wrap their heads around? Machine
intelligence is different from traditional software. Unlike with big
data, where you could buy a new capability, machine intelligence
depends on deeper organizational and process changes. Companies
need to decide whether they will trust machine intelligence analysis
for one-off decisions or if they will embed often-inscrutable
machine intelligence models in core processes. Teams need to figure
out how to test newfound capabilities, and applications need to
change so they offer more than a system of record; they also need to
coach employees and learn from the data they enter.

6 | Chapter 1: The State of Machine Intelligence 3.0

http://bit.ly/2kk8zba

Unlike traditional hard-coded software, machine intelligence gives
only probabilistic outputs. We want to ask machine intelligence to
make subjective decisions based on imperfect information (eerily
like what we trust our colleagues to do?). As a result, this new
machine intelligence software will make mistakes, just like we do,
and we’ll need to be thoughtful about when to trust it and when not
to.

The idea of this new machine trust is daunting and makes machine
intelligence harder to adopt than traditional software. We’ve had a
few people tell us that the biggest predictor of whether a company
will successfully adopt machine intelligence is whether it has a C-
suite executive with an advanced math degree. These executives
understand it isn’t magic—it is just (hard) math.

Machine intelligence business models are going to be different from
licensed and subscription software, but we don’t know how. Unlike
traditional software, we still lack frameworks for management to
decide where to deploy machine intelligence. Economists like Ajay
Agrawal, Joshua Gans, and Avi Goldfarb have taken the first steps
toward helping managers understand the economics of machine
intelligence and predict where it will be most effective. But there is
still a lot of work to be done.

In the next few years, the danger here isn’t what we see in dystopian
sci-fi movies. The real danger of machine intelligence is that execu‐
tives will make bad decisions about what machine intelligence capabil‐
ities to build.

Peter Pan’s Never-Never Land
We’ve been wondering about the path to grow into a large machine
intelligence company. Unsurprisingly, there have been many
machine intelligence acquisitions (Nervana by Intel, Magic Pony by
Twitter, Turi by Apple, Metamind by Salesforce, Otto by Uber,
Cruise by GM, SalesPredict by Ebay, Viv by Samsung). Many of
these happened fairly early in a company’s life and at quite a high
price. Why is that?

Established companies struggle to understand machine intelligence
technology, so it’s painful to sell to them, and the market for buyers
who can use this technology in a self-service way is small. Then, if
you do understand how this technology can supercharge your orga‐

Peter Pan’s Never-Never Land | 7

http://bit.ly/economics-of-AI

nization, you realize it’s so valuable that you want to hoard it. Busi‐
nesses are saying to machine intelligence companies, “forget you
selling this technology to others, I’m going to buy the whole thing.”

This absence of a market today makes it difficult for a machine
intelligence startup, especially horizontal technology providers, to
“grow up”—hence the Peter Pans. Companies we see successfully
entering a long-term trajectory can package their technology as a new
problem-specific application for enterprise or simply transform an
industry themselves as a new entrant (love this). We flagged a few of
the industry categories where we believe startups might “go the dis‐
tance” in this year’s landscape.

Inspirational Machine Intelligence
Once we do figure it out, machine intelligence can solve much more
interesting problems than traditional software can. We’re thrilled to
see so many smart people applying machine intelligence for good.

Established players like Conservation Metrics and Vulcan Conserva‐
tion have been using deep learning to protect endangered animal
species; the ever-inspiring team at Thorn is constantly coming up
with creative algorithmic techniques to protect our children from
online exploitation. The philanthropic arms of the tech titans joined
in, enabling nonprofits with free storage, compute, and even devel‐
oper time. Google partnered with nonprofits to found Global Fish‐
ing Watch to detect illegal fishing activity using satellite data in near
real time, satellite intelligence startup Orbital Insight (in which we
are investors) partnered with Global Forest Watch to detect illegal
logging and other causes of global forest degradation. Startups are
getting into the action, too. The Creative Destruction Lab machine
intelligence accelerator (with whom we work closely) has companies
working on problems like earlier disease detection and injury pre‐
vention. One area where we have seen some activity but would love
to see more is machine intelligence to assist the elderly.

In talking to many people using machine intelligence for good, they
all cite the critical role of open source technologies. In the last year,
we’ve seen the launch of OpenAI, which offers everyone access to
world-class research and environments, and better and better relea‐
ses of TensorFlow and Keras. Nonprofits are always trying to do
more with less, and machine intelligence has allowed them to extend
the scope of their missions without extending their budgets. Algo‐

8 | Chapter 1: The State of Machine Intelligence 3.0

http://bit.ly/2jtA66v
http://bit.ly/VulcanConserv
http://bit.ly/VulcanConserv
https://www.wearethorn.org
http://globalfishingwatch.org
http://globalfishingwatch.org
https://orbitalinsight.com
http://www.globalforestwatch.org
https://www.creativedestructionlab.com
http://www.deepgenomics.com
http://www.winterlightlabs.com
http://www.rightbluelabs.com
http://www.plantiga.com
http://www.plantiga.com
http://www.intuitionrobotics.com
https://openai.com/blog

rithms allow nonprofits to inexpensively scale what would not be
affordable to do with people.

We also saw growth in universities and corporate think tanks, where
new centers like USC’s Center for AI in Society, Berkeley’s Center
for Human Compatible AI, and the multiple-corporation Partner‐
ship on AI study the ways in which machine intelligence can help
humanity. The White House even got into the act: after a series of
workshops around the US, it published a 48-page report outlining
recommendations for applying machine intelligence to safely and
fairly address broad social problems.

On a lighter note, we’ve also heard whispers of more artisanal ver‐
sions of machine intelligence. Folks are doing things like using com‐
puter vision algorithms to help them choose the best cocoa beans
for high-grade chocolate, write poetry, cook steaks, and generate
musicals.

Curious minds want to know. If you’re working on a unique or
important application of machine intelligence, we’d love to hear
from you.

Looking Forward
We see all this activity only continuing to accelerate. The world will
give us more open sourced and commercially available machine
intelligence building blocks; there will be more data; there will be
more people interested in learning these methods; and there will
always be problems worth solving. We still need ways of explaining
the difference between machine intelligence and traditional soft‐
ware, and we’re working on that. The value of code is different from
data, but what about the value of the model that code improves
based on that data?

Once we understand machine intelligence deeply, we might look
back on the era of traditional software and think it was just a pro‐
logue to what’s happening now. We look forward to seeing what the
next year brings.

Thank Yous
A massive thank you to the Bloomberg Beta team, David Klein,
Adam Gibson, Ajay Agrawal, Alexandra Suich, Angela Tranyens,

Looking Forward | 9

http://cais.usc.edu
http://bit.ly/BerkHumanAI
http://bit.ly/BerkHumanAI
https://www.partnershiponai.org
https://www.partnershiponai.org
http://bit.ly/2jtzrlj
http://bit.ly/2jtzrlj
http://bit.ly/2jtzrlj
http://bit.ly/WavenetPoemGen
http://bit.ly/CompGenMusical

Anthony Goldblum, Avi Goldfarb, Beau Cronin, Ben Lorica, Chris
Nicholson, Doug Fulop, Dror Berman, Dylan Tweney, Gary
Kazantsev, Gideon Mann, Gordon Ritter, Jack Clark, John Lilly, Jon
Lehr, Joshua Gans, Matt Turck, Matthew Granade, Mickey Graham,
Nick Adams, Roger Magoulas, Sean Gourley, Shruti Gandhi, Steve
Jurvetson, Vijay Sundaram, Zavain Dar, and for the help and fasci‐
nating conversations that led to this year’s report!

Landscape designed by Heidi Skinner.

Disclosure: Bloomberg Beta is an investor in Alation, Arimo, Aviso,
Brightfunnel, Context Relevant, Deep Genomics, Diffbot, Digital Gen‐
ius, Domino Data Labs, Drawbridge, Gigster, Gradescope, Graphistry,
Gridspace, Howdy, Kaggle, Kindred.ai, Mavrx, Motiva, Popup
Archive, Primer, Sapho, Shield.AI, Textio, and Tule.

Shivon Zilis and James Cham
Shivon Zilis is a partner and founding member of Bloomberg Beta,
an early-stage VC firm that invests in startups making work better,
with a focus on machine intelligence. She’s particularly fascinated
by intelligence tools and industry applications. Like any good Cana‐
dian, she spends her spare time playing hockey and snowboarding.
She holds a degree in economics and philosophy from Yale.

James Cham is a partner at Bloomberg Beta based in Palo Alto. He
invests in data-centric and machine learning–related companies. He
was a principal at Trinity Ventures and vice president at Bessemer
Venture Partners, where he worked with investments like Dropcam,
Twilio, and LifeLock. He’s a former software developer and man‐
agement consultant. He has an MBA from the Massachusetts Insti‐
tute of Technology and was an undergraduate in computer science
at Harvard College.

10 | Chapter 1: The State of Machine Intelligence 3.0

http://heidiskinner.com

CHAPTER 2

The Four Dynamic
Forces Shaping AI

Beau Cronin

There are four basic ingredients for making AI: data, compute
resources (i.e., hardware), algorithms (i.e., software), and the talent to
put it all together. In this era of deep learning ascendancy, it has
become conventional wisdom that data is the most differentiating
and defensible of these resources; companies like Google and Face‐
book spend billions to develop and provide consumer services,
largely in order to amass information about their users and the
world they inhabit. While the original strategic motivation behind
these services was to monetize that data via ad targeting, both of
these companies—and others desperate to follow their lead—now
view the creation of AI as an equally important justification for their
massive collection efforts.

Abundance and Scarcity of Ingredients
While all four pieces are necessary to build modern AI systems,
what we’ll call their “scarcity” varies widely. Scarcity is driven in
large part by the balance of supply and demand: either a tight supply
of a limited resource or a heavy need for it can render it more
scarce. When it comes to the ingredients that go into AI, these sup‐
ply and demand levels can be influenced by a wide range of forces—
not just technical changes, but also social, political, and economic
shifts.

11

Fictional depictions can help to draw out the form and implications
of technological change more clearly. So, before turning to our
present condition, I want to briefly explore one of my favorite sci-fi
treatments of AI, from David Marusek’s tragically under-appreciated
novel Counting Heads (A Tor Book). Marusek paints a 22nd-century
future where an AI’s intelligence, and its value, scales directly with
the amount of “neural paste” it runs on—and that stuff isn’t cheap.
Given this hardware (wetware?) expense, the most consequential
intelligences, known as mentars, are sponsored by—and allied with
—only the most powerful entities: government agencies, worker
guilds, and corporations owned by the super-rich “affs” who really
run the world. In this scenario, access to a powerful mentar is both a
signifier and a source of power and influence.

Translating this world into our language of AI ingredients, in Count‐
ing Heads it is the hardware substrate that is far and away the scarc‐
est resource. While training a new mentar takes time and skill, both
the talent and data needed to do so are relatively easy to come by.
And the algorithms are so commonplace as to be beneath mention.

With this fictional example in mind, let’s take stock of the relative
abundance and scarcity of these four ingredients in today’s AI land‐
scape:

• The algorithms and even the specific software libraries (e.g.,
TensorFlow, Torch, Theano) have become, by and large, a mat‐
ter of public record—they are simply there for the taking on
GitHub and the ArXiv.

• Massive compute resources (e.g., Amazon AWS, Google, Micro‐
soft Azure) aren’t without cost, but are nevertheless fully com‐
moditized and easily accessible to any individual or
organization with modest capital. A run-of-the-mill AWS
instance, running about $1 an hour, would have been at or near
the top of the world supercomputer rankings in the early 1990s.

• The talent to build the most advanced systems is much harder
to come by, however. There is a genuine shortage of individuals
who are able to work fluently with the most effective methods,
and even fewer who can advance the state of the art.

• Finally, the massive data sets necessary to train modern AIs are
hardest of all to obtain, in some cases requiring a level of capital
expenditure and market presence that only the largest organiza‐
tions can muster. While data is a non-rival good, and therefore

12 | Chapter 2: The Four Dynamic Forces Shaping AI

https://www.tensorflow.org
http://torch.ch
http://bit.ly/2jtjGea
https://aws.amazon.com/ec2/
https://cloud.google.com/compute/
http://bit.ly/2jtvlJU
http://bit.ly/2jtvlJU

could be shared widely after collection, in practice the largest
and most valuable data sets are closely guarded—they form the
true barriers to competition in today’s landscape.

You could summarize the current situation with Figure 2-1, by Beau
Cronin.

Figure 2-1. Current AI situation (image courtesy of Beau Cronin)

(Note that bubble size here is scarcity, not importance
—these resources are all necessary.)

Abundance and Scarcity of Ingredients | 13

But this particular distribution of AI ingredient scarcity is not the
only possible configuration, and it is in fact quite new (though see
this Edge.org article for the argument that data sets are the funda‐
mentally scarce resource). For example, the realization that very
large and expensive-to-gather data sets are in fact crucial in creating
the most valuable and impactful AI systems is usually credited to
Google, and is largely a phenomenon of the last 10–15 years. The
demand for these data sets has therefore grown fantastically; their
supply has increased as well, but not at the same rate.

The conventional wisdom was quite different around the turn of the
century, when many of the smartest practitioners viewed the relative
importance of the ingredients quite differently, leading to a different
distribution of demand. People knew that data was essential, to be
sure, but the scale at which it was needed simply wasn’t appreciated.
On the other hand, reliance on different (and often secret) algo‐
rithms for competitive differentiation was much more widespread—
even if the actual superiority of these proprietary methods didn’t live
up to their perceived worth. We might caricature the scarcity distri‐
bution of this pre-big data AI era as in Figure 2-2.

Debate the details if you will, but the overall balance was certainly
quite different: this was a time when the most successful approach to
natural language understanding, for example, was to construct pars‐
ers that included detailed grammar rules for the language in ques‐
tion, rather than today’s practice of extracting statistical patterns
from very large text corpora. And eliciting explicit knowledge from
experts through in-person interviews and encoding the results into
formal decision rules was a dominant learning method, rather than
today’s standard approach of extracting patterns automatically from
many examples.

14 | Chapter 2: The Four Dynamic Forces Shaping AI

https://www.edge.org/response-detail/26587
https://www.edge.org/response-detail/26587
http://bit.ly/2jtvlJU
http://bit.ly/2jtvlJU

Figure 2-2. Pre-big data AI (image courtesy of Beau Cronin)

Forces Driving Abundance and Scarcity of
Ingredients
This glimpse at recent history raises the question: will our current
scarcity distribution hold, or instead shift again? Which immedi‐
ately begs another question: what are the factors that affect the abso‐
lute and relative scarcity levels of each ingredient?

We don’t have room here for a complete exploration of the many
variables, but a brief tour should at least get the critical juices flow‐
ing.

New technology advances obviously drive change in AI. Perhaps a
new kind of sensor will reach a price/performance tipping point that
allows it to be deployed at massive scale, transforming our ability to

Forces Driving Abundance and Scarcity of Ingredients | 15

observe and track human behavior. New chip architectures or even
circuit substrates may emerge that fundamentally alter the capital
requirements for running the most effective AI methods—either
pushing them up, so that the needed computing resources are no
longer a cheap commodity, or down, so that highly capable intelli‐
gences are significantly cheaper to train and run. Or new algorithms
could emerge that require much less data to train: it is widely noted
that, unlike today’s machine learning methods, humans do not need
thousands or millions of labeled examples to make new distinctions,
but can instead generalize in very nuanced ways from just a handful
of cases. In fact, such data-efficient methods are undergoing intense
development in academic and corporate research labs today, and
constitute one of the most active areas of the field. What would hap‐
pen to the balance of scarcity if these algorithms proved their effec‐
tiveness and became widely available?

Technology is not developed in a vacuum, but rather constitutes just
one major element in the larger socioeconomic system. Shifts may
occur in the political and public opinion landscape around issues of
privacy, economic inequality, government power, and virtual or
physical security. These changes in public sentiment can themselves
be motivated by technological advances, and can in turn feed back
to influence the pace and direction of those technology develop‐
ments. Such policy and political shifts might render data collection
harder (or easier), which could influence which algorithm classes
are the most valuable to invest in.

The larger economic picture can also change the context in which AI
is developed. For example, the skills distribution of the workforce
will inevitably shift over time. As the simplest example, the current
scarcity of qualified AI architects and developers will surely drive
more people to enter the field, increasing the supply of qualified
people. But other shifts are possible, too: continued difficulty in
finding the right workers could tip the balance toward algorithms
that are easier to train for a class of workers with less rarefied skills,
for example. Or a new technology may emerge that requires a new
mix of skills to reach its full potential—say, more coach or trainer
than today’s applied mathematicians and engineers.

16 | Chapter 2: The Four Dynamic Forces Shaping AI

http://bit.ly/2jtpZys

Possible Scenarios for the Future of AI
With these and other possible factors in mind, it should be clear that
today’s status quo is at least subject to question—while it might
endure for some time, it’s far more likely to represent a temporary
equilibrium. Looking forward, a large number of scenarios are pos‐
sible; we only have room to describe a few of them here, but I hope
that this piece sparks a bit of discussion about the full range of con‐
ceivable outcomes.

First, the baseline scenario is a straightforward extrapolation from
our current situation: data, at large scale and of high quality, remains
the key differentiator in constructing AIs. New hardware architec‐
tures that accelerate the most important learning algorithms may
also come into play, but the role of these new substrates remains sec‐
ondary. The net effect is that AI remains a capital-intensive and
strong-get-stronger affair: while there is near-universal consumer
access to no-cost, shared, cloud-based AIs, these systems are exclu‐
sively created by, and ultimately reflect the interests and priorities of,
highly resourced organizations.

This is the future that Kevin Kelly foresees in his recent book, The
Inevitable (Penguin Random House):

The bigger the network, the more attractive it is to new users,
which makes it even bigger and thus more attractive, and so on. A
cloud that serves AI will obey the same law. The more people who
use an AI, the smarter it gets. The smarter it gets, the more people
who use it. The more people who use it, the smarter it gets. And so
on. Once a company enters this virtuous cycle, it tends to grow so
big so fast that it overwhelms any upstart competitors. As a result,
our AI future is likely to be ruled by an oligarchy of two or three
large, general-purpose cloud-based commercial intelligences.

In a second scenario, developments in the technical or political
sphere alter the fundamental dynamics of access to data, making
training data sets accessible to a much broader range of actors. This
in turn gradually loosens the near-monopoly on talent currently
held by the leading AI companies, which the top recruits no longer
in thrall to the few sources of good data. Assuming the necessary
compute remains a cheap commodity, this is a more “open” world
(Figure 2-3), one in which it’s easier to imagine powerful AIs being
developed that reflect the interests of a broader range of individuals
and organizations.

Possible Scenarios for the Future of AI | 17

Figure 2-3. Open world AI (image courtesy of Beau Cronin)

We can also consider more exotic scenarios, such as Figure 2-4.
Consider a scenario in which the human talent element becomes
even more differentiating and scarce than today (i.e., a world where
the most effective AI algorithms must be taught and trained, and
where some people are much better at this than others). Data, com‐
pute power, and the “blank slate” software are all available off-the-
shelf, but the most gifted AI teachers are very highly sought-after.
This seems far-fetched in our current technosocial landscape, but I
wouldn’t be surprised if, one way or another, the scarcity landscape
of the year 2030 didn’t seem at least this outlandish.

18 | Chapter 2: The Four Dynamic Forces Shaping AI

Figure 2-4. Exotic AI scenario (image courtesy of Beau Cronin)

Several early readers of this piece had their own pet scenarios in
mind—including, I was glad to see, storylines in which the general
public awoke to the value of personal data and demanded the right
to control and profit from access to it—and I hope that they and
others will share and debate them in a public forum. How do you
see the driving forces playing out in the years to come, and what sce‐
narios do those developments suggest?

Possible Scenarios for the Future of AI | 19

Broadening the Discussion
Two tired frames currently dominate the popular discussion about
the future of AI: Will robots and automation take all the jobs? And
how long after that before a superintelligent AI kills or enslaves us
all? These derpy discussions distract us from the issues around AI
that are far more likely to impact us, for better and worse, in the
next few decades. AI will certainly change our lives and livelihoods,
but the ways in which this plays out will depend largely on which
aspects of AI creation remain difficult versus easy, expensive versus
affordable, exclusive versus accessible, and serious versus child’s
play.

Why does this ultimately matter? As Ben Lorica and Mike Loukides
wrote in their report “What Is Artificial Intelligence?”:

If AI research becomes the sole province of the military, we will
have excellent auto-targeting drones; if AI research becomes the
sole province of national intelligence, we will have excellent systems
for surreptitiously listening to and understanding conversations.
Our imaginations will be limited about what else AI might do for
us, and we will have trouble imagining AI applications other than
murderous drones and the watchful ear of Big Brother. We may
never develop intelligent medical systems or robotic nurses’ aides.

This, in the end, is why it is important to debate and discuss these
scenarios: our AI future is being written as we speak. While it seems
unlikely today that, say, the military will dominate the field, it is
entirely possible that large companies will. If this outcome is not the
one you want, then the analysis here suggests that the key areas to
examine are not algorithms or hardware, but rather the data and the
talent. As David Chapman points out, “Given sufficient confidence
that ‘deep learning would solve multi-billion-dollar problem X, if
only we had the data,’ getting the resources to gather the data
shouldn’t be difficult.” This even in the face of very large up-front
capital outlay.

Today, the center of the AI universe has shifted from academic labs
to applied research labs at large technology companies. Whether
that remains the case 5, 10, or 20 years from now depends in large
part on whether it becomes possible for that activity to happen else‐
where. Will it ever be possible for the next great AI to be born in a
garage?

20 | Chapter 2: The Four Dynamic Forces Shaping AI

http://oreil.ly/2jtoDE0
https://twitter.com/Meaningness

I’d like to thank Peter Schwartz, who I had the honor and pleasure of
working with for much of 2015. Those who are familiar with his
groundbreaking scenario-planning framework will see his methodo‐
logical fingerprints all over this piece, though of course I reserve all
idiocies for myself. Thanks also to Miles Brundage, James Cham,
David Chapman, and Dan Marthaler for insightful feedback; I proba‐
bly should have taken more of their advice.

Beau Cronin
Beau cofounded two startups based on probabilistic inference, the
second of which was acquired by Salesforce in 2012. He now works
as Head of Data at 21 Inc. He received his PhD in computational
neuroscience from MIT in 2008.

Broadening the Discussion | 21

https://en.wikipedia.org/wiki/Peter_Schwartz_(futurist)

PART II

Technology

We now take a deep dive into the technical underpinnings of artifi‐
cial intelligence. The first three articles in this section discuss issues
of broad AI significance before we shift our focus to deep learning.
To kick things off, Mike Loukides discusses the balance of super‐
vised and unsupervised learning—in both the human and machine
contexts. Surprisingly, although we think of humans as the para‐
digm unsupervised learners, he points out that as a species, most of
our learning is quite supervised. Junling Hu then gives an overview
of reinforcement learning, with tips for implementation and a few
signal examples. Ben Lorica then dives into compressed representa‐
tions of deep learning models, in both mobile and distributed com‐
puting environments, and Song Han picks up that theme with a
deep dive into compressing and regularizing deep neural networks.
Next, we shift to deep learning with tutorials for Tensorflow from
Aaron Schumacher and Justin Francis, and Mike Loukides’ account
of learning “Tensorflow for poets”—as a poet! An alternative to Ten‐
sorflow that offers a “define by run” approach to deep learning is
Chainer, the subject of Shohei Hido’s contribution. Finally, some
thoughts from Rajat Monga on deep learning, both at Google and in
any business model, round out the section.

CHAPTER 3

To Supervise or Not
to Supervise in AI?

Mike Loukides

One of the truisms of modern AI is that the next big step is to move
from supervised to unsupervised learning. In the last few years,
we’ve made tremendous progress in supervised learning: photo clas‐
sification, speech recognition, even playing Go (which represents a
partial, but only partial, transition to unsupervised learning). Unsu‐
pervised learning is still an unsolved problem. As Yann LeCun says,
“We need to solve the unsupervised learning problem before we can
even think of getting to true AI.”

I only partially agree. Although AI and human intelligence aren’t the
same, LeCun appears to be assuming that unsupervised learning is
central to human learning. I don’t think that’s true, or at least, it isn’t
true in the superficial sense. Unsupervised learning is critical to us,
at a few very important stages in our lives. But if you look carefully
at how humans learn, you see surprisingly little unsupervised learn‐
ing.

It’s possible that the the first few steps in language learning are unsu‐
pervised, though it would be hard to argue that point rigorously. It’s
clear, though, that once a baby has made the first few steps—once it’s
uttered its first ma-ma-ma and da-da-da—the learning process takes
place in the context of constant support from parents, from siblings,
even from other babies. There’s constant feedback: praise for new
words, attempts to communicate, and even preschool teachers say‐
ing, “Use your words.” Our folktales recognize the same process.

25

http://bit.ly/2jtCb2b

There are many stories about humans raised by wolves or other ani‐
mals. In none of those stories can the human, upon re-entering civi‐
lization, converse with other humans. This suggests that
unsupervised learning may get the learning process started initially,
but once the process has been started, it’s heavily supervised.

Unsupervised learning may be involved in object permanence, but
endless games of “peekaboo” should certainly be considered train‐
ing. I can imagine a toddler learning some rudiments of counting
and addition on his or her own, but I can’t imagine a child develop‐
ing any sort of higher mathematics without a teacher.

If we look at games like Chess and Go, experts don’t achieve exper‐
tise without long hours of practice and training. Lee Sedol and
Garry Kasparov didn’t become experts on their own: it takes a tre‐
mendous investment in training, lessons, and directed study to
become a contender even in a local tournament. Even at the highest
professional levels, champions have coaches and advisors to direct
their learning.

If the essence of general intelligence isn’t unsupervised learning, and
if unsupervised learning is a prerequisite for general intelligence,
but not the substance, what should we be looking for? Here are
some suggestions.

Humans are good at thinking by analogy and relationship. We learn
something, then apply that knowledge in a completely different area.
In AI, that’s called “transfer learning”; I haven’t seen many examples
of it, but I suspect it’s extremely important. What does picture classi‐
fication tell us about natural language processing? What does fluid
dynamics tell us about electronics? Taking an idea from one domain
and applying it to another is perhaps the most powerful way by
which humans learn.

I haven’t seen much AI research on narrative, aside from projects
to create simple news stories from event logs. I suspect that
researchers undervalue the importance of narrative, possibly
because our ability to create narrative has led to many false conclu‐
sions. But if we’re anything, we’re not the “rational animal” but the
“storytelling animal,” and our most important ability is pulling dis‐
parate facts together into a coherent narrative. It’s certainly true that
our narratives are frequently wrong when they are based on a small
number of events: a quintessentially human example of “overfitting.”

26 | Chapter 3: To Supervise or Not to Supervise in AI?

http://bit.ly/2jtEjqt

But that doesn’t diminish their importance as a key tool for compre‐
hending our world.

Humans are good at learning based on small numbers of examples.
As one redditor says, “You don’t show a kid 10,000 pictures of cars
and houses for him or her to recognize them.” But it’s a mistake to
think that tagging and supervision aren’t happening. A toddler may
learn the difference between cars and houses with a half dozen or so
examples, but only with an adult saying, “That’s a car and that’s a
house” (perhaps while reading a picture book). The difference is that
humans do the tagging without noticing it, and the toddler shifts
context from a 2D picture book to the real world without straining.
Again, our ability to learn based on a small number of examples is
both a strength and a weakness: we’re plagued by overfitting and
“truths” that are no more than prejudices. But our ability to learn
based on a relatively small number of examples is important. Lee
Sedol has probably played tens of thousands of Go games, but he
certainly hasn’t played millions.

I’m not arguing that unsupervised learning is unimportant. We may
discover that unsupervised learning is an important prerequisite to
other forms of learning, that unsupervised learning starts the learn‐
ing process. It may be a necessary step in evolving from narrow AI
to general AI. By sorting inputs into unlabeled categories, unsuper‐
vised learning might help to reduce the need for labeled data and
greatly speed the learning process. But the biggest project facing AI
isn’t making the learning process faster and more efficient. It’s mov‐
ing from machines that solve one problem very well (such as playing
Go or generating imitation Rembrandts) to machines that are flexi‐
ble and can solve many unrelated problems well, even problems
they’ve never seen before. If we really want general intelligence, we
need to think more about transferring ideas from one domain to
another, working with analogies and relationships, creating narra‐
tives, and discovering the implicit tagging and training that humans
engage in constantly.

Mike Loukides
Mike Loukides is Vice President of Content Strategy for O’Reilly
Media, Inc. He’s edited many highly regarded books on technical
subjects that don’t involve Windows programming. He’s particularly
interested in programming languages, Unix and what passes for

To Supervise or Not to Supervise in AI? | 27

http://bit.ly/2jtzptP
http://n.pr/2jtFHto

Unix these days, and system and network administration. Mike is
the author of System Performance Tuning and a coauthor of Unix
Power Tools (O’Reilly). Most recently, he’s been fooling around with
data and data analysis and languages like R, Mathematica, Octave,
and thinking about how to make books social.

28 | Chapter 3: To Supervise or Not to Supervise in AI?

http://shop.oreilly.com/product/9780937175606.do
http://shop.oreilly.com/product/9780596003302.do
http://shop.oreilly.com/product/9780596003302.do

CHAPTER 4

Compressed Representations in
the Age of Big Data

Ben Lorica

When developing intelligent, real-time applications, one often has
access to a data platform that can wade through and unlock patterns
in massive data sets. The backend infrastructure for such applica‐
tions often relies on distributed, fault-tolerant, scaleout technologies
designed to handle large data sets. But, there are situations when
compressed representations are useful and even necessary. The rise
of mobile computing and sensors (IoT) will lead to devices and soft‐
ware that push computation from the cloud toward the edge. In
addition, in-memory computation tends to be much faster, and
thus, many popular (distributed) systems operate on data sets that
can be cached.

To drive home this point, let me highlight two recent examples that
illustrate the importance of efficient compressed representations:
one from mobile computing, the other from a popular distributed
computing framework.

Deep Neural Networks and Intelligent Mobile
Applications
In a recent presentation, Song Han, of the Concurrent VLSI Archi‐
tecture (CVA) group at Stanford University, outlined an initiative to
help optimize deep neural networks for mobile devices. Deep learn‐
ing has produced impressive results across a range of applications in

29

http://stanford.io/2jtyKZo
http://cva.stanford.edu/people/
http://cva.stanford.edu/people/

computer vision, speech, and machine translation. Meanwhile the
growing popularity of mobile computing platforms means many
mobile applications will need to have capabilities in these areas. The
challenge is that deep learning models tend to be too large to fit into
mobile applications (these applications are downloaded and often
need to be updated frequently). Relying on cloud-based solutions is
an option, but network delay and privacy can be an issue in certain
applications and domains.

One solution is to significantly reduce the size of deep learning
models. CVA researchers recently proposed a general scheme for
compressing deep neural networks in three steps (illustrated in
Figure 4-1):

• Prune the unimportant connections.
• Quantize the network and enforce weight sharing.
• Apply Huffman encoding.

Figure 4-1. Sample diagram comparing compression schemes on neu‐
ral network sizes (image courtesy of Ben Lorica)

Initial experiments showed their compression scheme reduced neu‐
ral network sizes by 35 to 50 times, and the resulting compressed
models were able to match the accuracy of the corresponding origi‐
nal models. CVA researchers also designed an accompanying
energy-efficient ASIC accelerator for running compressed deep neu‐
ral networks, hinting at next-generation software and hardware
designed specifically for intelligent mobile applications.

30 | Chapter 4: Compressed Representations in the Age of Big Data

http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149
https://en.wikipedia.org/wiki/Huffman_coding
http://bit.ly/2jtyqK4

Succinct: Search and Point Queries on
Compressed Data Over Apache Spark
Succinct is a “compressed” data store that enables a wide range of
point queries (search, count, range, random access) directly on a
compressed representation of input data. Succinct uses a compres‐
sion technique that empirically achieves compression close to that of
gzip, and supports the above queries without storing secondary
indexes, without data scans, and without data decompression. Suc‐
cinct does not store the input file, just the compressed representa‐
tion. By letting users query compressed data directly, Succinct
combines low latency and low storage (Figure 4-2).

Figure 4-2. Qualitative comparison of data scans, indexes, and Suc‐
cinct. Since it stores and operates on compressed representations, Suc‐
cinct can keep data in-memory for much larger-sized input files.
Source: Rachit Agarwal, used with permission.

While this AMPLab project had been around as a research initiative,
Succinct became available on Apache Spark late last year. This
means Spark users can leverage Succinct against flat files and imme‐
diately execute search queries (including regex queries directly on
compressed RDDs), compute counts, and do range queries. More‐
over, abstractions have been built on top of Succinct’s basic flat
(unstructured) file interface, allowing Spark to be used as a docu‐
ment or key-value store; and a DataFrames API currently exposes

Succinct: Search and Point Queries on Compressed Data Over Apache Spark | 31

http://bit.ly/2jtzKNf
https://en.wikipedia.org/wiki/Gzip
http://bit.ly/2jtzKNf
http://bit.ly/2jvUrr1
https://amplab.cs.berkeley.edu/
http://bit.ly/2jtyGJ2
http://bit.ly/2jtzKNf
http://bit.ly/2jtB4iX
http://bit.ly/2jtGVF0

search, count, range, and random access queries. Having these new
capabilities on top of Apache Spark simplifies the software stack
needed to build many interesting data applications.

Early comparisons with ElasticSearch have been promising and,
most importantly for its users, Succinct is an active project. The
team behind it plans many enhancements in future releases, includ‐
ing Succinct Graphs (for queries on compressed graphs), support
for SQL on compressed data, and further improvements in prepro‐
cessing/compression (currently at 4 gigabytes per hour, per core).
They are also working on a research project called Succinct Encryp‐
tion (for queries on compressed and encrypted data).

Related Resources
• Big Data: Efficient Collection and Processing, Anna Gilbert’s

Strata + Hadoop World presentation on compressed sensing
• Doing the Impossible (Almost), Ted Dunning’s Strata + Hadoop

World presentation on t-digest and approximation algorithms

Ben Lorica
Ben Lorica is the Chief Data Scientist and Director of Content
Strategy for Data at O’Reilly Media, Inc. He has applied business
intelligence, data mining, machine learning, and statistical analysis
in a variety of settings including direct marketing, consumer and
market research, targeted advertising, text mining, and financial
engineering. His background includes stints with an investment
management company, internet startups, and financial services.

32 | Chapter 4: Compressed Representations in the Age of Big Data

http://bit.ly/2jtB96f
http://bit.ly/2jtzAW2
http://bit.ly/2jtJfM8
http://bit.ly/2jtzCNE
https://github.com/tdunning/t-digest

CHAPTER 5

Compressing and Regularizing
Deep Neural Networks

Song Han

Deep neural networks have evolved to be the state-of-the-art techni‐
que for machine learning tasks ranging from computer vision and
speech recognition to natural language processing. However, deep
learning algorithms are both computationally intensive and memory
intensive, making them difficult to deploy on embedded systems
with limited hardware resources.

To address this limitation, deep compression significantly reduces the
computation and storage required by neural networks. For example,
for a convolutional neural network with fully connected layers, such
as Alexnet and VGGnet, it can reduce the model size by 35×-49×.
Even for fully convolutional neural networks such as GoogleNet and
SqueezeNet, deep compression can still reduce the model size by
10x. Both scenarios results in no loss of prediction accuracy.

Current Training Methods Are Inadequate
Compression without losing accuracy means there’s significant
redundancy in the trained model, which shows the inadequacy of
current training methods. To address this, I’ve worked with Jeff Pool
of NVIDIA, Sharan Narang of Baidu, and Peter Vajda of Facebook
to develop the dense-sparse-dense (DSD) training, a novel training
method that first regularizes the model through sparsity-
constrained optimization, and improves the prediction accuracy by

33

https://arxiv.org/abs/1607.04381

recovering and retraining on pruned weights. At test time, the final
model produced by DSD training still has the same architecture and
dimension as the original dense model, and DSD training doesn’t
incur any inference overhead. We experimented with DSD training
on mainstream CNN, RNN, and LSTMs for image classification,
image caption, and speech recognition and found substantial perfor‐
mance improvements.

In this article, we first introduce deep compression, and then intro‐
duce dense-sparse-dense training.

Deep Compression
The first step of deep compression is synaptic pruning. The human
brain has the process of pruning inherently. Many—possibly a great
majority—of the synapses we’re born with are pruned away from
infancy to adulthood.

Does a similar rule apply to artificial neural networks? The answer is
yes. In early work, network pruning proved to be a valid way to
reduce the network complexity and overfitting. This method works
on modern neural networks as well. We start by learning the con‐
nectivity via normal network training. Next, we prune the small-
weight connections: all connections with weights below a threshold
are removed from the network. Finally, we retrain the network to
learn the final weights for the remaining sparse connections. Prun‐
ing reduced the number of parameters by 9× and 13× for AlexNet
and the VGG-16 model (see Figure 5-1).

The next step of deep compression is weight sharing. We found neu‐
ral networks have really high tolerance to low precision: aggressive
approximation of the weight values does not hurt the prediction
accuracy. As shown in Figure 5-2, the blue weights are originally
2.09, 2.12, 1.92 and 1.87; by letting four of them share the same
value, which is 2.00, the accuracy of the network can still be recov‐
ered. Thus we can save very few weights, call it “codebook,” and let
many other weights share the same weight, storing only the index to
the codebook.

34 | Chapter 5: Compressing and Regularizing Deep Neural Networks

http://bit.ly/2jnmwUn
http://bit.ly/2jnmwUn
http://bit.ly/OptBrainDam

Figure 5-1. Pruning a neural network (all images courtesy of Song
Han)

The index could be represented with very few bits. For example, in
Figure 5-2, there are four colors; thus, only two bits are needed to
represent a weight, as opposed to 32 bits originally. The codebook,
on the other side, occupies negligible storage. Our experiments
found this kind of weight-sharing technique is better than linear
quantization, with respect to the compression ratio and accuracy
trade-off.

Figure 5-2. Training a weight-sharing neural network

Deep Compression | 35

Figure 5-3 shows the overall result of deep compression.
Lenet-300-100 and Lenet-5 are evaluated on MNIST data set, while
AlexNet, VGGNet, GoogleNet, and SqueezeNet are evaluated on
ImageNet data set. The compression ratio ranges from 10× to 49×—
even for those fully convolutional neural networks like GoogleNet
and SqueezeNet, deep compression can still compress it by an order
of magnitude. We highlight SqueezeNet, which has 50× fewer
parameters than AlexNet but has the same accuracy, and can still be
compressed by 10×, making it only 470 KB. This makes it easy to fit
in on-chip SRAM, which is both faster and more energy efficient to
access than DRAM.

We have tried other compression methods such as low-rank approx‐
imation based methods, but the compression ratio isn’t as high. A
complete discussion can be found in my research group’s paper on
deep compression (see Figure 5-3).

Figure 5-3. Results of deep compression

DSD Training
The fact that deep neural networks can be aggressively pruned and
compressed means that our current training method has some limi‐
tation: it can not fully exploit the full capacity of the dense model to
find the best local minima, yet a pruned, sparse model that has
many fewer synapses can achieve the same accuracy. This brings a
question: can we achieve better accuracy by recovering those
weights and learn them again?

Let’s make an analogy to training for track racing in the Olympics.
The coach will first train a runner on high-altitude mountains,
where there are a lot of constraints: low oxygen, cold weather, etc.
The result is that when the runner returns to the plateau area again,
his/her speed is increased. Similar for neural networks, given the

36 | Chapter 5: Compressing and Regularizing Deep Neural Networks

https://arxiv.org/pdf/1510.00149v5.pdf
https://arxiv.org/pdf/1510.00149v5.pdf

heavily constrained sparse training, the network performs as well as
the dense model; once you release the constraint, the model can
work better.

Theoretically, the following factors contribute to the effectiveness of
DSD training:

Escape Saddle Point
One of the most profound difficulties of optimizing deep net‐
works is the proliferation of saddle points. DSD training over‐
comes saddle points by a pruning and re-densing framework.
Pruning the converged model perturbs the learning dynamics
and allows the network to jump away from saddle points, which
gives the network a chance to converge at a better local or global
minimum. This idea is also similar to simulated annealing.
While Simulated Annealing randomly jumps with decreasing
probability on the search graph, DSD deterministically deviates
from the converged solution achieved in the first dense training
phase by removing the small weights and enforcing a sparsity
support.

Regularized and Sparse Training
The sparsity regularization in the sparse training step moves the
optimization to a lower-dimensional space where the loss sur‐
face is smoother and tends to be more robust to noise. More
numerical experiments verified that both sparse training and
the final DSD reduce the variance and lead to lower error.

Robust re-initialization
Weight initialization plays a big role in deep learning. Conven‐
tional training has only one chance of initialization. DSD gives
the optimization a second (or more) chance during the training
process to re-initialize from more robust sparse training solu‐
tions. We re-dense the network from the sparse solution, which
can be seen as a zero initialization for pruned weights. Other
initialization methods are also worth trying.

Break Symmetry
The permutation symmetry of the hidden units makes the
weights symmetrical, thus prone to co-adaptation in training. In
DSD, pruning the weights breaks the symmetry of the hidden
units associated with the weights, and the weights are asymmet‐
rical in the final dense phase.

DSD Training | 37

https://arxiv.org/pdf/1406.2572.pdf
https://en.wikipedia.org/wiki/Simulated_annealing
https://arxiv.org/pdf/1511.06422v7.pdf

We examined several mainstream CNN, RNN, and LSTM architec‐
tures on image classification, image caption, and speech recognition
data sets and found that this dense-sparse-dense training flow gives
significant accuracy improvement. Our DSD training employs a
three-step process: dense, sparse, dense; each step is illustrated in
Figure 5-4.

Figure 5-4. Dense-sparse-dense training flow

1. Initial dense training: The first D-step learns the connectivity
via normal network training on the dense network. Unlike con‐
ventional training, however, the goal of this D-step is not to
learn the final values of the weights; rather, we are learning
which connections are important.

2. Sparse training: The S-step prunes the low-weight connections
and retrains the sparse network. We applied the same sparsity to
all the layers in our experiments, thus there’s a single hyperpara‐
meter: the sparsity. For each layer we sort the parameters, the
smallest N*sparsity parameters are removed from the network,
converting a dense network into a sparse network. We found
that a sparsity ratio of 50%-70% works very well. Then, we
retrain the sparse network, which can fully recover the model
accuracy under the sparsity constraint.

3. Final dense training: The final D-step recovers the pruned con‐
nections, making the network dense again. These previously
pruned connections are initialized to zero and retrained.
Restoring the pruned connections increases the dimensionality
of the network, and more parameters make it easier for the net‐

38 | Chapter 5: Compressing and Regularizing Deep Neural Networks

work to slide down the saddle point to arrive at a better local
minima.

We applied DSD training to different kinds of neural networks on
data sets from different domains. We found that DSD training
improved the accuracy for all these networks compared to neural
networks that were not trained with DSD. The neural networks are
chosen from CNN, RNN, and LSTMs; the data sets are chosen from
image classification, speech recognition, and caption generation.
The results are shown in Figure 5-5. DSD models are available to
download at DSD Model Zoo.

Figure 5-5. DSD training improves prediction accuracy

Generating Image Descriptions
We visualized the effect of DSD training on an image caption task
(see Figure 5-6). We applied DSD to NeuralTalk, an LSTM for gen‐
erating image descriptions. The baseline model fails to describe
images 1, 4, and 5. For example, in the first image, the baseline
model mistakes the girl for a boy, and mistakes the girl’s hair for a
rock wall; the sparse model can tell that it’s a girl in the image, and
the DSD model can further identify the swing.

In the the second image, DSD training can tell the player is trying to
make a shot, rather than the baseline, which just says he’s playing
with a ball. It’s interesting to notice that the sparse model sometimes
works better than the DSD model. In the last image, the sparse
model correctly captured the mud puddle, while the DSD model
only captured the forest from the background. The good perfor‐
mance of DSD training generalizes beyond these examples, and
more image caption results generated by DSD training are provided
in the appendix of this paper.

Generating Image Descriptions | 39

https://songhan.github.io/DSD/
http://cs.stanford.edu/people/karpathy/cvpr2015.pdf
https://arxiv.org/abs/1607.04381

Figure 5-6. Visualization of DSD training improves the performance of
image captioning

Advantages of Sparsity
Deep compression, for compressing deep neural networks for
smaller model size, and DSD training for regularizing neural net‐
works, are both techniques that utilize sparsity and achieve a smaller
size or higher prediction accuracy. Apart from model size and pre‐
diction accuracy, we looked at two other dimensions that take
advantage of sparsity: speed and energy efficiency, which are beyond
the scope of this article. Readers can refer to EIE for further refer‐
ences.

Song Han
Song Han is a fifth year PhD student with Professor Bill Dally at
Stanford University. His research focuses on energy-efficient deep
learning, at the intersection between machine learning and com‐
puter architecture. Song proposed deep compression that can com‐
press state-of-the art CNNs by 10×–49× and compressed
SqueezeNet to only 470 KB, which fits fully in on-chip SRAM. He
proposed a DSD training flow that improved that accuracy of a
wide range of neural networks. He designed EIE: Efficient Inference
Engine, a hardware architecture that does inference directly on the
compressed sparse neural network model, which is 13× faster and
3,000× energy efficient than GPU. His work has been covered by
The Next Platform, TechEmergence, Embedded Vision, and
O’Reilly. His work received the Best Paper Award in ICLR’16.

40 | Chapter 5: Compressing and Regularizing Deep Neural Networks

https://arxiv.org/pdf/1602.01528v2.pdf
http://stanford.edu/~songhan/
http://cva.stanford.edu/billd_webpage_new.html
http://ee.stanford.edu/
https://arxiv.org/pdf/1510.00149v5.pdf
https://arxiv.org/pdf/1602.07360v3.pdf
https://arxiv.org/abs/1607.04381
https://arxiv.org/pdf/1602.01528v2.pdf
https://arxiv.org/pdf/1602.01528v2.pdf
http://bit.ly/2juoFvl
http://bit.ly/2jueFCe
http://bit.ly/2jukFuF
http://oreil.ly/2judYsw
http://bit.ly/2julLGE
http://bit.ly/2jnmewE

CHAPTER 6

Reinforcement Learning Explained

Junling Hu

A robot takes a big step forward, then falls. The next time, it takes a
smaller step and is able to hold its balance. The robot tries variations
like this many times; eventually, it learns the right size of steps to
take and walks steadily. It has succeeded.

What we see here is called reinforcement learning. It directly con‐
nects a robot’s action with an outcome, without the robot having to
learn a complex relationship between its action and results. The
robot learns how to walk based on reward (staying on balance) and
punishment (falling). This feedback is considered “reinforcement”
for doing or not doing an action.

Another example of reinforcement learning can be found when
playing the game Go. If the computer player puts down its white
piece at a location, then gets surrounded by the black pieces and
loses that space, it is punished for taking such a move. After being
beaten a few times, the computer player will avoid putting the white
piece in that location when black pieces are around.

Reinforcement learning, in a simplistic definition, is learning best
actions based on reward or punishment.

There are three basic concepts in reinforcement learning: state,
action, and reward. The state describes the current situation. For a
robot that is learning to walk, the state is the position of its two legs.
For a Go program, the state is the positions of all the pieces on the
board.

41

Action is what an agent can do in each state. Given the state, or posi‐
tions of its two legs, a robot can take steps within a certain distance.
There are typically finite (or a fixed range of) actions an agent can
take. For example, a robot stride can only be, say, 0.01 meter to 1
meter. The Go program can only put down its piece in one of 19 x
19 (that is 361) positions.

When a robot takes an action in a state, it receives a reward. Here
the term “reward” is an abstract concept that describes feedback
from the environment. A reward can be positive or negative. When
the reward is positive, it is corresponding to our normal meaning of
reward. When the reward is negative, it is corresponding to what we
usually call “punishment.”

Each of these concepts seems simple and straightforward: once we
know the state, we choose an action that (hopefully) leads to positive
reward. But the reality is more complex.

Consider this example: a robot learns to go through a maze. When
the robot takes one step to the right, it reaches an open location; but
when it takes one step to the left, it also reaches an open location.
After going left for three steps, the robot hits a wall. Looking back,
taking the left step at location 1 is a bad idea (bad action). How
would the robot use the reward at each location (state) to learn how
to get through the maze (which is the ultimate goal)?

“Real” reinforcement learning, or the version used as a machine
learning method today, concerns itself with the long-term reward,
not just the immediate reward.

The long-term reward is learned when an agent interacts with an
environment through many trials and errors. The robot that is run‐
ning through the maze remembers every wall it hits. In the end, it
remembers the previous actions that lead to dead ends. It also
remembers the path (that is, a sequence of actions) that leads it suc‐
cessfully through the maze. The essential goal of reinforcement
learning is learning a sequence of actions that lead to a long-term
reward. An agent learns that sequence by interacting with the envi‐
ronment and observing the rewards in every state.

How does an agent know what the desired long-term payoff should
be? The secret lies in a Q-table (or Q function). It’s a lookup table for
rewards associated with every state-action pair. Each cell in this
table records a value called a Q-value. It is a representation of the

42 | Chapter 6: Reinforcement Learning Explained

long-term reward an agent would receive when taking this action at
this particular state, followed by taking the best path possible after‐
ward.

How does the agent learn about this long-term Q-value reward? It
turns out, the agent does not need to solve a complex mathematical
function. There is a simple procedure to learn all the Q-values called
Q-learning. Reinforcement learning is essentially learning about Q-
values while taking actions.

Q-Learning: A Commonly Used Reinforcement
Learning Method

Q-learning is the most commonly used reinforcement learning
method, where Q stands for the long-term value of an action. Q-
learning is about learning Q-values through observations.

The procedure for Q-learning is:

1. In the beginning, the agent initializes Q-values to 0 for every
state-action pair. More precisely, Q(s,a) = 0 for all states s and
actions a. This is essentially saying we have no information on
long-term reward for each state-action pair.

2. After the agent starts learning, it takes an action a in state s and
receives reward r. It also observes that the state has changed to a
new state s′. The agent will update Q(s,a) with this formula:
Q(s,a) = (1-learning_rate)Q(s,a) + learning_rate (r +
discount_rate max_a Q(s’,a))
The learning rate is a number between 0 and 1. It is a weight
given to the new information versus the old information. The
new long-term reward is the current reward, r, plus all future
rewards in the next state, s′, and later states, assuming this agent
always takes its best actions in the future. The future rewards
are discounted by a discount rate between 0 and 1, meaning
future rewards are not as valuable as the reward now.

In this updating method, Q carries memory from the past and takes
into account all future steps. Note that we use the maximized Q-
value for the new state, assuming we always follow the optimal path
afterward. As the agent visits all the states and tries different actions,

Q-Learning: A Commonly Used Reinforcement Learning Method | 43

it eventually learns the optimal Q-values for all possible state-action
pairs. Then it can derive the action in every state that is optimal for
the long term.

A simple example can be seen with the maze robot in Figure 6-1.

Figure 6-1. Maze robot

The robot starts from the lower-left corner of the maze. Each loca‐
tion (state) is indicated by a number. There are four action choices
(left, right, up, down), but in certain states, action choices are limi‐
ted. For example, in state 1 (initial state), the robot has only two
action choices: up or right. In state 4, it has three action choices: left,
right, or up. When the robot hits a wall, it receives reward -1. When
it reaches an open location, it receives reward 0. When it reaches the
exit, it receives reward 100. However, note that this one-time reward
is very different from Q-values. In fact, we have the following, where
the learning rate is 0.2 and the discount rate is 0.9:

Q(4, left) = 0.8 × 0+ 0.2 (0 + 0.9 Q(1, right))

and

Q(4, right) = 0.8 × 0+ 0.2 (0 + 0.9 Q(5, up))

44 | Chapter 6: Reinforcement Learning Explained

The best action in state 1 is right, and the best action in state 5 is up.
Q(1,right) and Q(5,up) have different values because it takes more
steps from state 1 than state 5 to reach the exit. Since we discount
future rewards, we discount the added steps to reach the goal. Thus
Q(5,up) has a higher value than Q(1,right). For this reason,
Q(4,right) has a higher value than Q(4, left). Thus, the best action in
state 4 is going right.

Q-learning requires the agent try many times to visit all possible
state-action pairs. Only then does the agent have a complete picture
of the world. Q-values represent the optimal values when taking the
best sequence of actions. This sequence of actions is also called “pol‐
icy.”

A fundamental question we face is: is it possible for an agent to learn
all the Q-values when it explores the actions possible in a given
environment? In other words, is such learning feasible? The answer
is yes if we assume the world responds to actions. In other words,
the state changes based on an action. This assumption is called the
Markov Decision Process (MDP). It assumes that the next state
depends on the previous state and the action taken. Based on this
assumption, all possible states can eventually be visited, and the
long-term value (Q-value) of every state-action pair can be deter‐
mined.

Imagine that we live in a random universe where our actions have
no impact on what happens next: reinforcement learning (Q-
learning) would break down. After many times of trying, we’d have
to throw in the towel. Fortunately, our universe is much more pre‐
dictable. When a Go player puts down a piece on the board, the
board position is clear in the next round. Our agent interacts with
the environment and shapes it through its actions. The exact impact
of our agent’s action on the state is typically straightforward. The
new state is immediately observable. The robot can tell where it
ends up.

Common Techniques of Reinforcement
Learning
The essential technique of reinforcement learning is exploration
versus exploitation. An agent learns about the value of Q(s,a) in state
s for every action a. Since the agent needs to get a high reward, it

Common Techniques of Reinforcement Learning | 45

http://bit.ly/2jwtzIg

can choose the action that leads to the highest reward based on cur‐
rent information (exploitation), or keep trying new actions, hoping
it brings even higher reward (exploration). When an agent is learn‐
ing online (in real time), the balance of these two strategies is very
important. That’s because learning in real time means the agent has
to maintain its own survival (when exploring a cave or fighting in a
combat) versus finding the best move. It is less of a concern when an
agent is learning offline (meaning not in real time). In machine
learning terms, offline learning means an agent processes informa‐
tion without interacting with the world. In such cases, the price to
pay for failing (like hitting a wall, or being defeated in a game) is lit‐
tle when it can experiment with (explore) many different actions
without worrying about the consequences.

The performance of Q-learning depends on visiting all state-action
pairs in order to learn the correct Q-values. This can be easily
achieved with a small number of states. In the real world, however,
the number of states can be very large, particularly when there are
multiple agents in the system. For example, in a maze game, a robot
has at most 1,000 states (locations); this grows to 1,000,000 when it
is in a game against another robot, where the state represents the
joint location of two robots (1,000 x 1,000).

When the state space is large, it is not efficient to wait until we visit
all state-actions pairs. A faster way to learn is called the Monte Carlo
method. In statistics, the Monte Carlo method derives an average
through repeated sampling. In reinforcement learning, the Monte
Carlo method is used to derive Q-values after repeatedly seeing the
same state-action pair. It sets the Q-value, Q(s,a), as the average
reward after many visits to the same state-action pair (s, a). This
method removes the need for using a learning rate or a discount
rate. It depends only on large numbers of simulations. Due to its
simplicity, this method has become very popular. It has been used by
AlphaGo after playing many games against itself to learn about the
best moves.

Another way to reduce the number of states is by using a neural net‐
work, where the inputs are states and outputs are actions, or Q-
values associated with each action. A deep neural network has the
power to dramatically simplify the representation of states through
hidden layers. In this Nature paper on deep reinforcement learning
used with Atari games, the whole game board is mapped by a convo‐
lutional neural network to determine Q-values.

46 | Chapter 6: Reinforcement Learning Explained

https://en.wikipedia.org/wiki/Monte_Carlo_method
https://en.wikipedia.org/wiki/Monte_Carlo_method
http://go.nature.com/2jwOJpj
http://go.nature.com/2jwOJpj

What Is Reinforcement Learning Good For?
Reinforcement learning is good for situations where information
about the world is very limited: there is no given map of the world.
We have to learn our actions by interacting with the environment:
trial and error is required. For example, a Go program cannot calcu‐
late all possible future states, which could be 10^170, while the uni‐
verse is only 10^17 seconds old. This means even if the computer
can compute one billion (10^9) possible game boards (states) in a
second, it will take longer than the age of the universe to finish that
calculation.

Since we cannot enumerate all possible situations (and optimize our
actions accordingly), we have to learn through the process of taking
actions. Once an action is taken, we can immediately observe the
results and change our action the next time.

Recent Applications
Reinforcement learning historically was mostly applied to robot
control and simple board games, such as backgammon. Recently, it
achieved a lot of momentum by combining with deep learning,
which simplifies the states (when the number of states is very large).
Current applications of reinforcement learning include:

Playing the board game Go
The most successful example is AlphaGo, a computer program
that won against the second best human player in the world.
AlphaGo uses reinforcement learning to learn about its next
move based on current board position. The board position is
simplified through a convolutional neural network, which then
produces actions as outputs.

Computer games
Most recently, playing Atari Games.

Robot control
Robots can learn to walk, run, dance, fly, play ping-pong or
stack Legos with reinforcement learning.

Online advertising
A computer program can use reinforcement learning to select
an ad to show a user at the right time, or in the right format.

What Is Reinforcement Learning Good For? | 47

http://go.nature.com/2jwICBC

Dialogue generation
A conversational agent selects a sentence to say based on a
forward-looking, long-term reward. This makes the dialogue
more engaging and longer lasting. For example, instead of say‐
ing, “I am 16” in response to the question, “How old are you?”
the program can say, “I am 16. Why are you asking?”

Getting Started with Reinforcement Learning
OpenAI provides a reinforcement learning benchmarking toolkit
called OpenAI Gym. It has sample code and can help a beginner to
get started. The CartPole problem is a fun problem to start with,
where many learners have submitted their code and documented
their approach.

The success of AlphaGo and its use of reinforcement learning has
prompted interest in this method. Combined with deep learning,
reinforcement learning has become a powerful tool for many appli‐
cations. The time of reinforcement learning has come!

Junling Hu
Junling Hu is a leading expert in artificial intelligence and data sci‐
ence, and chair for the AI Frontiers Conference. She was director of
data mining at Samsung, where she led an end-to-end implementa‐
tion of data mining solutions for large-scale and real-time data
products. Prior to Samsung, Dr. Hu led a data science team at Pay‐
Pal and eBay, building predictive models in marketing, sales, and
customer churn prediction. Before joining eBay, Dr. Hu managed a
data mining group at Bosch research. Dr. Hu was an assistant pro‐
fessor at the University of Rochester from 2000 to 2003.

Dr. Hu has more than 1,000 scholarly citations on her papers. She is
a recipient of the Sloan Fellowship for Distinguished Women in
Engineering, and a recipient of the prestigious CAREER award
from the National Science Foundation (NSF). She served twice on
NSF review panels for funding proposals from US institutes. Dr. Hu
received her PhD in computer science from the University of Mich‐
igan in Ann Arbor in 1999, with her focus area in AI, particularly in
reinforcement learning.

48 | Chapter 6: Reinforcement Learning Explained

https://gym.openai.com
http://bit.ly/2jwGSbG

CHAPTER 7

Hello, TensorFlow!

Aaron Schumacher

The TensorFlow project is bigger than you might realize. The fact
that it’s a library for deep learning and its connection to Google have
helped TensorFlow attract a lot of attention. But beyond the hype,
there are unique elements to the project that are worthy of closer
inspection:

• The core library is suited to a broad family of machine learning
techniques, not “just” deep learning.

• Linear algebra and other internals are prominently exposed.
• In addition to the core machine learning functionality, Tensor‐

Flow also includes its own logging system, its own interactive
log visualizer, and even its own heavily engineered serving
architecture.

• The execution model for TensorFlow differs from Python’s
scikit-learn, or most tools in R.

Cool stuff, but—especially for someone hoping to explore machine
learning for the first time—TensorFlow can be a lot to take in.

How does TensorFlow work? Let’s break it down so we can see and
understand every moving part. We’ll explore the data flow graph
that defines the computations your data will undergo, how to train
models with gradient descent using TensorFlow, and how Tensor‐
Board can visualize your TensorFlow work. The examples here won’t
solve industrial machine learning problems, but they’ll help you
understand the components underlying everything built with Ten‐
sorFlow, including whatever you build next!

49

https://www.tensorflow.org
http://bit.ly/WikiDataFlowGraph
http://bit.ly/WikiGradientDescent
http://bit.ly/TensorVisLearn
http://bit.ly/TensorVisLearn

Names and Execution in Python and
TensorFlow
The way TensorFlow manages computation is not totally different
from the way Python usually does. With both, it’s important to
remember, to paraphrase Hadley Wickham, that an object has no
name (see Figure 7-1). In order to see the similarities (and differ‐
ences) between how Python and TensorFlow work, let’s look at how
they refer to objects and handle evaluation.

Figure 7-1. Names “have” objects, rather than the reverse (image cour‐
tesy of Hadley Wickham, used with permission)

The variable names in Python code aren’t what they represent;
they’re just pointing at objects. So, when you say in Python that foo
= [] and bar = foo, it isn’t just that foo equals bar; foo is bar, in
the sense that they both point at the same list object:

>>> foo = []
>>> bar = foo
>>> foo == bar
True
>>> foo is bar
True

You can also see that id(foo) and id(bar) are the same. This iden‐
tity, especially with mutable data structures like lists, can lead to sur‐
prising bugs when it’s misunderstood.

50 | Chapter 7: Hello, TensorFlow!

http://bit.ly/WickhamTweet
http://bit.ly/2jwZ3On

Internally, Python manages all your objects and keeps track of your
variable names and which objects they refer to. The TensorFlow
graph represents another layer of this kind of management; as we’ll
see, Python names will refer to objects that connect to more granu‐
lar and managed TensorFlow graph operations.

When you enter a Python expression, for example at an interactive
interpreter or Read-Evaluate-Print Loop (REPL), whatever is read is
almost always evaluated right away. Python is eager to do what you
tell it. So, if I tell Python to foo.append(bar), it appends right away,
even if I never use foo again.

A lazier alternative would be to just remember that I said
foo.append(bar), and if I ever evaluate foo at some point in the
future, Python could do the append then. This would be closer to
how TensorFlow behaves, where defining relationships is entirely
separate from evaluating what the results are.

TensorFlow separates the definition of computations from their exe‐
cution even further by having them happen in separate places: a
graph defines the operations, but the operations only happen within
a session. Graphs and sessions are created independently. A graph is
like a blueprint, and a session is like a construction site.

Back to our plain Python example, recall that foo and bar refer to
the same list. By appending bar into foo, we’ve put a list inside itself.
You could think of this structure as a graph with one node, pointing
to itself. Nesting lists is one way to represent a graph structure like a
TensorFlow computation graph:

>>> foo.append(bar)
>>> foo
[[...]]

Real TensorFlow graphs will be more interesting than this!

The Simplest TensorFlow Graph
To start getting our hands dirty, let’s create the simplest TensorFlow
graph we can, from the ground up. TensorFlow is admirably easier
to install than some other frameworks. The examples here work
with either Python 2.7 or 3.3+, and the TensorFlow version used is
0.8:

>>> import tensorflow as tf

The Simplest TensorFlow Graph | 51

http://bit.ly/2jwX1gY

At this point TensorFlow has already started managing a lot of state
for us. There’s already an implicit default graph, for example. Inter‐
nally, the default graph lives in the _default_graph_stack, but we
don’t have access to that directly. We use tf.get_default_graph():

>>> graph = tf.get_default_graph()

The nodes of the TensorFlow graph are called “operations,” or “ops.”
We can see what operations are in the graph with graph.get_opera
tions():

>>> graph.get_operations()
[]

Currently, there isn’t anything in the graph. We’ll need to put every‐
thing we want TensorFlow to compute into that graph. Let’s start
with a simple constant input value of one:

>>> input_value = tf.constant(1.0)

That constant now lives as a node, an operation, in the graph. The
Python variable name input_value refers indirectly to that opera‐
tion, but we can also find the operation in the default graph:

>>> operations = graph.get_operations()
>>> operations
[<tensorflow.python.framework.ops.Operation at 0x1185005d0>]
>>> operations[0].node_def
name: "Const"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}

TensorFlow uses protocol buffers internally. (Protocol buffers are
sort of like a Google-strength JSON.) Printing the node_def for the

52 | Chapter 7: Hello, TensorFlow!

http://bit.ly/default_graph_stack
http://bit.ly/default_graph_stack
http://bit.ly/protocol_buffers
http://www.json.org

constant operation above shows what’s in TensorFlow’s protocol
buffer representation for the number one.

People new to TensorFlow sometimes wonder why there’s all this
fuss about making “TensorFlow versions” of things. Why can’t we
just use a normal Python variable without also defining a Tensor‐
Flow object? One of the TensorFlow tutorials has an explanation:

To do efficient numerical computing in Python, we typically use
libraries like NumPy that do expensive operations such as matrix
multiplication outside Python, using highly efficient code imple‐
mented in another language. Unfortunately, there can still be a lot
of overhead from switching back to Python every operation. This
overhead is especially bad if you want to run computations on
GPUs or in a distributed manner, where there can be a high cost to
transferring data.
TensorFlow also does its heavy lifting outside Python, but it takes
things a step further to avoid this overhead. Instead of running a
single expensive operation independently from Python, Tensor‐
Flow lets us describe a graph of interacting operations that run
entirely outside Python. This approach is similar to that used in
Theano or Torch.

TensorFlow can do a lot of great things, but it can only work with
what’s been explicitly given to it. This is true even for a single con‐
stant.

If we inspect our input_value, we see it is a constant 32-bit float
tensor of no dimension: just one number:

>>> input_value
<tf.Tensor 'Const:0' shape=() dtype=float32>

Note that this doesn’t tell us what that number is. To evaluate
input_value and get a numerical value out, we need to create a “ses‐
sion” where graph operations can be evaluated and then explicitly
ask to evaluate or “run” input_value. (The session picks up the
default graph by default.)

>>> sess = tf.Session()
>>> sess.run(input_value)
1.0

It may feel a little strange to “run” a constant. But it isn’t so different
from evaluating an expression as usual in Python; it’s just that Ten‐
sorFlow is managing its own space of things—the computational
graph—and it has its own method of evaluation.

The Simplest TensorFlow Graph | 53

http://bit.ly/DeepMNIST

The Simplest TensorFlow Neuron
Now that we have a session with a simple graph, let’s build a neuron
with just one parameter, or weight. Often, even simple neurons also
have a bias term and a nonidentity activation function, but we’ll
leave these out.

The neuron’s weight isn’t going to be constant; we expect it to
change in order to learn based on the “true” input and output we use
for training. The weight will be a TensorFlow variable. We’ll give
that variable a starting value of 0.8:

>>> weight = tf.Variable(0.8)

You might expect that adding a variable would add one operation to
the graph, but in fact that one line adds four operations. We can
check all the operation names:

>>> for op in graph.get_operations(): print(op.name)
Const
Variable/initial_value
Variable
Variable/Assign
Variable/read

We won’t want to follow every operation individually for long, but it
will be nice to see at least one that feels like a real computation:

>>> output_value = weight * input_value

Now there are six operations in the graph, and the last one is that
multiplication:

>>> op = graph.get_operations()[-1]
>>> op.name
'mul'
>>> for op_input in op.inputs: print(op_input)
Tensor("Variable/read:0", shape=(), dtype=float32)
Tensor("Const:0", shape=(), dtype=float32)

This shows how the multiplication operation tracks where its inputs
come from: they come from other operations in the graph. To
understand a whole graph, following references this way quickly
becomes tedious for humans. TensorBoard graph visualization is
designed to help.

How do we find out what the product is? We have to “run” the out
put_value operation. But that operation depends on a variable:
weight. We told TensorFlow that the initial value of weight should

54 | Chapter 7: Hello, TensorFlow!

http://bit.ly/2jwZEzB
http://bit.ly/2jwVK9U

be 0.8, but the value hasn’t yet been set in the current session. The
tf.initialize_all_variables() function generates an operation
which will initialize all our variables (in this case just one). Then we
can run that operation:

>>> init = tf.initialize_all_variables()
>>> sess.run(init)

The result of tf.initialize_all_variables() will include initial‐
izers for all the variables currently in the graph. So if you add more
variables, you’ll want to use tf.initialize_all_variables()

again; a stale init wouldn’t include the new variables.

Now we’re ready to run the output_value operation:

>>> sess.run(output_value)
0.80000001

Recall that’s 0.8 * 1.0 with 32-bit floats, and 32-bit floats have a hard
time with 0.8; 0.80000001 is as close as they can get.

See Your Graph in TensorBoard
Up to this point, the graph has been simple, but it would already be
nice to see it represented in a diagram. We’ll use TensorBoard to
generate that diagram. TensorBoard reads the name field that is
stored inside each operation (quite distinct from Python variable
names). We can use these TensorFlow names and switch to more
conventional Python variable names. Using tf.mul here is equiva‐
lent to our earlier use of just * for multiplication, but it lets us set the
name for the operation:

>>> x = tf.constant(1.0, name='input')
>>> w = tf.Variable(0.8, name='weight')
>>> y = tf.mul(w, x, name='output')

TensorBoard works by looking at a directory of output created from
TensorFlow sessions. We can write this output with a Summary
Writer, and if we do nothing aside from creating one with a graph,
it will just write out that graph.

The first argument when creating the SummaryWriter is an output
directory name, which will be created if it doesn’t exist.

>>> summary_writer = tf.train.SummaryWriter('log_simple_graph',
sess.graph)

Now, at the command line, we can start up TensorBoard:

See Your Graph in TensorBoard | 55

http://bit.ly/WikiFloatRound
http://bit.ly/WikiFloatRound

$ tensorboard --logdir=log_simple_graph

TensorBoard runs as a local web app, on port 6006. (“6006” is “goog”
upside-down.) If you go in a browser to localhost:6006/#graphs
you should see a diagram of the graph you created in TensorFlow,
which looks something like Figure 7-2.

Figure 7-2. A TensorBoard visualization of the simplest TensorFlow
neuron

Making the Neuron Learn
Now that we’ve built our neuron, how does it learn? We set up an
input value of 1.0. Let’s say the correct output value is zero. That is,
we have a very simple “training set” of just one example with one
feature, which has the value one, and one label, which is zero. We
want the neuron to learn the function taking one to zero.

Currently, the system takes the input one and returns 0.8, which is
not correct. We need a way to measure how wrong the system is.
We’ll call that measure of wrongness the “loss” and give our system
the goal of minimizing the loss. If the loss can be negative, then
minimizing it could be silly, so let’s make the loss the square of the
difference between the current output and the desired output:

>>> y_ = tf.constant(0.0)
>>> loss = (y - y_)**2

So far, nothing in the graph does any learning. For that, we need an
optimizer. We’ll use a gradient descent optimizer so that we can
update the weight based on the derivative of the loss. The optimizer
takes a learning rate to moderate the size of the updates, which we’ll
set at 0.025:

56 | Chapter 7: Hello, TensorFlow!

>>> optim = tf.train.GradientDescentOptimizer(learning_rate=
0.025)

The optimizer is remarkably clever. It can automatically work out
and apply the appropriate gradients through a whole network, car‐
rying out the backward step for learning.

Let’s see what the gradient looks like for our simple example:

>>> grads_and_vars = optim.compute_gradients(loss)
>>> sess.run(tf.initialize_all_variables())
>>> sess.run(grads_and_vars[1][0])
1.6

Why is the value of the gradient 1.6? Our loss is error squared, and
the derivative of that is two times the error. Currently the system
says 0.8 instead of 0, so the error is 0.8, and two times 0.8 is 1.6. It’s
working!

For more complex systems, it will be very nice indeed that Tensor‐
Flow calculates and then applies these gradients for us automatically.

Let’s apply the gradient, finishing the backpropagation:

>>> sess.run(optim.apply_gradients(grads_and_vars))
>>> sess.run(w)
0.75999999 # about 0.76

The weight decreased by 0.04 because the optimizer subtracted the
gradient times the learning rate, 1.6 * 0.025, pushing the weight in
the right direction.

Instead of hand-holding the optimizer like this, we can make one
operation that calculates and applies the gradients: the train_step:

>>> train_step = tf.train.GradientDescentOptimizer(0.025).
minimize(loss)
>>> for i in range(100):
>>> sess.run(train_step)
>>>
>>> sess.run(y)
0.0044996012

Running the training step many times, the weight and the output
value are now very close to zero. The neuron has learned!

Making the Neuron Learn | 57

Training Diagnostics in TensorBoard
We may be interested in what’s happening during training. Say we
want to follow what our system is predicting at every training step.
We could print from inside the training loop:

>>> sess.run(tf.initialize_all_variables())
>>> for i in range(100):
>>> print('before step {}, y is {}'.format(i, sess.run(y)))
>>> sess.run(train_step)
>>>
before step 0, y is 0.800000011921
before step 1, y is 0.759999990463
...
before step 98, y is 0.00524811353534
before step 99, y is 0.00498570781201

This works, but there are some problems. It’s hard to understand a
list of numbers. A plot would be better. And even with only one
value to monitor, there’s too much output to read. We’re likely to
want to monitor many things. It would be nice to record everything
in some organized way.

Luckily, the same system that we used earlier to visualize the graph
also has just the mechanisms we need.

We instrument the computation graph by adding operations that
summarize its state. Here, we’ll create an operation that reports the
current value of y, the neuron’s current output:

>>> summary_y = tf.scalar_summary('output', y)

When you run a summary operation, it returns a string of protocol
buffer text that can be written to a log directory with a Summary
Writer:

>>> summary_writer = tf.train.SummaryWriter('log_simple_stats')
>>> sess.run(tf.initialize_all_variables())
>>> for i in range(100):
>>> summary_str = sess.run(summary_y)
>>> summary_writer.add_summary(summary_str, i)
>>> sess.run(train_step)
>>>

Now after running tensorboard --logdir=log_simple_stats, you
get an interactive plot at localhost:6006/#events (Figure 7-3).

58 | Chapter 7: Hello, TensorFlow!

Figure 7-3. A TensorBoard visualization of a neuron’s output against
its training iteration number

Flowing Onward
Here’s a final version of the code. It’s fairly minimal, with every part
showing useful (and understandable) TensorFlow functionality:

import tensorflow as tf

x = tf.constant(1.0, name='input')
w = tf.Variable(0.8, name='weight')
y = tf.mul(w, x, name='output')
y_ = tf.constant(0.0, name='correct_value')
loss = tf.pow(y - y_, 2, name='loss')
train_step = tf.train.GradientDescentOptimizer(0.025).minimize
(loss)

for value in [x, w, y, y_, loss]:
 tf.scalar_summary(value.op.name, value)

summaries = tf.merge_all_summaries()

sess = tf.Session()
summary_writer = tf.train.SummaryWriter('log_simple_stats',
sess.graph)

sess.run(tf.initialize_all_variables())
for i in range(100):
 summary_writer.add_summary(sess.run(summaries), i)
 sess.run(train_step)

The example we just ran through is even simpler than the ones that
inspired it in Michael Nielsen’s Neural Networks and Deep Learning
(Determination Press). For myself, seeing details like these helps

Flowing Onward | 59

http://neuralnetworksanddeeplearning.com

with understanding and building more complex systems that use
and extend from simple building blocks. Part of the beauty of Ten‐
sorFlow is how flexibly you can build complex systems from simpler
components.

If you want to continue experimenting with TensorFlow, it might be
fun to start making more interesting neurons, perhaps with different
activation functions. You could train with more interesting data. You
could add more neurons. You could add more layers. You could dive
into more complex prebuilt models, or spend more time with Ten‐
sorFlow’s own tutorials and how-to guides. Go for it!

Aaron Schumacher
Aaron Schumacher is a data scientist and software engineer for
Deep Learning Analytics. He has taught with Python and R for
General Assembly and the Metis data science bootcamp. Aaron has
also worked with data at Booz Allen Hamilton, New York Univer‐
sity, and the New York City Department of Education. Aaron’s
career-best breakdancing result was advancing to the semifinals of
the R16 Korea 2009 individual footwork battle. He is honored to
now be the least significant contributor to TensorFlow 0.9.

60 | Chapter 7: Hello, TensorFlow!

http://bit.ly/WikiActFunComp
https://github.com/tensorflow/models
http://bit.ly/2jx1kZD
http://bit.ly/2jx64i0

CHAPTER 8

Dive into TensorFlow with Linux

Justin Francis

For the last eight months, I have spent a lot of time trying to absorb
as much as I can about machine learning. I am constantly amazed at
the variety of people I meet on online MOOCs in this small but
quickly growing community, from quantum researchers at Fermilab
to Tesla-driving Silicon Valley CEOs. Lately, I have been putting a
lot of my focus into the open source software TensorFlow, and this
tutorial is the result of that.

I feel like a lot of machine learning tutorials are geared toward Mac.
One major advantage of using Linux is it’s free and it supports using
TensorFlow with your GPU. The accelerated parallel computing
power of GPUs is one of the reasons for such major advancements
in machine learning. You don’t need cutting-edge technology to
build a fast image classifier; my computer and graphic card cost me
less than $400 USD.

In this tutorial, I am going to walk you through how I learned to
train my own image classifier on Ubuntu with a GPU. This tutorial
is very similar to Pete Warden’s “TensorFlow for Poets”, but I did
things a little differently. I am going to assume that you have Tensor‐
Flow and Bazel installed and have cloned the latest TensorFlow
release in your home directory. If you have not yet done that, you
can follow a tutorial on my blog. If you don’t have a compatible
GPU, you can still follow this tutorial; it will just take longer.

The overall process is extremely simple and can be broken into four
main steps:

61

http://www.fnal.gov
http://bit.ly/2jx64i1
http://bit.ly/2jwUW4D
http://bit.ly/2jwUX8H
http://wp.me/p7GvOc-k

1. Collecting the training images
2. Training a graph/model using TensorFlow and the Inception

model
3. Building the script that will classify new images using your

graph
4. Testing the script by classifying new images

I decided to train my classifier on five birds of prey. Using birds of
prey wasn’t a random decision. For two years, I worked for The Rap‐
tors, an educational center and wildlife management organization in
Duncan, British Columbia, and I’ve had a long-standing passion for
these powerful and mythical creatures. As the ultimate challenge, I
pitted my classifier against Cornell Ornithology Lab’s Merlin ID
tool. Since writing this article, the lab has updated its site with this
note: “Merlin Photo ID is temporarily down for maintenance and
upgrades. … The Cornell Lab of Ornithology and Visipedia are col‐
laborating to develop computer vision technology to identify birds
in photos.” Without a doubt, I suspect that they are upgrading their
(now unavailable) Merlin system to a modern machine learning
classifier.

Collecting Training Images
I began by gathering about 100 photos of each bird from The Rap‐
tors’ Facebook page and from web searches. I was able to build a set
of photos with a good mix of the birds in many different environ‐
ments and positions. It is ideal for an image classifier to have at least
100 photos in varying scenarios and backgrounds in order for it to
generalize well. There are also ways to distort existing photos to
make more training examples, but this can slow your training pro‐
cess to a crawl. Keep in mind that we don’t need thousands of exam‐
ples to train our model, because TensorFlow will retrain a new
model using trained feature detectors from the previously trained
Inception model.

As an additional experiment, about 10% of the pictures I used were
of juvenile birds of each species. I was curious if the classifier could
find the similarities between a juvenile bird and a mature one.

Once I had the right number and types of images, I created a folder
in my TensorFlow directory:

62 | Chapter 8: Dive into TensorFlow with Linux

http://the-raptors.com
http://the-raptors.com
http://bit.ly/2jx2wwj
http://bit.ly/2jx2wwj
http://bit.ly/2jx2wwj
http://bit.ly/2jwXlwt
http://bit.ly/2jwZ6tw
https://goo.gl/CSrfJ1
https://goo.gl/CSrfJ1

$ cd ~/tensorflow

$ mkdir tf_files && cd tf_files && mkdir bird_photos &&
cd bird_photos

$ mkdir baldeagle goldeneagle peregrine saker vulture

Figure 8-1 is what my directory looked like.

Figure 8-1. TensorFlow directory (Image courtesy of Justin Francis)

I then moved the images into their appropriate folders. The script
accepted PNG, JPG, GIF & TIF images, but I noticed in order to
prevent an error, I had to rename one file that had a lot of symbols
in its name.

Training the Model
I then trained a new model and associated labels using a built-in
Python script from the TensorFlow git clone. The original graph we
are retraining took Google researchers two weeks to build on a
desktop with eight NVidia Tesla K40s:

$ cd ~/tensorflow

$ python tensorflow/examples/image_retraining/retrain.py \
--bottleneck_dir=tf_files/bottlenecks \
--model_dir=tf_files/inception \
--output_graph=tf_files/retrained_graph.pb \
--output_labels=tf_files/retrained_labels.txt \
--image_dir tf_files/bird_photos

Since I had TensorFlow installed with GPU support, training my
model took less than 10 minutes. If I had done this on my old Xeon
CPU, it probably would have taken me all day! Figure 8-2 shows the
results.

Figure 8-2. TensorFlow classifier results 1 (image courtesy of Justin
Francis)

Training the Model | 63

My TensorFlow model got a final test accuracy of 91.2%. I found this
very impressive given the wide variety of photos I had used.

Build the Classifier
Up to this point, I took the Inception graph and retrained it using
my photos. Next, I built my image classifier from the TensorFlow git
clone using Bazel. (Don’t close the terminal or you will need to
rebuild.)

$ bazel build tensorflow/examples/label_image:label_image

Test the Classifier
Now the fun part—testing the classifier against a new set of images.
To make things easy, I put my test photos in my tf_files folder:

$ bazel-bin/tensorflow/examples/label_image/label_image \
 --graph=tf_files/retrained_graph.pb \
 --labels=tf_files/retrained_labels.txt \
 --output_layer=final_result \
 --image=tf_files/bird.jpg #This is the test image

First, I tried to classify a picture that I could immediately identify as
a saker falcon (Figure 8-3).

64 | Chapter 8: Dive into TensorFlow with Linux

Figure 8-3. Mature saker falcon (image courtesy of DickDaniels on
Wikimedia Commons)

TensorFlow agreed (see Figure 8-4)!

Figure 8-4. TensorFlow classifier results 2 (image courtesy of Justin
Francis)

Next, I tried a trickier juvenile peregrine falcon (left in Figure 8-5)
that I had not used in my training data. A juvenile peregrine has
front plumage similar to a saker but will develop a more striped
belly, yellow beak, and a paler lower neck as it matures.

Test the Classifier | 65

http://bit.ly/2jvMyBI
http://bit.ly/2jvMyBI

Figure 8-5. Left: juvenile peregrine falcon (Spinus Nature Photography
on Wikimedia Commons); right: peregrine falcon (Norbert Fischer on
Wikimedia Commons)

To my amazement, the classifier detected the juvenile peregrine with
quite high accuracy (Figure 8-6).

Figure 8-6. TensorFlow classifier results 3 (image courtesy of Justin
Francis)

For my last example, I used a bird that humans often misclassify: the
juvenile bald eagle. People often mistake it for a golden eagle
because it does not have solid white plumage on its head and tail. I
trained my classifier with about 10% photos of juvenile eagles
(Figure 8-7).

66 | Chapter 8: Dive into TensorFlow with Linux

http://bit.ly/2jwRU0A
http://bit.ly/2jwRU0A
http://bit.ly/2jwRUO8
http://bit.ly/2jwRUO8

Figure 8-7. Newly fledged juvenile bald eagle (KetaDesign on Wikime‐
dia Commons)

Seems like my classifier is not exceeding ornithologist-level intelli‐
gence yet (Figure 8-8).

Figure 8-8. TensorFlow classifier results 4 (image courtesy of Justin
Francis)

I was especially surprised that “vulture” was its second guess and not
bald eagle. This may be due to the fact that many of my vulture pic‐
tures were taken from a similar view.

What about Merlin? Its first choice was spot on with a very reason‐
able second choice (Figure 8-9).

Test the Classifier | 67

http://bit.ly/2jwZSGQ
http://bit.ly/2jwZSGQ

Figure 8-9. Cornell Ornithology Lab’s Merlin ID tool (image courtesy
of Justin Francis)

This is the only photo that Merlin beat me on. But with enough
training data, I’m fully confident my classifier could learn to distin‐
guish adult bald eagles, juvenile bald eagles, and golden eagles. I, of
course, would need a separate juvenile bald eagle folder with addi‐
tional images.

I had a lot of fun training and experimenting with this classifier, and
I hope this post helps you make your own classifier, too. The possi‐
bilities for researchers and enthusiasts are endless. Feel free to tag
me @wagonhelm or #TensorFlow on Twitter and show off what you
created.

Justin Francis
Justin lives on the west coast of Canada and works on a small farm
focused on permaculture ethics and design. In the past, he was the
founder and educator at a nonprofit community cooperative bicycle
shop. For the last two years, he lived on a sailboat exploring and
experiencing the Georgia Strait full-time but is now primarily
focused on studying machine learning.

68 | Chapter 8: Dive into TensorFlow with Linux

https://twitter.com/wagonhelm

CHAPTER 9

A Poet Does TensorFlow

Mike Loukides

After reading Pete Warden’s excellent “TensorFlow for poets”, I was
impressed at how easy it seemed to build a working deep learning
classifier. It was so simple that I had to try it myself.

I have a lot of photos around, mostly of birds and butterflies. So, I
decided to build a simple butterfly classifier. I chose butterflies
because I didn’t have as many photos to work with, and because they
were already fairly well sorted. I didn’t want to spend hours sorting a
thousand or so bird pictures. According to Pete, that’s the most labo‐
rious, time-consuming part of the process: getting your training
data sorted.

Sorting was relatively easy: while I thought I’d need a database, or
some CSV file tagging the photos by filename, I only needed a sim‐
ple directory structure: a top-level directory named butterflies, with
a directory underneath for each kind of butterfly I was classifying.
Here’s what I ended up with:

ls ../tf_files/butterflies/
Painted Lady black swallowtail monarch tiger swallowtail

Only four kinds of butterflies? Unfortunately, yes. While you don’t
need thousands of images, you do need at least a dozen or so in each
directory. If you don’t, you’ll get divide-by-zero errors that will make
you pull your hair out. Pete’s code randomly separates the images
you provide into a training set and a validation set. If either of those
sets ends up empty, you’re in trouble. (Pete, thanks for your help
understanding this!) I ended up with a classifier that only knew

69

http://oreil.ly/2jx1YGO

about four kinds of butterflies because I had to throw out all the spe‐
cies where I only had six or seven (or one or two) photos. I may try
adding some additional species back in later; I think I can find a few
more.

I’ll skip the setup (see Pete’s article for that). By using VirtualBox
and Docker, he eliminates pain and agony of building and installing
the software, particularly if you’re using OS X. If you run into
strange errors, try going back to the git steps and rebuilding. Ten‐
sorFlow (TF) won’t survive Docker disconnecting from the VM, so
if that happens (for example, if you restart the VM), you’ll need to
rebuild.

Here’s what I did to create the classifier; it’s straight from Pete’s arti‐
cle, except for the name of the image directory. You can ignore the
“No files found” for the top-level directory (butterflies), but if you
see this message for any of the subdirectories, you’re in trouble:

bazel-bin/tensorflow/examples/image_retraining/retrain \
> --bottleneck_dir=/tf_files/bottlenecks \
> --model_dir=/tf_files/inception \
> --output_graph=/tf_files/retrained_graph.pb \
> --output_labels=/tf_files/retrained_labels.txt \
> --image_dir /tf_files/butterflies
Looking for images in 'butterflies'
No files found
Looking for images in 'black swallowtail'
Looking for images in 'monarch'
Looking for images in 'Painted Lady'
Looking for images in 'tiger swallowtail'
100 bottleneck files created.
2016-03-14 01:46:08.962029: Step 0: Train accuracy = 31.0%
2016-03-14 01:46:08.962241: Step 0: Cross entropy = 1.311761
2016-03-14 01:46:09.137622: Step 0: Validation accuracy = 18.0%
… (Lots of output deleted…)
Final test accuracy = 100.0%
Converted 2 variables to const ops.

And here’s what happens when you actually do some classifying.
Here’s the image I’m trying to classify: an eastern tiger swallowtail
(Figure 9-1).

70 | Chapter 9: A Poet Does TensorFlow

http://oreil.ly/2jx1YGO

Figure 9-1. Eastern tiger swallowtail

And here’s the result:

bazel build tensorflow/examples/label_image:label_image && \
> bazel-bin/tensorflow/examples/label_image/label_image \
> --graph=/tf_files/retrained_graph.pb \
> --labels=/tf_files/retrained_labels.txt \
> --output_layer=final_result \
> --image=/tf_files/sample/IMG_5941-e.jpg
(Lots of output)
INFO: Elapsed time: 532.630s, Critical Path: 515.99s
I tensorflow/examples/label_image/main.cc:206] tiger swallowtail
(1): 0.999395
I tensorflow/examples/label_image/main.cc:206] black swallowtail
(2): 0.000338286
I tensorflow/examples/label_image/main.cc:206] monarch (0):
0.000144585
I tensorflow/examples/label_image/main.cc:206] painted lady (3):
0.000121789

There’s a 99.9% chance that picture was a tiger swallowtail. Not bad.
Was I just lucky, or did it really work? Figure 9-2 shows another
image, this time a trickier photo of a pair of monarchs.

A Poet Does TensorFlow | 71

Figure 9-2. Pair of monarchs

bazel build tensorflow/examples/label_image:label_image && \
bazel-bin/tensorflow/examples/label_image/label_image \
--graph=/tf_files/retrained_graph.pb \
--labels=/tf_files/retrained_labels.txt \
--output_layer=final_result \
--image=/tf_files/sample/MKL_2055.JPG
(Not quite as much output)
INFO: Elapsed time: 16.717s, Critical Path: 11.43s
I tensorflow/examples/label_image/main.cc:206] monarch (0):
0.875138
I tensorflow/examples/label_image/main.cc:206] painted lady (3):
0.117698
I tensorflow/examples/label_image/main.cc:206] tiger swallowtail
(1): 0.0054633
I tensorflow/examples/label_image/main.cc:206] black swallowtail
(2): 0.00170112

TF isn’t as confident, but it still thinks the image is a monarch with a
probability of about 87%.

I was surprised that TF worked so well. First, I thought that a suc‐
cessful classifier would need to be trained on thousands of photos,
and I only had a hundred or so. You’d need thousands (or millions)
if you’re building an app for Google or Facebook, but I had at most a
couple dozen in each of the four categories. That proved to be
enough for my purposes. Second, the monarch is tricky; the butter‐

72 | Chapter 9: A Poet Does TensorFlow

flies are at a bad angle, and one is blurry because it was moving. I
don’t know why I didn’t delete this image after shooting it, but it
made a nice test case.

Pete pointed out that, if you don’t have many images, you can
improve the accuracy by using the --random_crop, --random_scale,
and --random_brightness options. These make the classifier run
much slower. In effect, they’re creating more images by distorting
the images you’ve provided.

Deep learning isn’t magic, and playing with it will get you thinking
about its limits. TensorFlow doesn’t know anything about what it’s
classifying; it’s just trying to find similar images. If you ask Tensor‐
Flow to classify something, classify it will, whether or not that classi‐
fication makes any sense. It doesn’t know the meaning of “I don’t
know.” When I gave the butterfly classifier a skipper (Figure 9-3),
one of a large and confusing family of small butterflies that doesn’t
look remotely like anything in the training set, TF classified it as a
black swallowtail with 80% confidence.

Figure 9-3. Skipper butterfly

Of all the butterflies in the training set, the black swallowtail is prob‐
ably the least similar (black swallowtails are, well, black). If I gave
my classifier a snapshot of someone walking down the street, it

A Poet Does TensorFlow | 73

http://bit.ly/2jxjf2r

would helpfully determine the set of butterfly photos to which the
photo was most similar. Can that be fixed? More training images,
and more categories, would make classification more accurate, but
wouldn’t deal with the “don’t know” problem. A larger training set
might help identify a skipper (with enough photos, it could possibly
even identify the type of skipper), but not a photo that’s completely
unexpected. Setting some sort of lower bound for confidence might
help. For example, returning “don’t know” if the highest confidence
is under 50% might be useful for building commercial applications.
But that leaves behind a lot of nuance: “I don’t know, but it might
be...” Pete suggests that you can solve the “don’t know” problem by
adding a random category that consists of miscellaneous photos
unrelated to the photos in the “known” categories; this trick doesn’t
sound like it should work, but it’s surprisingly effective.

Since TensorFlow doesn’t really know anything about butterflies, or
flowers, or birds, it might not be classifying based on what you
think. It’s easy to think that TF is comparing butterflies, but it’s really
just trying to find similar pictures. I don’t have many pictures of
swallowtails sitting still on the pavement (I suspect this one was
dying). But I have many pictures of butterflies feeding on those pur‐
ple flowers. Maybe TF identified the monarch correctly for the
wrong reason. Maybe TF classified the skipper as a black swallowtail
because it was also sitting on a purple flower, like several of the swal‐
lowtails.

Likewise, TensorFlow has no built-in sense of scale, nor should it.
Photography is really good at destroying information about size,
unless you’re really careful about context. But for a human trying to
identify something, size matters. Swallowtails and monarchs are
huge as butterflies go (tiger swallowtails are the largest butterflies in
North America). There are many butterflies that are tiny, and many
situations in which it’s important to know whether you’re looking at
a butterfly with a wingspan of 2 centimeters or 3, or 15. A skipper is
much smaller than any swallowtail, but my skipper was cropped so
that it filled most of the image, and thus looked like a giant among
butterflies. I doubt that there’s any way for a deep learning system to
recover information about scale, aside from a very close analysis of
the context.

How does TensorFlow deal with objects that look completely differ‐
ent from different angles? Many butterflies look completely different
top and bottom (dorsal and ventral, if you know the lingo): for

74 | Chapter 9: A Poet Does TensorFlow

http://butterfly.ucdavis.edu/glossary

example, the painted lady. If you’re not used to thinking about but‐
terflies, you’re seeing the bottom when the wings are folded and
pointing up; you’re seeing the top when the wings are open and out
to the sides. Can TF deal with this? Given enough images, I suspect
it could; it would be an interesting experiment. Obviously, there
would be no problem if you built your training set with “painted
lady, dorsal” and “painted lady, ventral” as separate categories.

Finally, a thought about photography. The problem with butterflies
(or birds, for that matter) is that you need to take dozens of pictures
to get one good one. The animals won’t stay still for you. I save a lot
of my pictures, but not all of them: I delete the images that aren’t
focused, where the subject is moving, where it’s too small, or just
doesn’t “look nice.” We’re spoiled by National Geographic. For a clas‐
sifier, I suspect that these bad shots are as useful as the good ones,
and that human aesthetics make classification more difficult. Save
everything? If you’re planning on building a classifier, that’s the way
to go.

Playing with TF was fun; I certainly didn’t build anything that could
be used commercially, but I did get surprisingly good results with
surprisingly little effort. Now, onto the birds...can I beat Cornell
Ornithology Lab’s Merlin?

Mike Loukides
Mike Loukides is Vice President of Content Strategy for O’Reilly
Media, Inc. He’s edited many highly regarded books on technical
subjects that don’t involve Windows programming. He’s particularly
interested in programming languages, Unix and what passes for
Unix these days, and system and network administration. Mike is
the author of System Performance Tuning and a coauthor of Unix
Power Tools (O’Reilly). Most recently, he’s been fooling around with
data and data analysis, and languages like R, Mathematica, as well
as Octave, and thinking about how to make books social.

A Poet Does TensorFlow | 75

http://bit.ly/2jxcqy3
http://bit.ly/2jx2wwj
http://bit.ly/2jx2wwj
http://shop.oreilly.com/product/9780596002848.do
http://shop.oreilly.com/product/9780596003302.do
http://shop.oreilly.com/product/9780596003302.do

CHAPTER 10

Complex Neural Networks Made
Easy by Chainer

Shohei Hido

Chainer is an open source framework designed for efficient research
into and development of deep learning algorithms. In this post, we
briefly introduce Chainer with a few examples and compare with
other frameworks such as Caffe, Theano, Torch, and TensorFlow.

Most existing frameworks construct a computational graph in
advance of training. This approach is fairly straightforward, espe‐
cially for implementing fixed and layer-wise neural networks like
convolutional neural networks.

However, state-of-the-art performance and new applications are
now coming from more complex networks, such as recurrent or sto‐
chastic neural networks. Though existing frameworks can be used
for these kinds of complex networks, it sometimes requires (dirty)
hacks that can reduce development efficiency and maintainability of
the code.

Chainer’s approach is unique: building the computational graph on-
the-fly during training.

This allows users to change the graph at each iteration or for each
sample, depending on conditions. It is also easy to debug and refac‐
tor Chainer-based code with a standard debugger and profiler, since
Chainer provides an imperative API in plain Python and NumPy.
This gives much greater flexibility in the implementation of complex

77

neural networks, which leads in turn to faster iteration, and greater
ability to quickly realize cutting-edge deep learning algorithms.

In the following sections, I describe how Chainer actually works and
what kind of benefits users can get from it.

Chainer Basics
Chainer is a standalone deep learning framework based on Python.

Unlike other frameworks with a Python interface such as Theano
and TensorFlow, Chainer provides imperative ways of declaring
neural networks by supporting NumPy-compatible operations
between arrays. Chainer also includes a GPU-based numerical com‐
putation library named CuPy:

>>> from chainer import Variable
>>> import numpy as np

A class Variable represents the unit of computation by wrapping
numpy.ndarray in it (.data):

>>> x = Variable(np.asarray([[0, 2],[1, -3]]).astype
(np.float32))
>>> print(x.data)
[[0. 2.]
 [1. -3.]]

Users can define operations and functions (instances of Function)
directly on Variables:

>>> y = x ** 2 - x + 1
>>> print(y.data)
[[1. 3.]
 [1. 13.]]

Since Variables remember what they are generated from, Variable
y has the additive operation as its parent (.creator):

>>> print(y.creator)
<chainer.functions.math.basic_math.AddConstant at 0x7f939XXXXX>

This mechanism makes backward computation possible by tracking
back the entire path from the final loss function to the input, which
is memorized through the execution of forward computation—
without defining the computational graph in advance.

Many numerical operations and activation functions are given in
chainer.functions. Standard neural network operations such as

78 | Chapter 10: Complex Neural Networks Made Easy by Chainer

fully connected linear and convolutional layers are implemented in
Chainer as an instance of Link. A Link can be thought of as a func‐
tion together with its corresponding learnable parameters (such as
weight and bias parameters, for example). It is also possible to create
a Link that itself contains several other links. Such a container of
links is called a Chain. This allows Chainer to support modeling a
neural network as a hierarchy of links and chains. Chainer also sup‐
ports state-of-the-art optimization methods, serialization, and
CUDA-powered faster computations with CuPy:

>>> import chainer.functions as F
>>> import chainer.links as L
>>> from chainer import Chain, optimizers, serializers, cuda
>>> import cupy as cp

Chainer’s Design: Define-by-Run
To train a neural network, three steps are needed: (1) build a com‐
putational graph from network definition, (2) input training data
and compute the loss function, and (3) update the parameters using
an optimizer and repeat until convergence.

Usually, DL frameworks complete step one in advance of step two.
We call this approach define-and-run (Figure 10-1).

Figure 10-1. DL frameworks define-and-run (all images courtesy of
Shohei Hido)

Chainer’s Design: Define-by-Run | 79

This is straightforward but not optimal for complex neural networks
since the graph must be fixed before training. Therefore, when
implementing recurrent neural networks, for example, users are
forced to exploit special tricks (such as the scan() function in The‐
ano) that make it harder to debug and maintain the code.

Instead, Chainer uses a unique approach called define-by-run, which
combines steps one and two into a single step (Figure 10-2).

Figure 10-2. Chainer uses a unique approach called define-by-run

The computational graph is not given before training but obtained
in the course of training. Since forward computation directly corre‐
sponds to the computational graph and backpropagation through it,
any modifications to the computational graph can be done in the
forward computation at each iteration and even for each sample.

As a simple example, let’s see what happens using two-layer percep‐
tron for MNIST digit classification (Figure 10-3).

Figure 10-3. Two-layer perceptron for MNIST digit classification

80 | Chapter 10: Complex Neural Networks Made Easy by Chainer

The following code shows the implementation of two-layer percep‐
tron in Chainer:

2-layer Multi-Layer Perceptron (MLP)
class MLP(Chain):

 def __init__(self):
 super(MLP, self).__init__(
 l1=L.Linear(784, 100),
 # From 784-dimensional input to hidden unit with
 100 nodes
 l2=L.Linear(100, 10),
 # From hidden unit with 100 nodes to output unit
 with 10 nodes (10 classes)
)

 # Forward computation
 def __call__(self, x):
 h1 = F.tanh(self.l1(x))
 # Forward from x to h1 through activation with
 tanh function
 y = self.l2(h1)
 # Forward from h1to y
 return y

In the constructer (__init__), we define two linear transformations
from the input to hidden units, and hidden to output units, respec‐
tively. Note that no connection between these transformations is
defined at this point, which means that the computation graph is not
even generated, let alone fixed.

Instead, their relationship will be later given in the forward compu‐
tation (__call__), by defining the activation function (F.tanh)
between the layers. Once forward computation is finished for a min‐
ibatch on the MNIST training data set (784 dimensions), the com‐
putational graph in Figure 10-4 can be obtained on the fly by
backtracking from the final node (the output of the loss function) to
the input (note that SoftmaxCrossEntropy is also introduced as the
loss function).

Chainer’s Design: Define-by-Run | 81

Figure 10-4. Computational graph

The point is that the network definition is simply represented in
Python rather than a domain-specific language (DSL), so users can
make changes to the network in each iteration (forward computa‐
tion).

This imperative declaration of neural networks allows users to use
standard Python syntax for branching, without studying any DSL.
That can be beneficial compared to the symbolic approaches that
TensorFlow and Theano utilize and also the text DSL that Caffe and
CNTK rely on.

In addition, a standard debugger and profiler can be used to find the
bugs, refactor the code, and also tune the hyper-parameters. On the
other hand, although Torch and MXNet also allow users to employ
imperative modeling of neural networks, they still use the define-
and-run approach for building a computational graph object, so
debugging requires special care.

82 | Chapter 10: Complex Neural Networks Made Easy by Chainer

Implementing Complex Neural Networks
Figure 10-4 is just an example of a simple and fixed neural network.
Next, let’s look at how complex neural networks can be implemented
in Chainer.

A recurrent neural network is a type of neural network that takes
sequence as input, so it is frequently used for tasks in natural lan‐
guage processing such as sequence-to-sequence translation and
question answering systems. It updates the internal state depending
not only on each tuple from the input sequence, but also on its pre‐
vious state so it can take into account dependencies across the
sequence of tuples.

Since the computational graph of a recurrent neural network con‐
tains directed edges between previous and current time steps, its
construction and backpropagation are different from those for fixed
neural networks, such as convolutional neural networks. In current
practice, such cyclic computational graphs are unfolded into a direc‐
ted acyclic graph each time for model update by a method called
truncated backpropagation through time.

For this example, the target task is to predict the next word given a
part of sentence. A successfully trained neural network is expected
to generate syntactically correct words rather than random words,
even if the entire sentence does not make sense to humans. The fol‐
lowing example shows a simple recurrent neural network with one
recurrent hidden unit:

Definition of simple recurrent neural network
class SimpleRNN(Chain):

 def __init__(self, n_vocab, n_nodes):
 super(SimpleRNN, self).__init__(
 embed=L.EmbedID(n_vocab, n_nodes),
 # word embedding
 x2h=L.Linear(n_nodes, n_nodes),
 # the first linear layer
 h2h=L.Linear(n_nodes, n_nodes),
 # the second linear layer
 h2y=L.Linear(n_nodes, n_vocab),
 # the feed-forward output layer
)
 self.h_internal=None # recurrent state

 def forward_one_step(self, x, h):
 x = F.tanh(self.embed(x))

Implementing Complex Neural Networks | 83

 if h is None: # branching in network
 h = F.tanh(self.x2h(x))
 else:
 h = F.tanh(self.x2h(x) + self.h2h(h))
 y = self.h2y(h)
 return y, h

 def __call__(self, x):
 # given the current word ID, predict the next word ID.
 y, h = self.forward_one_step(x, self.h_internal)
 self.h_internal = h # update internal state
 return y

Only the types and sizes of layers are defined in the constructor as
well as on the multilayer perceptron. Given input word and current
state as arguments, forward_one_step() method returns output
word and new state. In the forward computation (__call__), for
ward_one_step() is called for each step and updates the hidden
recurrent state with a new one.

By using the popular text data set Penn Treebank (PTB), we trained
a model to predict the next word from probable vocabularies. Then
the trained model is used to predict subsequent words using weigh‐
ted sampling:

"If you build it," => "would a outlawed a out a tumor a colonial
a"
"If you build it, they" => " a passed a president a glad a
senate a billion"
"If you build it, they will" => " for a billing a jerome a
contracting a surgical a"
"If you build it, they will come" => "a interviewed a invites a
boren a illustrated a pinnacle"

This model has learned—and then produced—many repeated pairs
of “a” and a noun or an adjective. Which means “a” is one of the
most probable words, and a noun or adjective tend to follow “a.”

To humans, the results look almost the same, being syntactically
wrong and meaningless, even when using different inputs. However,
these are definitely inferred based on the real sentences in the data
set by training the type of words and relationship between them.

Though this is inevitable due to the lack of expressiveness in the
SimpleRNN model, the point here is that users can implement any
kinds of recurrent neural networks just like SimpleRNN.

84 | Chapter 10: Complex Neural Networks Made Easy by Chainer

https://catalog.ldc.upenn.edu/ldc99t42

Just for comparison, by using off-the-shelf mode of recurrent neural
network called long short-term memory (LSTM), the generated texts
become more syntactically correct:

"If you build it," => "pension say computer ira <EOS> a week ago
the japanese"
"If you buildt it, they" => "were jointly expecting but too well
put the <unknown> to"
"If you build it, they will" => "see the <unknown> level that
would arrive in a relevant"
"If you build it, they will come" => "to teachers without an
mess <EOS> but he says store"

Since popular RNN components such as LSTM and gated recurrent
unit (GRU) have already been implemented in most of the frame‐
works, users do not need to care about the underlying implementa‐
tions. However, if you want to significantly modify them or make a
completely new algorithm and components, the flexibility of
Chainer makes a great difference compared to other frameworks.

Stochastically Changing Neural Networks
In the same way, it is very easy to implement stochastically changing
neural networks with Chainer.

The following is mock code to implement Stochastic ResNet. In
__call__, just flip a skewed coin with probability p, and change the
forward path by having or not having unit f. This is done at each
iteration for each minibatch, and the memorized computational
graph is different each time but updated accordingly with backpro‐
pagation after computing the loss function:

Mock code of Stochastic ResNet in Chainer
class StochasticResNet(Chain):

 def __init__(self, prob, size, **kwargs):
 super(StochasticResNet, self).__init__(size, **kwargs)
 self.p = prob # Survival probabilities

 def __call__ (self, h):
 for i in range(self.size):
 b = numpy.random.binomial(1, self.p[i])
 c = self.f[i](h) + h if b == 1 else h
 h = F.relu(c)
 return h

Stochastically Changing Neural Networks | 85

http://bit.ly/2jwYHXU
http://bit.ly/2jx6KEi
http://bit.ly/2jx6KEi

Conclusion
Chainer also has many features to help users to realize neural net‐
works for their tasks as easily and efficiently as possible.

CuPy is a NumPy-equivalent array backend for GPUs included in
Chainer, which enables CPU/GPU-agnostic coding, just like
NumPy-based operations. The training loop and data set handling
can be abstracted by Trainer, which keeps users away from writing
such routines every time, and allows them to focus on writing inno‐
vative algorithms. Though scalability and performance are not the
main focus of Chainer, it is still competitive with other frameworks,
as shown in the public benchmark results, by making full use of
NVIDIA’s CUDA and cuDNN.

Chainer has been used in many academic papers not only for com‐
puter vision, but also speech processing, natural language process‐
ing, and robotics. Moreover, Chainer is gaining popularity in many
industries since it is good for research and development of new
products and services. Toyota, Panasonic, and FANUC are among
the companies that use Chainer extensively and have shown some
demonstrations, in partnership with the original Chainer develop‐
ment team at Preferred Networks.

Interested readers are encouraged to visit the Chainer website for
further details. I hope Chainer will make a difference for cutting-
edge research and real-world products based on deep learning!

Shohei Hido
Shohei Hido is the chief research officer of Preferred Networks, a
spin-off company of Preferred Infrastructure, Inc., where he is cur‐
rently responsible for Deep Intelligence in Motion, a software plat‐
form for using deep learning in IoT applications. Previously, Shohei
was the leader of Preferred Infrastructure’s Jubatus project, an open
source software framework for real-time, streaming machine learn‐
ing. He also worked at IBM Research in Tokyo for six years as a
staff researcher in machine learning and its applications to indus‐
tries. Shohei holds an MS in informatics from Kyoto University.

86 | Chapter 10: Complex Neural Networks Made Easy by Chainer

http://bit.ly/2jxhSAM
http://on.wsj.com/2jxrFH5
http://bit.ly/2jx12Ca
http://chainer.org

CHAPTER 11

Building Intelligent Applications
with Deep Learning and

TensorFlow

Ben Lorica

This June, I spoke with Rajat Monga, who serves as a director of
engineering at Google and manages the TensorFlow engineering
team. We talked about how he ended up working on deep learning,
the current state of TensorFlow, and the applications of deep learn‐
ing to products at Google and other companies. Here are some high‐
lights from our conversation.

Deep Learning at Google
There’s not going to be too many areas left that run without
machine learning that you can program. The data is too much,
there’s just too much for humans to handle. … Over the last few
years, and this is something we’ve seen at Google, we’ve seen hun‐
dreds of products move to deep learning, and gain from that. In
some cases, these are products that were actually applying machine
learning that had been using traditional methods for a long time
and had experts. For example, search, we had hundreds of signals
in there, and then we applied deep learning. That was the last two
years or so.
For somebody who is not familiar with deep learning, my sugges‐
tion would be to start from an example that is closest to your prob‐
lem, and then try to adapt it to your problem. Start simple; don’t go

87

https://twitter.com/rajatmonga
https://www.tensorflow.org
http://bit.ly/2jx1jFc
http://apple.co/2jxaGVz

to very complex things. There are many things you can do, even
with simple models.

TensorFlow Makes Deep Learning More
Accessible

At Google, I would say there are the machine learning researchers
who are pushing machine learning research, then there are data sci‐
entists who are focusing on applying machine learning to their
problems... We have a mix of people—some are people applying
TensorFlow to their actual problems.
They don’t always have a machine learning background. Some of
them do, but a large number of them don’t. They’re usually devel‐
opers who are good at writing software. They know maybe a little
bit of math so they can pick it up, in some cases not that much at
all, but who can take these libraries if there are examples. They start
from those examples, maybe ask a few questions on our internal
boards, and then go from there. In some cases they may have a new
problem, they want some inputs on how to formulate that problem
using deep learning, and we might guide them or point them to an
example of how you might approach their problem. Largely, they’ve
been able to take TensorFlow and do things on their own. Inter‐
nally, we are definitely seeing these tools and techniques being used
by people who have never done machine learning before.

Synchronous and Asynchronous Methods for
Training Deep Neural Networks

When we started out back in 2011, everybody was using stochastic
gradient descent. It’s extremely efficient in what it does; but when
you want to scale beyond 10 or 20 machines, it makes it hard to
scale. So what do we do? At that time there were a couple of papers.
One was on the HOGWILD! approach that people had done on a
single machine... That was very interesting. We thought, can we
make this work across the network, across many, many machines?
We did some experiments and started tuning it, and it worked well.
We were actually able to scale it to a large number of workers, hun‐
dreds of workers in some cases across thousands of machines, and
that worked pretty well. Over time, we’d always had another ques‐
tion: is the asynchronous nature actually helping or making things
worse? Finally last year, we started to experiment and try to under‐
stand what’s happening; and as part of that, we realized if we could
do synchronous well, it actually is better.

88 | Chapter 11: Building Intelligent Applications with Deep Learning and TensorFlow

http://bit.ly/2jxldQi

… With the asynchronous stuff, we had these workers and they
would work completely independently of each other. They would
just update things on the parameter server when they had gradi‐
ents. They would send it back to the parameter server. It would
update and then fetch the next set of parameters.
… From a systems perspective, it’s nice, because it scales very, very
well. It’s okay if a few workers died—that’s fine—all the others will
continue to make progress. Now, with the synchronous approach,
what we want to do is to send parameters out to all the workers,
have them compute gradients, send those back, combine those
together, and then apply them. Now, across many machines, you
can do this; but the issue is if some of them start to slow down or
fail, what happens then? That’s always a tricky thing with the syn‐
chronous approach, and that’s hard to scale. That’s probably the
biggest reason people hadn’t pushed toward this earlier.

Related Resources
In my conversation with Rajat Monga, I alluded to these recent
papers on asynchronous and synchronous methods for training
deep neural networks:

• “Revisiting Distributed Synchronous SGD”
• “Asynchrony begets Momentum, with an Application to Deep

Learning”
• “Omnivore: An Optimizer for Multi-device Deep Learning on

CPUs and GPUs”

Ben Lorica
Ben Lorica is the Chief Data Scientist and Director of Content
Strategy for Data at O’Reilly Media, Inc. He has applied business
intelligence, data mining, machine learning, and statistical analysis
in a variety of settings, including direct marketing, consumer and
market research, target advertising, text mining, and financial engi‐
neering. His background includes stints with an investment man‐
agement company, internet startups, and financial services.

Related Resources | 89

http://bit.ly/2jxeZA9
http://arxiv.org/abs/1605.09774
http://arxiv.org/abs/1605.09774
https://arxiv.org/abs/1606.04487
https://arxiv.org/abs/1606.04487

PART III

Homebuilt Autonomous
Systems

The availability of AI tools, libraries, cloud processing, and mobile
computing is incredibly well illustrated in these two projects by
Lukas Biewald: a rolling robot that recognizes a variety of objects,
and a flying drone that recognizes people (with just a little help from
the cloud).

CHAPTER 12

How to Build a Robot That “Sees”
with $100 and TensorFlow

Lukas Biewald

Object recognition is one of the most exciting areas in machine
learning right now. Computers have been able to recognize objects
like faces or cats reliably for quite a while, but recognizing arbitrary
objects within a larger image has been the holy grail of artificial
intelligence. Maybe the real surprise is that human brains recognize
objects so well. We effortlessly convert photons bouncing off objects
at slightly different frequencies into a spectacularly rich set of infor‐
mation about the world around us. Machine learning still struggles
with these simple tasks, but in the past few years, it’s gotten much
better.

Deep learning and a large public training data set called ImageNet
have made an impressive amount of progress toward object recogni‐
tion. TensorFlow is a well-known framework that makes it very easy
to implement deep learning algorithms on a variety of architectures.
TensorFlow is especially good at taking advantage of GPUs, which in
turn are also very good at running deep learning algorithms.

Building My Robot
I wanted to build a robot that could recognize objects. Years of expe‐
rience building computer programs and doing test-driven develop‐
ment have turned me into a menace working on physical projects.
In the real world, testing your buggy device can burn down your

93

http://www.image-net.org
https://www.tensorflow.org

house, or at least fry your motor and force you to wait a couple of
days for replacement parts to arrive.

The new third-generation Raspberry Pi is perfect for this kind of
project. It costs $36 on Amazon.com and has WiFi, a quad core
CPU, and a gigabyte of RAM. A $6 microSD card can load Raspber‐
ian, which is basically Debian. See Figure 12-1 for an overview of
how all the components worked together, and see Figure 12-2 for a
photo of the Pi.

Figure 12-1. Architecture of the object-recognizing robot (image cour‐
tesy of Lukas Biewald)

94 | Chapter 12: How to Build a Robot That “Sees” with $100 and TensorFlow

http://amzn.to/2jxjVVu
http://amzn.to/2jxeVjC
https://en.wikipedia.org/wiki/Raspbian
https://en.wikipedia.org/wiki/Raspbian
https://en.wikipedia.org/wiki/Debian

Figure 12-2. Raspberry Pi running in my garage (image courtesy of
Lukas Biewald)

I love the cheap robot chassis that Sain Smart makes for around $11.
The chassis turns by spinning the wheels at different speeds, which
works surprisingly well (see Figure 12-3).

Figure 12-3. Robot chassis (image courtesy of Lukas Biewald)

The one place I spent more money when cheaper options were
available is the Adafruit motor hat (see Figure 12-4). The DC
motors run at a higher current than the Raspberry Pi can provide, so

Building My Robot | 95

http://amzn.to/2jxjJpu
http://bit.ly/2jxnbQG

a separate controller is necessary, and the Adafruit motor hat is
super convenient. Using the motor hat required a tiny bit of solder‐
ing, but the hardware is extremely forgiving, and Adafruit provides
a nice library and tutorial to control the motors over i2C. Initially, I
used cheaper motor controllers, but I accidentally fried my Pi, so I
decided to order a better quality replacement.

Figure 12-4. Raspberry Pi with motor hat and camera (image courtesy
of Lukas Biewald)

A $15 camera attaches right into the Raspberry Pi and provides a
real-time video feed I can use to recognize objects. There are tons of
awesome cameras available. I like the infrared cameras that offer
night vision.

The Raspberry Pi needs about 2 amps of current, but 3 amps is safer
with the speaker we’re going to plug into it. iPhone battery chargers
work awesomely for this task. Small chargers don’t actually output
enough amps and can cause problems, but the Lumsing power bank
works great and costs $18.

A couple of 4 sonar sensors help the robot avoid crashing into
things—you can buy five for $11.

I added the cheapest USB speakers I could find, and used a bunch of
zip ties, hot glue, and foam board to keep everything together. As an

96 | Chapter 12: How to Build a Robot That “Sees” with $100 and TensorFlow

http://bit.ly/2jxk2R3
http://amzn.to/2jxl5jO
http://amzn.to/2jxiN4n
http://amzn.to/2jxnr26

added bonus, I cut up some of the packaging materials the electron‐
ics came with and drew on them to give the robots some personality.
I should note here that I actually built two robots (see Figure 12-5)
because I was experimenting with different chassis, cameras, sonar
placement, software, and so forth, and ended up buying enough
parts for two versions.

Figure 12-5. My 4WD robot (right) and his 2WD older sister (image
courtesy of Lukas Biewald)

Once the robot is assembled, it’s time to make it smart. There are a
million tutorials for getting started with a Raspberry Pi online. If
you’ve used Linux, everything should be very familiar.

For streaming the camera, the RPi Cam Web interface works great.
It’s super configurable and by default puts the latest image from the
camera in a RAM disk at /dev/shm/mjpeg/cam.jpg.

If you want to stream the camera data to a web page (very useful for
debugging), you can install Nginx, an extremely fast open source
webserver/proxy. I configured Nginx to pass requests for the camera
image directly to the file location and everything else to my web‐
server:

http {
 server {

Building My Robot | 97

http://bit.ly/2jxkn6h
http://elinux.org/RPi-Cam-Web-Interface
https://en.wikipedia.org/wiki/Nginx

 location / {
 proxy_pass http://unix:/home/pi/drive.sock;
 }
 location /cam.jpg {
 root /dev/shm/mjpeg;
 }
 }
}

I then built a simple Python webserver to spin the wheels of the
robot based on keyboard commands that made for a nifty remote
control car.

As a side note, it’s fun to play with the sonar and the driving system
to build a car that can maneuver around obstacles.

Programming My Robot
Finally, it’s time to install TensorFlow. There are a couple of ways to
do the installation, but TensorFlow actually comes with a makefile
that lets you build it right on the system. The steps take a few hours
and have quite a few dependencies, but they worked great for me.

TensorFlow comes with a prebuilt model called “inception” that per‐
forms object recognition. You can follow the tutorial to get it run‐
ning.

To output the top five guesses, run tensorflow/contrib/pi_exam
ples/label_image/gen/bin/label_image on an image from the
camera. The model works surprisingly well on a wide range of
inputs, but it’s clearly missing an accurate “prior,” or a sense of what
things it’s likely to see, and there are quite a lot of objects missing
from the training data. For example, it consistently recognizes my
laptop, even at funny angles; but if I point it at my basket of loose
wires, it consistently decides that it’s looking at a toaster. If the cam‐
era is blocked, and it gets a dark or blurry image, it usually decides
that it’s looking at nematodes—clearly an artifact of the data it was
trained on.

Finally, I connected the output to the Flite open source software
package that does text to speech, so the robot can tell everyone what
it’s seeing (see Figure 12-6).

98 | Chapter 12: How to Build a Robot That “Sees” with $100 and TensorFlow

http://bit.ly/2jxnDOS
http://bit.ly/2jxgnCA
http://www.festvox.org/flite/

Figure 12-6. Robot plugged into my keyboard and monitor (image
courtesy of Lukas Biewald)

Final Thoughts
From 2003 to 2005, I worked in the Stanford Robotics lab, where the
robots cost hundreds of thousands of dollars and couldn’t perform
object recognition nearly as well as my robots. I’m excited to put this
software on my drone and never have to look for my keys again.

I’d also like to acknowledge all the people that helped with this fun
project. My neighbors, Chris Van Dyke and Shruti Gandhi, helped
give the robot a friendly personality. My friend Ed McCullough dra‐
matically improved the hardware design and taught me the value of
hot glue and foam board. Pete Warden, who works at Google, hel‐
ped get TensorFlow compiling properly on the Raspberry Pi and
provided amazing customer support.

Final Thoughts | 99

Lukas Biewald
Lukas Biewald is the founder of CrowdFlower. Founded in 2009,
CrowdFlower is a data enrichment platform that taps into an on-
demand workforce to help companies collect training data and do
human-in-the-loop machine learning.

Following his graduation from Stanford University with a BS in
mathematics and an MS in computer science, Lukas led the Search
Relevance Team for Yahoo! Japan. He then worked as a senior data
scientist at Powerset, which was acquired by Microsoft in 2008.
Lukas was featured in Inc. magazine’s 30 under 30 list.

Lukas is also an expert-level Go player.

100 | Chapter 12: How to Build a Robot That “Sees” with $100 and TensorFlow

https://www.crowdflower.com

CHAPTER 13

How to Build an Autonomous,
Voice-Controlled,

Face-Recognizing Drone for $200

Lukas Biewald

After building an image-classifying robot, the obvious next step was
to make a version that can fly. I decided to construct an autonomous
drone that could recognize faces and respond to voice commands.

Choosing a Prebuilt Drone
One of the hardest parts about hacking drones is getting started. I
got my feet wet first by building a drone from parts, but like pretty
much all of my DIY projects, building from scratch ended up cost‐
ing me way more than buying a prebuilt version—and frankly, my
homemade drone never flew quite right. It’s definitely much easier
and cheaper to buy than to build.

Most of the drone manufacturers claim to offer APIs, but there’s not
an obvious winner in terms of a hobbyist ecosystem. Most of the
drones with usable-looking APIs cost more than $1,000—a huge
barrier to entry.

But after some research, I found the Parrot AR Drone 2.0 (see
Figure 13-1), which I think is a clear choice for a fun, low-end, hack‐
able drone. You can buy one for $200 new, but so many people buy
drones and never end up using them that a secondhand drone is a
good option and available widely on eBay for $130 or less.

101

http://oreil.ly/2jxlliJ
http://amzn.to/2jxoO0K

Figure 13-1. The drone collection in my garage; the Parrot AR drone I
used is hanging on the far left (image courtesy of Lukas Biewald)

The Parrot AR drone doesn’t fly quite as stably as the much more
expensive (about $550) new Parrot Bebop 2 drone, but the Parrot
AR comes with an excellent node.js client library called node-ar-
drone that is perfect for building onto.

Another advantage: the Parrot AR drone is very hard to break.
While testing the autonomous code, I crashed it repeatedly into
walls, furniture, house plants, and guests, and it still flies great.

The worst thing about hacking on drones compared to hacking on
terrestrial robots is the short battery life. The batteries take hours to
charge and then last for about 10 minutes of flying. I recommend
buying two additional batteries and cycling through them while test‐
ing.

Programming My Drone
Javascript turns out to be a great language for controlling drones
because it is so inherently event driven. And trust me, while flying a
drone, there will be a lot of asynchronous events. Node isn’t a lan‐
guage I’ve spent a lot of time with, but I walked away from this
project super impressed with it. The last time I seriously program‐
med robots, I used C, where the threading and exception handling is
painful enough that there is a tendency to avoid it. I hope someone
builds Javascript wrappers for other drone platforms because the

102 | Chapter 13: How to Build an Autonomous, Voice-Controlled, Face-Recognizing Drone
for $200

http://amzn.to/2jxmMOc
http://bit.ly/2jxhRwE
http://bit.ly/2jxhRwE

language makes it easy and fun to deal with our indeterministic
world.

Architecture
I decided to run the logic on my laptop and do the machine learning
in the cloud. This setup led to lower latency than running a neural
network directly on Raspberry Pi hardware, and I think this archi‐
tecture makes sense for hobby drone projects at the moment.

Microsoft, Google, IBM, and Amazon all have fast, inexpensive
cloud machine learning APIs. In the end, I used Microsoft’s Cogni‐
tive Services APIs for this project because it’s the only API that
offers custom facial recognition.

See Figure 13-2 for a diagram illustrating the architecture of the
drone.

Figure 13-2. The smart drone architecture (image courtesy of Lukas
Biewald)

Getting Started
By default, the Parrot AR Drone 2.0 serves a wireless network that
clients connect to. This is incredibly annoying for hacking. Every

Architecture | 103

https://www.raspberrypi.org
http://bit.ly/2jxfYjK
http://bit.ly/2jxfYjK

time you want to try something, you need to disconnect from your
network and get on the drone’s network. Luckily, there is a super
useful project called ardrone-wpa2 that has a script to hack your
drone to join your own WiFi network.

It’s fun to Telnet into your drone and poke around. The Parrot runs
a stripped down version of Linux. When was the last time you con‐
nected to something with Telnet? Here’s an example of how you
would open a terminal and log into the drone’s computer directly:

% script/connect "The Optics Lab" -p "particleorwave" -a
192.168.0.1 -d 192.168.7.43
% telnet 192.168.7.43

Flying from the Command Line
After installing the node library, it’s fun to make a node.js REPL
(Read-Evaluate-Print Loop) and steer your drone:

var arDrone = require('ar-drone');
var client = arDrone.createClient({ip: '192.168.7.43'});
client.createRepl();

drone> takeoff()
true

drone> client.animate('yawDance, 1.0)

If you are actually following along, by now you’ve definitely crashed
your drone—at least a few times. I super-glued the safety hull back
together about a thousand times before it disintegrated and I had to
buy a new one. I hesitate to mention this, but the Parrot AR actually
flies a lot better without the safety hull. This configuration makes
the drone much more dangerous without the hull because when the
drone bumps into something the propellers can snap, and it will
leave marks in furniture.

Flying from a Web Page
It’s satisfying and easy to build a web-based interface to the drone
(see Figure 13-3). The express.js framework makes it simple to build
a nice little web server:

var express = require('express');

app.get('/', function (req, res) {
 res.sendFile(path.join(__dirname + '/index.html'));

104 | Chapter 13: How to Build an Autonomous, Voice-Controlled, Face-Recognizing Drone
for $200

http://bit.ly/2jx6gxM
https://en.wikipedia.org/wiki/Telnet

});

app.get('/land', function(req, res) {
 client.land();
});

app.get('/takeoff', function(req, res) {
 client.takeoff();
});

app.listen(3000, function () {
});

I set up a function to make AJAX requests using buttons:

<html>
<script language='javascript'>
function call(name) {
 var xhr = new XMLHttpRequest();
 xhr.open('GET', name, true);
 xhr.send();
}
</script>
<body>
Takeoff
Land
</body>
</html>

Streaming Video from the Drone
I found the best way to send a feed from the drone’s camera was to
open up a connection and send a continuous stream of PNGs for my
webserver to my website. My webserver continuously pulls PNGs
from the drone’s camera using the AR drone library:

var pngStream = client.getPngStream();

pngStream
 .on('error', console.log)
 .on('data', function(pngBuffer) {
 sendPng(pngBuffer);
 }

function sendPng(buffer) {
 res.write('--daboundary\nContent-Type: image/png\
 nContent-length: ' + buff
er.length + '\n\n');
 res.write(buffer);
});

Streaming Video from the Drone | 105

https://en.wikipedia.org/wiki/Ajax_(programming)

Running Face Recognition on the Drone
Images
The Azure Face API is powerful and simple to use. You can upload
pictures of your friends, and it will identify them. It will also guess
age and gender, both functions of which I found to be surprisingly
accurate. The latency is around 200 milliseconds, and it costs $1.50
per 1,000 predictions, which feels completely reasonable for this
application. The following code sends an image and does face recog‐
nition:

var oxford = require('project-oxford'),
oxc = new oxford.Client(CLIENT_KEY);

loadFaces = function() {
 chris_url = "https://media.licdn.com/mpr/mpr/shrinknp_400_400/
 AAEAAQAAAAAAAALyAAAAJGMyNmIzNWM0LTA5MTYtNDU4Mi05YjExLTgyMzVlMT
 ZjYjEwYw.jpg";
 lukas_url = "https://media.licdn.com/mpr/mpr/shrinknp_400_400/
 p/3/000/058/147/34969d0.jpg";
 oxc.face.faceList.create('myFaces');
 oxc.face.faceList.addFace('myFaces', {url => chris_url,
 name=> 'Chris'});
 oxc.face.faceList.addFace('myFaces', {url => lukas_url,
 name=> 'Lukas'});
}

oxc.face.detect({
 path: 'camera.png',
 analyzesAge: true,
 analyzesGender: true
}).then(function (response) {
 if (response.length > 0) {
 drawFaces(response, filename)
 }
});

I used the excellent ImageMagick library to annotate the faces in my
PNGs. There are a lot of possible extensions at this point—for
example, there is an emotion API that can determine the emotion of
faces.

106 | Chapter 13: How to Build an Autonomous, Voice-Controlled, Face-Recognizing Drone
for $200

http://bit.ly/2jxpuDi
http://bit.ly/2jxlqD5
http://bit.ly/2jxojny

Running Speech Recognition to Drive the
Drone
The trickiest part about doing speech recognition was not the
speech recognition itself, but streaming audio from a web page to
my local server in the format Microsoft’s Speech API wants, so that
ends up being the bulk of the code. Once you’ve got the audio saved
with one channel and the right sample frequency, the API works
great and is extremely easy to use. It costs $4 per 1,000 requests, so
for hobby applications, it’s basically free.

RecordRTC has a great library, and it’s a good starting point for
doing client-side web audio recording. On the client side, we can
add code to save the audio file:

app.post('/audio', function(req, res) {
 var form = new formidable.IncomingForm();
 // specify that we want to allow the user to upload multiple
 files in a single request
 form.multiples = true;
 form.uploadDir = path.join(__dirname, '/uploads');

 form.on('file', function(field, file) {
 filename = "audio.wav"
 fs.rename(file.path, path.join(form.uploadDir,
 filename));
 });

 // log any errors that occur
 form.on('error', function(err) {
 console.log('An error has occured: \n' + err);
 });

 // once all the files have been uploaded, send a response to
 the client
 form.on('end', function() {
 res.end('success');
 });

 // parse the incoming request containing the form data
 form.parse(req)

 speech.parseWav('uploads/audio.wav', function(text) {
 console.log(text);
 controlDrone(text);
 });
});

Running Speech Recognition to Drive the Drone | 107

http://bit.ly/2jxey8S
http://bit.ly/2jxq5oO

I used the FFmpeg utility to downsample the audio and combine it
into one channel for uploading to Microsoft:

exports.parseWav = function(wavPath, callback) {
 var cmd = 'ffmpeg -i ' + wavPath + ' -ar 8000 -ac 1 -y
 tmp.wav';

 exec(cmd, function(error, stdout, stderr) {
 console.log(stderr); // command output is in stdout
 });

 postToOxford(callback);
});

While we’re at it, we might as well use Microsoft’s text-to-speech
API so the drone can talk back to us!

Autonomous Search Paths
I used the ardrone-autonomy library to map out autonomous search
paths for my drone. After crashing my drone into the furniture and
houseplants one too many times in my living room, my wife nicely
suggested I move my project to my garage, where there is less to
break—but there isn’t much room to maneuver (see Figure 13-3).

Figure 13-3. Flying the drone in my “lab” (image courtesy of Lukas
Biewald)

When I get a bigger lab space, I’ll work more on smart searching
algorithms, but for now I’ll just have my drone take off and rotate,
looking for my friends and enemies:

108 | Chapter 13: How to Build an Autonomous, Voice-Controlled, Face-Recognizing Drone
for $200

http://bit.ly/2jxqOGr
http://bit.ly/2jxq9F4
http://bit.ly/2jxq9F4
http://bit.ly/2jxvR9K

var autonomy = require('ardrone-autonomy');
var mission = autonomy.createMission({ip: '10.0.1.3',
frameRate: 1, imageSize: '640:320'});

console.log("Here we go!")

mission.takeoff()
 .zero() // Sets the current state as the reference
 .altitude(1)
 .taskSync(console.log("Checkpoint 1"))
 .go({x: 0, y: 0, z: 1, yaw: 90})
 .taskSync(console.log("Checkpoint 2"))
 .hover(1000)
 .go({x: 0, y: 0, z: 1, yaw: 180})
 .taskSync(console.log("Checkpoint 3"))
 .hover(1000)
 .go({x: 0, y: 0, z: 1, yaw: 270})
 .taskSync(console.log("Checkpoint 4"));
 .hover(1000)
 .go({x: 0, y: 0, z: 1, yaw: 0
 .land()

Conclusion
Once everything is set up and you are controlling the drone through
an API and getting the video feed, hacking on drones becomes
incredibly fun. With all of the newly available image recognition
technology, there are all kinds of possible uses, from surveying
floorplans to painting the walls. The Parrot drone wasn’t really
designed to fly safely inside a small house like mine, but a more
expensive drone might make this a totally realistic application. In
the end, drones will become more stable, the price will come down,
and the real-world applications will explode.

Microsoft’s Cognitive Services cloud APIs are easy to use and amaz‐
ingly cheap. At first, I was worried that the drone’s unusually wide-
angle camera might affect the face recognition and that the loud
drone propeller might interfere with the speech recognition, but
overall the performance was much better than I expected. The
latency is less of an issue than I was expecting. Doing the computa‐
tion in the Cloud on a live image feed seems like a strange architec‐

Conclusion | 109

ture at first, but it will probably be the way of the future for a lot of
applications.

Lukas Biewald
Lukas Biewald is the founder of CrowdFlower. Founded in 2009,
CrowdFlower is a data enrichment platform that taps into an on-
demand workforce to help companies collect training data and do
human-in-the-loop machine learning.

Following his graduation from Stanford University with a BS in
mathematics and an MS in computer science, Lukas led the Search
Relevance Team for Yahoo! Japan. He then worked as a senior data
scientist at Powerset, which was acquired by Microsoft in 2008.
Lukas was featured in Inc. magazine’s 30 Under 30 list.

Lukas is also an expert-level Go player.

110 | Chapter 13: How to Build an Autonomous, Voice-Controlled, Face-Recognizing Drone
for $200

https://www.crowdflower.com

PART IV

Natural Language

Natural language has long been a goal of AI research and develop‐
ment, and 2016 was a banner year for technologies that support the
parsing, understanding, and generating of text. Alyona Medelyan
takes you right into NLP with strategies for scoping and tackling
your project. Michelle Casbon then discusses using Spark MLLib for
NLP, and Lior Shkiller looks at vectorization models and architec‐
tures to capture semantics.

CHAPTER 14

Three Three Tips for Getting
Started with NLU

Alyona Medelyan

What makes a cartoon caption funny? As one algorithm found: a
simple readable sentence, a negation, and a pronoun—but not “he”
or “she.” The algorithm went on to pick the funniest captions for
thousands of the New Yorker’s cartoons, and in most cases, it
matched the intuition of its editors.

Algorithms are getting much better at understanding language, and
we are becoming more aware of this through stories like that of IBM
Watson winning the Jeopardy quiz. Thankfully, large corporations
aren’t keeping the latest breakthroughs in natural language under‐
standing (NLU) for themselves. Google released the word2vec tool,
and Facebook followed by publishing its speed-optimized deep
learning modules. Since language is at the core of many businesses
today, it’s important to understand what NLU is, and how you can
use it to meet some of your business goals. In this article, you will
learn three key tips on how to get into this fascinating and useful
field.

But first things first: what does “natural language understanding”
actually mean? Whenever a computer understands written language
—or in other words, derives the meaning of words, sentences, or
text—we call it natural language understanding. When understand‐
ing spoken language, such as voice commands or recorded speech, a
process called automatic speech recognition transforms it first into
written words.

113

http://bit.ly/2jxwmk9
http://nyti.ms/2jxu44H
http://nyti.ms/2jxu44H
http://bit.ly/2jxqYh8
http://bit.ly/2jxwtfz
http://bit.ly/2jxwtfz

NLU is technically a sub-area of the broader area of natural lan‐
guage processing (NLP), which is a sub-area of artificial intelligence
(AI). Many NLP tasks, such as part-of-speech or text categorization,
do not always require actual understanding in order to perform
accurately, but in some cases they might, which leads to confusion
between these two terms. As a rule of thumb, an algorithm that
builds a model that understands meaning falls under natural lan‐
guage understanding, not just natural language processing.

Examples of Natural Language Understanding
Let’s look of some examples of what we mean by “understanding
meaning,” in a nonphilosophical way. For our first example, we’ll
look at relation extraction. The meaning of “London,” for example,
could be a multitude of relations, such as: “is a City,” “is a British
capital,” “is the location of Buckingham Palace,” “is the headquarters
of HSBC.” These are semantic relations, and NLU algorithms are
pretty good at extracting such relations from unstructured text. For
example, the Open Information Extraction system at the University
of Washington extracted more than 500 million such relations from
unstructured web pages by analyzing sentence structure. Another
example is Microsoft’s ProBase, which uses syntactic patterns (“is a,”
“such as”) and resolves ambiguity through iteration and statistics. It
then merges all these relations into knowledge taxonomy. Similarly,
businesses can extract knowledge bases from web pages and docu‐
ments relevant to their business.

Meaning can also be expressed through emotions. Sentiment analy‐
sis can determine emotions from text. For businesses, it’s important
to know the sentiment of their users and customers overall, and the
sentiment attached to specific themes, such as areas of customer ser‐
vice or specific product features.

Another popular application of NLU is chat bots, also known as dia‐
logue agents, which make our interaction with computers more
human-like. At the most basic level, bots need to understand how to
map our words into actions and use dialogue to clarify uncertainties.
At the most sophisticated level, they should be able to hold a conver‐
sation about anything, which is true artificial intelligence. Anybody
who has used Siri, Cortana, or Google Now while driving will attest
that dialogue agents are already proving useful, and going beyond
their current level of understanding would not necessarily improve

114 | Chapter 14: Three Three Tips for Getting Started with NLU

http://bit.ly/2jxpH9K
http://bit.ly/2jxvGv3

their function. Most other bots out there are nothing more than a
natural language interface into an app that performs one specific
task, such as shopping or meeting scheduling. Interestingly, this is
already so technologically challenging that humans often hide
behind the scenes. Keeping it simple is the key when it comes to
building bots.

Begin Using NLU—Here’s Why and How
The good news is that despite many challenges, NLU is breaking
out. This means that whether you work with product reviews,
receive user feedback, or interact with customers, you can start
using NLU methods today. Here are three tips for how and why to
get started:

You can choose the smartest algorithm out there without having to pay
for it

Most algorithms are publicly available as open source. It’s truly
mind-bending that if you want, you can download and start
using the same algorithms Google used to beat the world’s Go
champion, right now. Many machine learning toolkits come
with an array of algorithms; which one is the best depends on
what you are trying to predict and the amount of data available.
While there may be some general guidelines, it’s often best to
loop through them to choose the right one.

Your deep knowledge of the business is more important than the best
algorithm

When integrating NLU into a new product or service, it is more
important to understand the specific business field—how it
works and its priorities—than to have the best algorithm at
hand. Consider this example: an app that lets you query Sales‐
force in natural language. Knowing which questions users are
likely to ask and which data can be queried from Salesforce is
more important than having the most accurate language parser.
After all, it’s more important to solve the right problem with an
OK algorithm than the wrong problem with the best algorithm
out there.

It’s likely that you already have enough data to train the algorithms
Google may be the most prolific producer of successful NLU
applications. The reason why its search, machine translation,
and ad recommendation work so well is because Google has

Begin Using NLU—Here’s Why and How | 115

http://bloom.bg/2jxo24a
http://bloom.bg/2jxo24a
http://bit.ly/2jxjQ4k
http://bit.ly/2jxjQ4k
http://bit.ly/2jxr5tb
http://bit.ly/2jxr5tb
http://bit.ly/2jxrQSE
http://bit.ly/2cqCYx6
http://bit.ly/2jxxrbG
http://bit.ly/2jxxrbG

access to huge data sets. For the rest of us, current algorithms
like word2vec require significantly less data to return useful
results. Indeed, companies have already started integrating such
tools into their workflows. If your business has as a few thou‐
sand product reviews or user comments, you can probably
make this data work for you using word2vec, or other language
modeling methods available through tools like Gensim, Torch,
and TensorFlow.

Judging the Accuracy of an Algorithm
These are all good reasons for giving natural language understand‐
ing a go, but how do you know if the accuracy of an algorithm will
be sufficient? Consider the type of analysis it will need to perform
and the breadth of the field. Analysis ranges from shallow, such as
word-based statistics that ignore word order, to deep, which implies
the use of ontologies and parsing. Deep learning, despite the name,
does not imply a deep analysis, but it does make the traditional shal‐
low approach deeper. Field stands for the application area, and nar‐
row means a specialist domain or a specific task. Broad implies no
restrictions on how varied language may be.

As a rule of thumb, try to classify your problem according to this
grid:

Shallow analysis, narrow field
Sample problem: determining the level of frustration in
support tickets of a specific company

Deep analysis, narrow field
Sample problem: scheduling
appointments automatically through
email

Shallow analysis, broad field
Sample problem: categorizing any social media
comments into happy and sad

Deep analysis, broad field
Sample problem: a conversation about
anything

If accuracy is paramount, go only for specific tasks that need shallow
analysis. If accuracy is less important, or if you have access to people
who can help where necessary, deepening the analysis or a broader
field may work. In general, when accuracy is important, stay away
from cases that require deep analysis of varied language—this is an
area still under development in the field of AI.

116 | Chapter 14: Three Three Tips for Getting Started with NLU

http://deeplearning4j.org/word2vec
http://bit.ly/2jxwjEV
https://radimrehurek.com/gensim/
http://torch.ch
https://www.tensorflow.org

Alyona Medelyan
Alyona Medelyan runs Entopix, a successful international NLP
consultancy. Alyona has extensive experience working with cus‐
tomer feedback data, such as surveys, social media data, call center
logs, and public forums. She is also CEO and cofounder of The‐
matic, a customer insight startup. Alyona’s PhD was in keyword
extraction, which led to the open source Maui toolkit, her role as
chief research officer at Pingar, and subsequent work consulting on
NLP for large multinationals.

Judging the Accuracy of an Algorithm | 117

http://www.entopix.com
http://www.getthematic.com
http://www.getthematic.com

CHAPTER 15

Training and Serving NLP Models
Using Spark

Michelle Casbon

Author’s Note

This article describes a framework we built to orga‐
nize, construct, and serve predictive models. It was
used by production systems in a variety of different
industries, and while the larger system is no longer
operational, the component that this article focuses on
is open source and can be found on GitHub.

Identifying critical information out of a sea of unstructured data or
customizing real-time human interaction are a couple of examples
of how clients utilize our technology at Idibon—a San Francisco
startup focusing on natural language processing (NLP). The
machine learning libraries in Spark ML and MLlib have enabled us
to create an adaptive machine intelligence environment that ana‐
lyzes text in any language, at a scale far surpassing the number of
words per second in the Twitter firehose.

Our engineering team has built a platform that trains and serves
thousands of NLP models that function in a distributed environ‐
ment. This allows us to scale out quickly and provide thousands of
predictions per second for many clients simultaneously. In this post,
we’ll explore the types of problems we’re working to resolve, the
processes we follow, and the technology stack we use. This should be

119

https://github.com/g-c-k/idiml
http://idibon.com
http://bit.ly/2jxsJdW

helpful for anyone looking to build out or improve their own NLP
pipelines.

Constructing Predictive Models with Spark
Our clients are companies that need to automatically classify docu‐
ments or extract information from them. This can take many
diverse forms, including social media analytics, message categoriza‐
tion and routing of customer communications, newswire monitor‐
ing, risk scoring, and automating inefficient data entry processes. All
of these tasks share a commonality: the construction of predictive
models trained on features extracted from raw text (Figure 15-1). This
process of creating NLP models represents a unique and challenging
use case for the tools provided by Spark.

Figure 15-1. Creating NLP models (image courtesy of Idibon)

The Process of Building a Machine Learning
Product
A machine learning product can be broken down into three concep‐
tual pieces (see Figure 15-2): the prediction itself, the models that
provide the prediction, and the data set used to train the models.

120 | Chapter 15: Training and Serving NLP Models Using Spark

Figure 15-2. Building a machine-learning product (image courtesy of
Michelle Casbon)

Prediction
In our experience, it’s best to begin with business questions and use
them to drive the selection of data sets, rather than having data sets
themselves drive project goals. If you do begin with a data set, it’s
important to connect data exploration with critical business needs as
quickly as possible. With the right questions in place, it becomes
straightforward to choose useful classifications, which is what a pre‐
diction ultimately provides.

Data Set
Once the predictions are defined, it becomes fairly clear which data
sets would be most useful. It is important to verify that the data you
have access to can support the questions you are trying to answer.

Model Training
Having established the task at hand and the data to be used, it’s time
to worry about the models. In order to generate models that are
accurate, we need training data, which is often generated by
humans. These humans may be experts within a company or con‐
sulting firm, or in many cases, they may be part of a network of ana‐
lysts.

Additionally, many tasks can be done efficiently and inexpensively
by using a crowdsourcing platform like CrowdFlower. We like the

The Process of Building a Machine Learning Product | 121

http://www.crowdflower.com

platform because it categorizes workers based on specific areas of
expertise, which is particularly useful for working with languages
other than English.

All of these types of workers submit annotations for specific por‐
tions of the data set in order to generate training data. The training
data is what you’ll use to make predictions on new or remaining
parts of the data set. Based on these predictions, you can make deci‐
sions about the next set of data to send to annotators. The point here
is to make the best models with the fewest human judgements. You
continue iterating between model training, evaluation, and annota‐
tion—getting higher accuracy with each iteration. We refer to this
process as adaptive learning, which is a quick and cost-effective
means of producing highly accurate predictions.

Operationalization
To support the adaptive learning process, we built a platform that
automates as much as possible. Having components that autoscale
without our intervention is key to supporting a real-time API with
fluctuating client requests. A few of the tougher scalability chal‐
lenges we’ve addressed include:

• Document storage
• Serving up thousands of individual predictions per second
• Support for continuous training, which involves automatically

generating updated models whenever the set of training data or
model parameters change

• Hyperparameter optimization for generating the most perform‐
ant models

We do this by using a combination of components within the AWS
stack, such as Elastic Load Balancing, Auto Scaling groups, RDS,
and ElastiCache. There are also a number of metrics that we moni‐
tor within New Relic and Datadog, which alert us before things go
terribly awry.

Figure 15-3 is a high-level diagram of the main tools in our infra‐
structure.

122 | Chapter 15: Training and Serving NLP Models Using Spark

https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/autoscaling/
https://aws.amazon.com/rds/
https://aws.amazon.com/elasticache/
http://newrelic.com
https://www.datadoghq.com

Figure 15-3. Main tools (image courtesy of Michelle Casbon)

Spark’s Role
A core component of our machine learning capabilities is the opti‐
mization functionality within Spark ML and MLlib. Making use of
these for NLP purposes involves the addition of a persistence layer
that we refer to as IdiML. This allows us to utilize Spark for individ‐
ual predictions, rather than its most common usage as a platform
for processing large amounts of data all at once.

What Are We Using Spark For?
At a more detailed level, there are three main components of an
NLP pipeline:

Feature extraction
Text is converted into a numerical format appropriate for statis‐
tical modeling.

Spark’s Role | 123

Training
Models are generated based on the classifications provided for
each feature vector.

Prediction
Trained models are used to generate a classification for new,
unseen text.

A simple example of each component is described in Figure 15-4.

Figure 15-4. Core component of our machine learning capabilities
(image courtesy of Michelle Casbon)

Feature Extraction
In the feature extraction phase, text-based data is transformed into
numerical data in the form of a feature vector. This vector represents
the unique characteristics of the text and can be generated by any
sequence of mathematical transformations. Our system was built to
easily accommodate additional feature types, such as features
derived from deep learning; but for simplicity’s sake, we’ll consider a
basic feature pipeline example (Figure 15-5):

Input
A single document, consisting of content and perhaps metadata.

124 | Chapter 15: Training and Serving NLP Models Using Spark

Content extraction
Isolates the portion of the input that we’re interested in, which is
usually the content itself.

Tokenization
Separates the text into individual words. In English, a token is
more or less a string of characters with whitespace or punctua‐
tion around them, but in other languages like Chinese or Japa‐
nese, you need to probabilistically determine what a “word” is.

Ngrams
Generates sets of word sequences of length n. Bigrams and tri‐
grams are frequently used.

Feature lookup
Assigns an arbitrary numerical index value to each unique fea‐
ture, resulting in a vector of integers. This feature index is
stored for later use during prediction.

Output
A numerical feature vector in the form of Spark MLlib’s Vector
data type (org.apache.spark.mllib.linalg.Vector).

Figure 15-5. Feature extraction (image courtesy of Michelle Casbon)

Training
During the training phase (Figure 15-6), a classification is appended
to the feature vector. In Spark, this is represented by the Labeled
Point data type. In a binary classifier, the classification is either true
or false (1.0 or 0.0):

Spark’s Role | 125

1. Input: numerical feature Vectors.
2. A LabeledPoint is created, consisting of the feature vector and

its classification. This classification was generated by a human
earlier in the project lifecycle.

3. The set of LabeledPoints representing the full set of training
data is sent to the LogisticRegressionWithLBFGS function in
MLlib, which fits a model based on the given feature vectors
and associated classifications.

4. Output: a LogisticRegressionModel.

Figure 15-6. Training phase (image courtesy of Michelle Casbon)

Prediction
At prediction time, the models generated during training are used to
provide a classification for the new piece of text. A confidence inter‐
val of 0-1 indicates the strength of the model’s confidence in the pre‐
diction. The higher the confidence, the more certain the model is.
The following components encompass the prediction process
(Figure 15-7):

1. Input: unseen document in the same domain as the data used
for training.

2. The same featurization pipeline is applied to the unseen text.
The feature index generated during training is used here as a
lookup. This results in a feature vector in the same feature space
as the data used for training.

3. The trained model is retrieved.
4. The feature Vector is sent to the model, and a classification is

returned as a prediction.

126 | Chapter 15: Training and Serving NLP Models Using Spark

5. The classification is interpreted in the context of the specific
model used, which is then returned to the user.

6. Output: a predicted classification for the unseen data and a cor‐
responding confidence interval.

Figure 15-7. The prediction process (image courtesy of Michelle Cas‐
bon)

Prediction Data Types
In typical Spark ML applications, predictions are mainly generated
using RDDs and DataFrames: the application loads document data
into one column, and MLlib places the results of its prediction in
another. Like all Spark applications, these prediction jobs may be
distributed across a cluster of servers to efficiently process petabytes
of data. However, our most demanding use case is exactly the oppo‐
site of big data: often, we must analyze a single, short piece of text
and return results as quickly as possible, ideally within a millisec‐
ond.

Unsurprisingly, DataFrames are not optimized for this use case, and
our initial DataFrame-based prototypes fell short of this require‐
ment.

Fortunately for us, MLlib is implemented using an efficient linear
algebra library, and all of the algorithms we planned to use included
internal methods that generated predictions using single Vector
objects without any added overhead. These methods looked perfect

Spark’s Role | 127

for our use case, so we designed IdiML to be extremely efficient at
converting single documents to single Vectors so that we could use
Spark MLlib’s internal Vector-based prediction methods.

For a single prediction, we observed speed improvements of up to
two orders of magnitude by working with Spark MLlib’s Vector type
as opposed to RDDs. The speed differences between the two data
types are most pronounced among smaller batch sizes. This makes
sense considering that RDDs were designed for processing large
amounts of data. In a real-time web server context such as ours,
small batch sizes are by far the most common scenario. Since dis‐
tributed processing is already built into our web server and load-
balancer, the distributed components of core Spark are unnecessary
for the small-data context of individual predictions. As we learned
during the development of IdiML and have shown in Figure 15-8,
Spark MLlib is an incredibly useful and performant machine learn‐
ing library for low-latency and real-time applications. Even the
worst-case IdiML performance is capable of performing sentiment
analysis on every tweet written, in real time, from a mid-range con‐
sumer laptop (Figure 15-9).

Figure 15-8. Measurements performed on a mid-2014 15-inch Mac‐
Book Pro Retina—the large disparity in single-document performance
is due to the inability of the test to take advantage of the multiple cores
(image courtesy of Michelle Casbon)

128 | Chapter 15: Training and Serving NLP Models Using Spark

Figure 15-9. Processing power (image courtesy of Rob Munro)

Fitting It into Our Existing Platform with IdiML
In order to provide the most accurate models possible, we want to
be able to support different types of machine learning libraries.
Spark has a unique way of doing things, so we want to insulate our
main code base from any idiosyncrasies. This is referred to as a per‐
sistence layer (IdiML) (Figure 15-10), which allows us to combine
Spark functionality with NLP-specific code that we’ve written our‐
selves. For example, during hyperparameter tuning we can train
models by combining components from both Spark and our own
libraries. This allows us to automatically choose the implementation
that performs best for each model, rather than having to decide on
just one for all models.

Fitting It into Our Existing Platform with IdiML | 129

Figure 15-10. Persistence layer (image courtesy of Michelle Casbon)

Why a Persistence Layer?
The use of a persistence layer allows us to operationalize the training
and serving of many thousands of models. Here’s what IdiML pro‐
vides us with:

A means of storing the parameters used during training.
This is necessary in order to return the corresponding predic‐
tion.

The ability to version control every part of the pipeline.
This enables us to support backward compatibility after making
updates to the code base. Versioning also refers to the ability to
recall and support previous iterations of models during a proj‐
ect’s lifecycle.

The ability to automatically choose the best algorithm for each model.
During hyperparameter tuning, implementations from different
machine learning libraries are used in various combinations
and the results evaluated.

The ability to rapidly incorporate new NLP features
Standardizing the developer-facing components. This provides
an insulation layer that makes it unnecessary for our feature
engineers and data scientists to learn how to interact with a new
tool.

130 | Chapter 15: Training and Serving NLP Models Using Spark

The ability to deploy in any environment.
We are currently using Docker containers on EC2 instances, but
our architecture means that we can also take advantage of the
burst capabilities that services such as Amazon Lambda provide.

A single save and load framework
Based on generic InputStreams & OutputStreams, which frees
us from the requirement of reading and writing to and from
disk.

A logging abstraction in the form of slf4j
Insulates us from being tied to any particular framework.

Faster, Flexible Performant Systems
NLP differs from other forms of machine learning because it oper‐
ates directly on human-generated data. This is often messier than
machine-generated data, since language is inherently ambiguous,
which results in highly variable interpretability—even among
humans. Our goal is to automate as much of the NLP pipeline as
possible so that resources are used more efficiently: machines help
humans help machines help humans. To accomplish this across lan‐
guage barriers, we’re using tools such as Spark to build performant
systems that are faster and more flexible than ever before.

Michelle Casbon
Michelle Casbon was a senior data science engineer at Idibon,
where she is contributing to the goal of bringing language technolo‐
gies to all the world’s languages. Her development experience spans
a decade across various industries, including media, investment
banking, healthcare, retail, and geospatial services. Michelle com‐
pleted a master’s at the University of Cambridge, focusing on NLP,
speech recognition, speech synthesis, and machine translation. She
loves working with open source technologies and has had a blast
contributing to the Apache Spark project.

Faster, Flexible Performant Systems | 131

https://www.techopedia.com/definition/26438/cloud-burst
https://aws.amazon.com/lambda/
https://www.linkedin.com/in/michellecasbon

CHAPTER 16

Capturing Semantic Meanings
Using Deep Learning

Lior Shkiller

Word embedding is a technique that treats words as vectors whose
relative similarities correlate with semantic similarity. This techni‐
que is one of the most successful applications of unsupervised learn‐
ing. Natural language processing (NLP) systems traditionally encode
words as strings, which are arbitrary and provide no useful informa‐
tion to the system regarding the relationships that may exist
between different words. Word embedding is an alternative techni‐
que in NLP, whereby words or phrases from the vocabulary are
mapped to vectors of real numbers in a low-dimensional space rela‐
tive to the vocabulary size, and the similarities between the vectors
correlate with the words’ semantic similarity.

For example, let’s take the words woman, man, queen, and king. We
can get their vector representations and use basic algebraic opera‐
tions to find semantic similarities. Measuring similarity between
vectors is possible using measures such as cosine similarity. So,
when we subtract the vector of the word man from the vector of the
word woman, then its cosine distance would be close to the distance
between the word queen minus the word king (see Figure 16-1):

W("woman")−W("man") ≃ W("queen")−W("king")

133

http://bit.ly/2jxsJdW

Figure 16-1. Gender vectors (image courtesy of Lior Shkiller)

Many different types of models were proposed for representing
words as continuous vectors, including latent semantic analysis
(LSA) and latent Dirichlet allocation (LDA). The idea behind those
methods is that words that are related will often appear in the same
documents. For instance, backpack, school, notebook, and teacher are
probably likely to appear together. But school, tiger, apple, and bas‐
ketball would probably not appear together consistently. To repre‐
sent words as vectors—using the assumption that similar words will
occur in similar documents—LSA creates a matrix whereby the rows
represent unique words and the columns represent each paragraph.
Then, LSA applies singular value decomposition (SVD), which is
used to reduce the number of rows while preserving the similarity
structure among columns. The problem is that those models
become computationally very expensive on large data.

Instead of computing and storing large amounts of data, we can try
to create a neural network model that will be able to learn the rela‐
tionship between the words and do it efficiently.

134 | Chapter 16: Capturing Semantic Meanings Using Deep Learning

https://en.wikipedia.org/wiki/Latent_semantic_analysis
https://en.wikipedia.org/wiki/Latent_semantic_analysis
http://bit.ly/2jxBq8h
http://bit.ly/2jxxvZ5

Word2Vec
The most popular word embedding model is word2vec, created by
Mikolov et al. in 2013. The model showed great results and
improvements in efficiency. Mikolov et al. presented the negative-
sampling approach as a more efficient way of deriving word embed‐
dings. You can read more about it in Goldberg and Levy’s “word2vec
Explained”.

The model can use either of two architectures to produce a dis‐
tributed representation of words: continuous bag-of-words
(CBOW) or continuous skip-gram.

We’ll look at both of these architectures next.

The CBOW Model
In the CBOW architecture, the model predicts the current word
from a window of surrounding context words. Mikolov et al. thus
use both the n words before and after the target word w to predict it.

A sequence of words is equivalent to a set of items. Therefore, it is
also possible to replace the terms word and item, which allows for
applying the same method for collaborative filtering and recom‐
mender systems. CBOW is several times faster to train than the
skip-gram model and has slightly better accuracy for the words that
appear frequently (see Figure 16-2).

Word2Vec | 135

https://arxiv.org/pdf/1301.3781.pdf
https://arxiv.org/pdf/1301.3781.pdf
https://arxiv.org/pdf/1402.3722v1.pdf
https://arxiv.org/pdf/1402.3722v1.pdf
http://bit.ly/2jxwQaa
http://bit.ly/2jxwQaa
http://bit.ly/2jxFkOz
http://arxiv.org/abs/1603.04259
http://bit.ly/2jxAyAz
http://bit.ly/2jxAyAz

Figure 16-2. Predicting the word given its context (image courtesy of
Lior Shkiller)

The Continuous Skip-Gram Model
In the skip-gram model, instead of using the surrounding words to
predict the center word, it uses the center word to predict the sur‐
rounding words (see Figure 16-3). According to Mikolov et al. skip-
gram works well with a small amount of the training data and does a
good job of representing even rare words and phrases.

136 | Chapter 16: Capturing Semantic Meanings Using Deep Learning

Figure 16-3. Predicting the context given a word (image courtesy of
Lior Shkiller)

Coding an Example
(You can find the code for the following example at this GitHub
repo.)

The great thing about this model is that it works well for many lan‐
guages.

All we have to do is download a big data set for the language that we
need.

Looking to Wikipedia for a Big Data Set
We can look to Wikipedia for any given language. To obtain a big
data set, follow these steps:

1. Find the ISO 639 code for your desired language
2. Go to the Wikimedia Downloads page] and find the latest com‐

plete dump.
3. From the latest dump, download wiki-latest-pages-

articles.xml.bz2

Coding an Example | 137

http://bit.ly/2jxAKQj
http://bit.ly/2jxAKQj
http://bit.ly/ISO639-1
https://dumps.wikimedia.org/backup-index.html

Next, to make things easy, we will install gensim, a Python package
that implements word2vec:

pip install --upgrade gensim

We need to create the corpus from Wikipedia, which we will use to
train the word2vec model. The output of the following code is
“wiki..text”—which contains all the words of all the articles in Wiki‐
pedia, segregated by language:

from gensim.corpora import WikiCorpus

language_code = "he"
inp = language_code+"wiki-latest-pages-articles.xml.bz2"
outp = "wiki.{}.text".format(language_code)
i = 0

print("Starting to create wiki corpus")
output = open(outp, 'w')
space = " "
wiki = WikiCorpus(inp, lemmatize=False, dictionary={})
for text in wiki.get_texts():
 article = space.join([t.decode("utf-8") for t in text])

 output.write(article + "\n")
 i = i + 1
 if (i % 1000 == 0):
 print("Saved " + str(i) + " articles")

output.close()
print("Finished - Saved " + str(i) + " articles")

Training the Model
The parameters are as follows:

size
The dimensionality of the vectors—bigger size values require
more training data but can lead to more accurate models.

window
The maximum distance between the current and predicted
word within a sentence.

min_count
Ignore all words with total frequency lower than this.

import multiprocessing
from gensim.models import Word2Vec

138 | Chapter 16: Capturing Semantic Meanings Using Deep Learning

http://bit.ly/2jxHPAv

from gensim.models.word2vec import LineSentence

language_code = "he"
inp = "wiki.{}.text".format(language_code)
out_model = "wiki.{}.word2vec.model".format(language_code)
size = 100
window = 5
min_count = 5

start = time.time()

model = Word2Vec(LineSentence(inp), sg = 0, # 0=CBOW , 1=
SkipGram
 size=size, window=window, min_count=min_count,
 workers=multiprocessing.cpu_count())

trim unneeded model memory = use (much) less RAM
model.init_sims(replace=True)

print(time.time()-start)

model.save(out_model)

Training word2vec took 18 minutes.

fastText
Facebook’s Artificial Intelligence Research (FAIR) lab recently
released fastText, a library that is based on the work reported in the
paper “Enriching Word Vectors with Subword Information,” by
Bojanowski et al. fastText is different from word2vec in that each
word is represented as a bag-of-character n-grams. A vector repre‐
sentation is associated with each character n-gram, and words are
represented as the sum of these representations.

Using Facebook’s new library is easy:

pip install fasttext

The first thing to do is train the model:

start = time.time()

language_code = "he"
inp = "wiki.{}.text".format(language_code)
output = "wiki.{}.fasttext.model".format(language_code)
model = fasttext.cbow(inp,output)

print(time.time()-start)

fastText | 139

https://research.facebook.com/ai
http://bit.ly/2jxDn4B
https://arxiv.org/pdf/1607.04606v1.pdf

Training fastText’s model took 13 minutes.

Evaluating Embeddings: Analogies
Next, let’s evaluate the models by testing them on our previous
example:

W("woman") ≃ W("man")+ W("queen")− W("king")

The following code first computes the weighted average of the posi‐
tive and negative words.

After that, it calculates the dot product between the vector represen‐
tation of all the test words and the weighted average.

In our case, the test words are the entire vocabulary. At the end, we
print the word that had the highest cosine similarity with the weigh‐
ted average of the positive and negative words:

import numpy as np
from gensim.matutils import unitvec

def test(model,positive,negative,test_words):

 mean = []
 for pos_word in positive:
 mean.append(1.0 * np.array(model[pos_word]))

 for neg_word in negative:
 mean.append(-1.0 * np.array(model[neg_word]))

 # compute the weighted average of all words
 mean = unitvec(np.array(mean).mean(axis=0))

 scores = {}
 for word in test_words:

 if word not in positive + negative:

 test_word = unitvec(np.array(model[word]))

 # Cosine Similarity
 scores[word] = np.dot(test_word, mean)

 print(sorted(scores, key=scores.get, reverse=True)[:1])

Next, we want to test our original example on fastText and gensim’s
word2vec:

140 | Chapter 16: Capturing Semantic Meanings Using Deep Learning

positive_words = ["queen","man"]

negative_words = ["king"]

Test Word2vec
print("Testing Word2vec")
model = word2vec.getModel()
test(model,positive_words,negative_words,model.vocab)

Test Fasttext
print("Testing Fasttext")
model = fasttxt.getModel()
test(model,positive_words,negative_words,model.words)

Results
Testing Word2vec
 ['woman']
Testing Fasttext
 ['woman'']

These results mean that the process works both on fastText and gen‐
sim’s word2vec!

W("woman") ≃ W("man")+ W("queen")− W("king")

And as you can see, the vectors actually capture the semantic rela‐
tionship between the words.

The ideas presented by the models that we described can be used for
many different applications, allowing businesses to predict the next
applications they will need, perform sentiment analysis, represent
biological sequences, perform semantic image searches, and more.

Lior Shkiller
Lior Shkiller is the cofounder of Deep Solutions. He is a machine
learning practitioner and is passionate about AI and cognitive sci‐
ence. He has a degree in computer science and psychology from Tel
Aviv University and has more than 10 years of experience in soft‐
ware development.

Deep Solutions delivers end-to-end software solutions based on
deep learning innovative algorithms for computer vision, natural
language processing, anomaly detection, recommendation systems,
and more.

Results | 141

http://bit.ly/2jxICRK
http://bit.ly/2jxICRK
http://stanford.io/2jxFSUyv
http://bit.ly/2jxHMVh
http://bit.ly/2jxHMVh
http://bit.ly/2jxEOjC
http://www.deep-solutions.net

PART V

Use Cases

This section analyzes two of the leading-edge use cases for artificial
intelligence: chat—should we say “discussion”?—bots and autono‐
mous vehicles. First, Jon Bruner summarizes the development and
current state of the bot ecosystem—and offers insight into what’s
coming over the horizon. Shaoshan Liu then takes us deep into the
current sensing, computing, and computation architecture for
autonomous vehicles.

CHAPTER 17

Bot Thots

Jon Bruner

Bots have become hot, fast. Their rise—fueled by advances in artifi‐
cial intelligence, consumer comfort with chat interfaces, and a stag‐
nating mobile app ecosystem—has been a bright spot in an
otherwise darkening venture-capital environment.

I’ve been speaking with a lot of bot creators and have noticed that a
handful of questions appear frequently. On closer inspection, bots
seem a little less radical and a lot more feasible.

Text Isn’t the Final Form
The first generation of bots has been text most of the way down.
That’s led to some skepticism: you mean I’ll have to choose between
10 hotels by reading down a list in Facebook Messenger? But bot
thinkers are already moving toward a more nuanced model in which
different parts of a transaction are handled in text and in graphical
interfaces.

Conversational interfaces can be good for discovering intent: a bot
that can offer any coherent response to “find a cool hotel near Goo‐
gle’s HQ” will be valuable, saving its users one search to find the
location of Google’s headquarters, another search for hotels nearby,
and some amount of filtering to find hotels that are “cool.”

But, conversational interfaces are bad at presenting dense informa‐
tion in ways that are easy for human users to sort through. Suppose
that hotel bot turns up a list of finalists and asks you to choose: that’s

145

http://oreil.ly/2jxFbuw
http://oreil.ly/2jxFbuw
http://bit.ly/2jxH5et

handled much more effectively in a more traditional-looking web
interface, where information can be conveyed richly.

Conversational interfaces are also bad at replacing most kinds of
web forms, like the pizza-ordering bot that has ironically become an
icon of the field. Better to discern intent (“I want a pizza fast”) and
then kick the user to a traditional web form, perhaps one that’s
already pre-filled with some information gleaned from the conversa‐
tional process.

A few people have pointed out that one of WeChat’s killer features is
that every business has its phone number listed on its profile; once a
transaction becomes too complex for messaging, the customer falls
back on a phone call. In the US, that fallback is likely to be a GUI, to
which you’ll be bounced if your transaction gets to a point where
messaging isn’t the best medium.

Discovery Hasn’t Been Solved Yet
Part of the reason we’re excited about bots is that the app economy
has stagnated: “the 20 most successful developers grab nearly half of
all revenues on Apple’s app store,” notes the Economist. It’s hard for
users to discover new apps from among the millions that already
exist, and the app-installation process involves considerable friction.
So, the reasoning goes, bots will be great because they offer a way to
skip the stagnant app stores and offer a smoother “installation” pro‐
cess that’s as simple as messaging a new contact.

Of course, now we’ve got new app stores like Slack’s App Directory.
Users are still likely to discover new bots the way they discover apps:
by word of mouth, or by searching for a bot associated with a big
brand.

The next step, then, would be to promote bots in response to expres‐
sions of intention: in its most intrusive implementation, you’d ask
your coworkers on Slack if they want to get lunch, and Slack would
suggest that you install the GrubHub bot. Welcome back Clippy,
now able to draw from the entire internet in order to annoy you.

That particular example is universally condemned, and anything
that annoying would drive away its users immediately, but the com‐
munity is looking for ways to listen for clear statements of intent
and integrate bot discovery somehow, in a way that’s valuable for
users and not too intrusive.

146 | Chapter 17: Bot Thots

http://bit.ly/2jxF1TP
http://econ.st/2jxF81H
https://botness.slack.com/apps
http://bit.ly/2jxGysU

Platforms, Services, Commercial Incentives,
and Transparency
Conversational platforms will have insight into what users might
want at a particular moment, and they’ll be tempted to monetize
these very valuable intent hooks. Monetization here will take place
in a very different environment from the web-advertising environ‐
ment we’re used to.

Compared to a chat bot’s output, a Google results page is an explo‐
sion of information—10 organic search results with titles and
descriptions, a bunch of ads flagged as such, and prompts to modify
the search by looking for images, news articles, and so on.

A search conducted through a bot is likely to return a “black box”
experience: far fewer results, with less information about each.
That’s especially true of voice bots—and especially, especially true of
voice bots without visual interfaces, like Amazon’s Alexa.

In this much slower and more constrained search environment,
users are more likely to accept the bot’s top recommendation rather
than to dig through extended results (indeed, this is a feature of
many bots), and there’s less room to disclose an advertising relation‐
ship.

Amazon is also an interesting example in that it’s both a bot plat‐
form and a service provider. And it has reserved the best namespace
for itself; if Amazon decides to offer a ridesharing service (doubtless
after noticing that ridesharing is a popular application through
Alexa), it will be summoned up by saying “Alexa, call a car.” Uber
will be stuck with “Alexa, tell Uber to call a car.”

Compared to other areas, like web search, the messaging-platform
ecosystem is remarkably fragmented and competitive. That probably
won’t last long, though, as messaging becomes a bigger part of com‐
munication and personal networks tend to pull users onto consoli‐
dated platforms.

Platforms, Services, Commercial Incentives, and Transparency | 147

How Important Is Flawless Natural Language
Processing?
Discovery of functionality within bots is the other big discovery
challenge, and one that’s also being addressed by interfaces that
blend conversational and graphical approaches.

Completely natural language was a dead end in search engines—just
ask Jeeves. It turned out that, presented with a service that provided
enough value, ordinary users were willing to adapt their language.
We switch between different grammars and styles all the time,
whether we’re communicating with a computer or with other peo‐
ple. “Would you like to grab lunch?” in speech flows seamlessly into
“best burrito downtown sf cheap” in a search bar to “getting lunch w
pete, brb” in an IM exchange.

The first killer bot may not need sophisticated NLP in order to take
off, but it still faces the challenge of educating its users about its
input affordances. A blank input box and blinking cursor are hard
to overcome in an era of short attention spans.

Siri used a little bit of humor, combined with a massive community
of obsessed Apple fans bent on discovering all of its quirks, to publi‐
cize its abilities. Most bots don’t have the latter, and the former is
difficult to execute without Apple’s resources. Even with the advan‐
tages of size and visibility, Apple still hasn’t managed to get the bulk
of its users to move beyond Siri’s simplest tasks, like setting alarms.

Developers should give a great deal of thought to why alarm-setting
is such a compelling use case for Siri: saying “set an alarm for 7:30”
slices through several layers of menus and dialogues, and it’s a natu‐
ral phrase that’s easily parsed into input data for the alarm app. Con‐
trast that with the pizza-ordering use case, where you’re prompted
for the type of pizza you want, prompted again for your address,
prompted again for your phone number, etc.—far more separate
prompts than you’d encounter in an ordinary pizza-ordering web
form.

Another challenge: overcoming early features that didn’t work well.
We’ve all gotten used to web software that starts out buggy and
improves over time. But we tend not to notice constant improve‐
ment in the same way on bots’ sparse interfaces, and we’re unwilling

148 | Chapter 17: Bot Thots

to return to tasks that have failed before—especially if, as bots tend
to do, they failed after a long and frustrating exchange.

What Should We Call Them?
There’s not much confusion: people working on bots generally call
them bots. The field is young, though, and I wonder if the name will
stick. Bots usually have negative connotations: spambots, Twitter
bots, “are you a bot?”, and botnets, to name a few.

“Agent” might be a better option: an agent represents you, whereas
we tend to think of a bot as representing some sinister other. Plus,
secret agents and Hollywood agents are cool.

Jon Bruner
Jon Bruner oversees O’Reilly’s publications on hardware, the Inter‐
net of Things, manufacturing, and electronics. He has been pro‐
gram chair along with Joi Ito of the O’Reilly Solid conference,
focused on the intersection between software and the physical
world.

Before coming to O’Reilly, he was data editor at Forbes, where he
combined writing and programming to approach a broad variety of
subjects, from the operation of the Columbia River’s dams to
migration within the United States. He studied mathematics and
economics at the University of Chicago and lives in San Francisco,
where he can occasionally be found at the console of a pipe organ.

What Should We Call Them? | 149

CHAPTER 18

Infographic: The Bot
Platforms Ecosystem

Jon Bruner

Behind the recent bot boom are big improvements in artificial intel‐
ligence and the rise of ubiquitous messaging services. In
Figure 18-1, I’ve listed some of the most important AI, messaging,
and bot deployment platforms, and have also highlighted the emer‐
gence of a few interesting stacks: Microsoft, Amazon, Google, and
Apple each control a general AI agent as well as at least one entry
elsewhere in the stack—and Facebook may not be far behind with its
M agent.

151

Figure 18-1. The bot platform ecosystem (full-size version at
oreilly.com)

152 | Chapter 18: Infographic: The Bot Platforms Ecosystem

http://oreil.ly/2jw44FT

Jon Bruner
Jon Bruner oversees O’Reilly’s publications on hardware, the Inter‐
net of Things, manufacturing, and electronics, and has been pro‐
gram chair along with Joi Ito of the O’Reilly Solid conference,
focused on the intersection between software and the physical
world.

Before coming to O’Reilly, he was data editor at Forbes Magazine,
where he combined writing and programming to approach a broad
variety of subjects, from the operation of the Columbia River’s
dams to migration within the United States. He studied mathemat‐
ics and economics at the University of Chicago and lives in San
Francisco, where he can occasionally be found at the console of a
pipe organ.

Infographic: The Bot Platforms Ecosystem | 153

CHAPTER 19

Creating Autonomous
Vehicle Systems

Shaoshan Liu

We are at the beginning of the future of autonomous driving. What
is the landscape and how will it unfold? Let’s consult history to help
us predict.

Information technology took off in the 1960s, when Fairchild Semi‐
conductors and Intel laid the foundation by producing silicon
microprocessors (hence Silicon Valley). Microprocessor technolo‐
gies greatly improved industrial productivity; the general public had
limited access to it. In the 1980s, with the Xerox Alto, Apple Lisa,
and later Microsoft Windows, using the graphical user interface
(GUI), the second layer was laid, and the vision of having a “per‐
sonal” computer became a possibility.

With virtually everyone having access to computing power in the
2000s, Google laid the third layer, connecting people—indirectly,
with information.

Beginning with Facebook in 2004, social networking sites laid the
fourth layer of information technology by allowing people to
directly connect with one another, effectively moving human society
to the World Wide Web.

As the population of internet-savvy people reached a significant
scale, the emergence of Airbnb in 2008, followed by Uber in 2009,
and others, laid the fifth layer by providing direct internet com‐
merce services.

155

Each new layer of information technology, with its added refine‐
ments, improved popular access and demand (Figure 19-1). Note
that for most internet commerce sites, where they provide access to
service providers through the internet, it is humans who are provid‐
ing the services.

Figure 19-1. The history of information technologies (image courtesy of
Shaoshan Liu)

Now we are adding the sixth layer, where robots, rather than
humans, provide services.

One example of this is the advent of autonomous vehicles (AVs).
Autonomous driving technologies enable self-driving cars to take
you to your destination without the involvement of a human driver.
It’s not one technology, but an integration of many.

In this post, we’ll explore the technologies involved in autonomous
driving and discuss how to integrate these technologies into a safe,
effective, and efficient autonomous driving system.

An Introduction to Autonomous Driving
Technologies
Autonomous driving technology is a complex system (as seen in
Figure 19-2), consisting of three major subsystems: algorithms,
including sensing, perception, and decision; client, including the

156 | Chapter 19: Creating Autonomous Vehicle Systems

robotics operating system and hardware platform; and the cloud
platform, including data storage, simulation, high-definition (HD)
mapping, and deep learning model training.

Figure 19-2. Autonomous driving system architecture overview (image
courtesy of Shaoshan Liu)

The algorithm subsystem extracts meaningful information from
sensor raw data to understand its environment and make decisions
about its actions. The client subsystem integrates these algorithms to
meet real-time and reliability requirements. (For example, if the sen‐
sor camera generates data at 60 Hz, the client subsystem needs to
make sure that the longest stage of the processing pipeline takes less
than 16 ms to complete.) The cloud platform provides offline com‐
puting and storage capabilities for autonomous cars. Using the
cloud platform, we are able to test new algorithms and update the
HD map—plus train better recognition, tracking, and decision
models.

Autonomous Driving Algorithms
The algorithms component consists of sensing and extracting mean‐
ingful information from sensor raw data; perception, to localize the
vehicle and understand the current environment; and decision, to
take actions to reliably and safely reach destinations.

Sensing
Normally, an autonomous vehicle consists of several major sensors.
Since each type of sensor presents advantages and drawbacks, the
data from multiple sensors must be combined. The sensor types can
include the following:

Autonomous Driving Algorithms | 157

GPS/IMU
The GPS/IMU system helps the AV localize itself by reporting
both inertial updates and a global position estimate at a high
rate, for example, 200 Hz. While GPS is a fairly accurate locali‐
zation sensor, at only 10 Hz, its update rate is too slow to pro‐
vide real-time updates. Now, though an IMU’s accuracy
degrades with time, and thus cannot be relied upon to provide
accurate position updates over long periods, it can provide
updates more frequently—at, or higher than, 200 Hz. This
should satisfy the real-time requirement. By combining GPS
and IMU, we can provide accurate and real-time updates for
vehicle localization.

LIDAR
LIDAR is used for mapping, localization, and obstacle avoid‐
ance. It works by bouncing a beam off surfaces and measuring
the reflection time to determine distance. Due to its high accu‐
racy, it is used as the main sensor in most AV implementations.
LIDAR can be used to produce HD maps, to localize a moving
vehicle against HD maps, detect obstacle ahead, etc. Normally, a
LIDAR unit, such as Velodyne 64-beam laser, rotates at 10 Hz
and takes about 1.3 million readings per second.

Cameras
Cameras are mostly used for object recognition and object
tracking tasks, such as lane detection, traffic light detection, and
pedestrian detection. To enhance AV safety, existing implemen‐
tations usually mount eight or more cameras around the car,
such that we can use cameras to detect, recognize, and track
objects in front, behind, and on both sides of the vehicle. These
cameras usually run at 60 Hz, and, when combined, generate
around 1.8 GB of raw data per second.

Radar and sonar
The radar and sonar system is used for the last line of defense in
obstacle avoidance. The data generated by radar and sonar
shows the distance from the nearest object in front of the vehi‐
cle’s path. When we detect that an object is not far ahead and
that there may be danger of a collision, the AV should apply the
brakes or turn to avoid the obstacle. Therefore, the data gener‐
ated by radar and sonar does not require much processing and
is usually fed directly to the control processor—not through the
main computation pipeline—to implement such urgent func‐

158 | Chapter 19: Creating Autonomous Vehicle Systems

tions as swerving, applying the brakes, or pre-tensioning the
seatbelts.

Perception
Next, we feed the sensor data to the perception subsystem to under‐
stand the vehicle’s environment. The three main tasks in autono‐
mous driving perception are localization, object detection, and
object tracking.

Localization
While GPS/IMU can be used for localization, GPS provides fairly
accurate localization results but with a slow update rate; IMU pro‐
vides a fast update with less accurate results. We can use Kalman fil‐
tering to combine the advantages of the two and provide accurate
and real-time position updates. As shown in Figure 19-3, the IMU
propagates the vehicle’s position every 5 ms, but the error accumu‐
lates as time progresses. Fortunately, every 100 ms we get a GPS
update, which helps us correct the IMU error. By running this prop‐
agation and update model, we can use GPS/IMU to generate fast
and accurate localization results.

Nonetheless, we cannot solely rely on this combination for localiza‐
tion for three reasons:

1. It has an accuracy of only about one meter.
2. The GPS signal has multipath problems, meaning that the signal

may bounce off buildings and introduce more noise.
3. GPS requires an unobstructed view of the sky and thus does not

work in closed environments such as tunnels.

Figure 19-3. GPS/IMU localization (image courtesy of Shaoshan Liu)

Autonomous Driving Algorithms | 159

Cameras can be used for localization, too. Vision-based localization
undergoes the following simplified pipeline:

1. By triangulating stereo image pairs, we first obtain a disparity
map that can be used to derive depth information for each
point.

2. By matching salient features between successive stereo image
frames in order to establish correlations between feature points
in different frames, we could then estimate the motion between
the past two frames.

3. We compare the salient features against those in the known map
to derive the current position of the vehicle. However, since a
vision-based localization approach is very sensitive to lighting
conditions, this approach alone would not be reliable.

Figure 19-4. Stereo visual odometry (image courtesy of Shaoshan Liu)

Therefore, LIDAR is usually the main sensor used for localization,
relying heavily on a particle filter. The point clouds generated by
LIDAR provide a “shape description” of the environment, but it is
hard to differentiate individual points. By using a particle filter, the
system compares a specific observed shape against the known map
to reduce uncertainty.

To localize a moving vehicle relative to these maps, we apply a parti‐
cle filter method to correlate the LIDAR measurements with the
map. The particle filter method has been demonstrated to achieve
real-time localization with 10-centimeter accuracy and is effective in

160 | Chapter 19: Creating Autonomous Vehicle Systems

urban environments. However, LIDAR has its own problem: when
there are many suspended particles in the air, such as raindrops or
dust, the measurements may be extremely noisy.

Therefore, to achieve reliable and accurate localization, we need a
sensor-fusion process to combine the advantages of all sensors, as
shown in Figure 19-5.

Figure 19-5. Sensor-fusion localization pipeline (image courtesy of
Shaoshan Liu)

Object recognition and tracking
Since LIDAR provides accurate depth information, it was originally
used to perform object detection and tracking tasks in AVs. In
recent years, however, we have seen the rapid development of deep
learning technology, which achieves significant object detection and
tracking accuracy.

A convolution neural network (CNN) is a type of deep neural net‐
work that is widely used in object recognition tasks. A general CNN
evaluation pipeline usually consists of the following layers:

1. The convolution layer uses different filters to extract different
features from the input image. Each filter contains a set of

Autonomous Driving Algorithms | 161

“learnable” parameters that will be derived after the training
stage.

2. The activation layer decides whether to activate the target neu‐
ron or not.

3. The pooling layer reduces the spatial size of the representation
to reduce the number of parameters and consequently the com‐
putation in the network.

4. The fully connected layer connects all neurons to all activations
in the previous layer.

Once an object is identified using a CNN, next comes the automatic
estimation of the trajectory of that object as it moves—or, object
tracking.

Object tracking technology can be used to track nearby moving
vehicles, as well as people crossing the road, to ensure the current
vehicle does not collide with moving objects. In recent years, deep
learning techniques have demonstrated advantages in object track‐
ing compared to conventional computer vision techniques. By using
auxiliary natural images, a stacked autoencoder can be trained off‐
line to learn generic image features that are more robust against var‐
iations in viewpoints and vehicle positions. Then, the offline-trained
model can be applied for online tracking.

Decision
In the decision stage, action prediction, path planning, and obstacle
avoidance mechanisms are combined to generate an effective action
plan in real time.

Action prediction
One of the main challenges for human drivers when navigating
through traffic is to cope with the possible actions of other drivers,
which directly influence their own driving strategy. This is especially
true when there are multiple lanes on the road or at a traffic change
point. To make sure that the AV travels safely in these environments,
the decision unit generates predictions of nearby vehicles then
decides on an action plan based on these predictions.

To predict actions of other vehicles, one can generate a stochastic
model of the reachable position sets of the other traffic participants,
and associate these reachable sets with probability distributions.

162 | Chapter 19: Creating Autonomous Vehicle Systems

Path planning
Planning the path of an autonomous, responsive vehicle in a
dynamic environment is a complex problem, especially when the
vehicle is required to use its full maneuvering capabilities. One
approach would be to use deterministic, complete algorithms—
search all possible paths and utilize a cost function to identify the
best path. However, this requires enormous computational resour‐
ces and may be unable to deliver real-time navigation plans. To cir‐
cumvent this computational complexity and provide effective real-
time path planning, probabilistic planners have been utilized.

Obstacle avoidance
Since safety is of paramount concern in autonomous driving, we
should employ at least two levels of obstacle avoidance mechanisms
to ensure that the vehicle will not collide with obstacles. The first
level is proactive and based on traffic predictions. The traffic predic‐
tion mechanism generates measures like time-to-collision or
predicted-minimum-distance. Based on these measures, the obstacle
avoidance mechanism is triggered to perform local-path re-
planning. If the proactive mechanism fails, the second-level reactive
mechanism, using radar data, takes over. Once radar detects an
obstacle ahead of the path, it overrides the current controls to avoid
the obstacle.

The Client System
The client system integrates the above-mentioned algorithms
together to meet real-time and reliability requirements. There are
three challenges to overcome:

1. The system needs to make sure that the processing pipeline is
fast enough to consume the enormous amount of sensor data
generated.

2. If a part of the system fails, it needs to be robust enough to
recover from the failure.

3. The system needs to perform all the computations under energy
and resource constraints.

The Client System | 163

Robotics Operating System
A robotics operating system (ROS) is a widely used, powerful dis‐
tributed computing framework tailored for robotics applications
(see Figure 19-6).

Each robotic task, such as localization, is hosted in an ROS node.
These nodes communicate with each other through topics and serv‐
ices. It is a suitable operating system for autonomous driving, except
that it suffers from a few problems:

Reliability
ROS has a single master and no monitor to recover failed nodes.

Performance
When sending out broadcast messages, it duplicates the mes‐
sage multiple times, leading to performance degradation.

Security
It has no authentication and encryption mechanisms.

Although ROS 2.0 promised to fix these problems, it has not been
extensively tested, and many features are not yet available.

Therefore, in order to use ROS in autonomous driving, we need to
solve these problems first.

Figure 19-6. A robotics operating system (ROS) (image courtesy of
Shaoshan Liu)

164 | Chapter 19: Creating Autonomous Vehicle Systems

Reliability
The current ROS implementation has only one master node, so
when the master node crashes, the whole system crashes. This does
not meet the safety requirements for autonomous driving. To fix this
problem, we implement a ZooKeeper-like mechanism in ROS. As
shown in Figure 19-7, the design incorporates a main master node
and a backup master node. In the case of main node failure, the
backup node would take over, making sure the system continues to
run without hiccups. In addition, the ZooKeeper mechanism moni‐
tors and restarts any failed nodes, making sure the whole ROS sys‐
tem stays reliable.

Figure 19-7. ZooKeeper for ROS (image courtesy of Shaoshan Liu)

Performance
Performance is another problem with the current ROS implementa‐
tion—the ROS nodes communicate often, as it’s imperative that
communication between nodes is efficient. First, communication
goes through the loop-back mechanism when local nodes commu‐
nicate with each other. Each time it goes through the loopback pipe‐
line, a 20-microsecond overhead is introduced. To eliminate this
local node communication overhead, we can use a shared memory
mechanism such that the message does not have to go through the

The Client System | 165

TCP/IP stack to get to the destination node. Second, when an ROS
node broadcasts a message, the message gets copied multiple times,
consuming significant bandwidth in the system. Switching to a
multicast mechanism greatly improves the throughput of the sys‐
tem.

Security
Security is the most critical concern for an ROS. Imagine two sce‐
narios: in the first, an ROS node is kidnapped and is made to con‐
tinuously allocate memory until the system runs out of memory and
starts killing other ROS nodes and the hacker successfully crashes
the system. In the second scenario—since, by default, ROS messages
are not encrypted—a hacker can easily eavesdrop on the message
between nodes and apply man-in-the-middle attacks.

To fix the first security problem, we can use Linux containers (LXC)
to restrict the number of resources used by each node and also pro‐
vide a sandbox mechanism to protect the nodes from each other,
effectively preventing resource leaking. To fix the second problem,
we can encrypt messages in communication, preventing messages
from being eavesdropped.

Hardware Platform
To understand the challenges in designing a hardware platform for
autonomous driving, let us examine the computing platform imple‐
mentation from a leading autonomous driving company. It consists
of two compute boxes, each equipped with an Intel Xeon E5 pro‐
cessor and four to eight Nvidia Tesla K80 GPU accelerators. The sec‐
ond compute box performs exactly the same tasks and is used for
reliability—if the first box fails, the second box can immediately take
over.

In the worst case, if both boxes run at their peak, using more than
5,000 W of power, an enormous amount of heat would be generated.
Each box costs $20k to $30k, making this solution unaffordable for
average consumers.

The power, heat dissipation, and cost requirements of this design
prevent autonomous driving from reaching the general public (so
far). To explore the edges of the envelope and understand how well
an autonomous driving system could perform on an ARM mobile
SoC, we can implement a simplified, vision-based autonomous driv‐

166 | Chapter 19: Creating Autonomous Vehicle Systems

ing system on an ARM-based mobile SoC with peak power con‐
sumption of 15 W.

Surprisingly, the performance is not bad at all: the localization pipe‐
line is able to process 25 images per second, almost keeping up with
image generation at 30 images per second. The deep learning pipe‐
line is able to perform two to three object recognition tasks per sec‐
ond. The planning and control pipeline is able to plan a path within
6 ms. With this system, we are able to drive the vehicle at around
five miles per hour without any loss of localization.

Cloud Platform
Autonomous vehicles are mobile systems and therefore need a cloud
platform to provide supports. The two main functions provided by
the cloud include distributed computing and distributed storage.
This system has several applications, including simulation, which is
used to verify new algorithms, high-definition (HD) map produc‐
tion, and deep learning model training. To build such a platform, we
use Spark for distributed computing, OpenCL for heterogeneous
computing, and Alluxio for in-memory storage.

We can deliver a reliable, low-latency, and high-throughput autono‐
mous driving cloud by integrating these three.

Simulation
The first application of a cloud platform system is simulation.
Whenever we develop a new algorithm, we need to test it thor‐
oughly before we can deploy it on real cars (where the cost would be
enormous and the turn-around time too long).

Therefore, we can test the system on simulators, such as replaying
data through ROS nodes. However, if we were to test the new algo‐
rithm on a single machine, either it would take too long or we
wouldn’t have enough test coverage.

To solve this problem, we can use a distributed simulation platform,
as shown in Figure 19-8.

Here, Spark is used to manage distributed computing nodes, and on
each node, we can run an ROS replay instance. In one autonomous
driving object recognition test set, it took three hours to run on a

Cloud Platform | 167

single server; by using the distributed system, scaled to eight
machines, the test finished in 25 minutes.

Figure 19-8. Spark and ROS-based simulation platform (image cour‐
tesy of Shaoshan Liu)

HD Map Production
As shown in Figure 19-9, HD map production is a complex process
that involves many stages, including raw data processing, point
cloud production, point cloud alignment, 2D reflectance map gener‐
ation, and HD map labeling, as well as the final map generation.

Using Spark, we can connect all these stages together in one Spark
job. A great advantage is that Spark provides an in-memory com‐
puting mechanism, such that we do not have to store the intermedi‐
ate data in hard disk, thus greatly reducing the performance of the
map production process.

168 | Chapter 19: Creating Autonomous Vehicle Systems

Figure 19-9. Cloud-based HD map production (image courtesy of
Shaoshan Liu)

Deep Learning Model Training
As we use different deep learning models in autonomous driving, it
is imperative to provide updates that will continuously improve the
effectiveness and efficiency of these models. However, since the
amount of raw data generated is enormous, we would not be able to
achieve fast model training using single servers.

To approach this problem, we can develop a highly scalable dis‐
tributed deep learning system using Spark and Paddle (a deep learn‐
ing platform recently open sourced by Baidu).

In the Spark driver, we can manage a Spark context and a Paddle
context, and in each node, the Spark executor hosts a Paddler
trainer instance. On top of that, we can use Alluxio as a parameter
server for this system. Using this system, we have achieved linear
performance scaling, even as we add more resources, proving that
the system is highly scalable.

Just the Beginning
As you can see, autonomous driving (and artificial intelligence in
general) is not one technology; it is an integration of many technol‐
ogies. It demands innovations in algorithms, system integrations,
and cloud platforms. It’s just the beginning, and there are tons of

Just the Beginning | 169

https://github.com/baidu/Paddle

opportunities. I anticipate that by 2020, we will officially start this
AI era and see many AI-based products in the market. Let’s be ready.

Shaoshan Liu
Shaoshan Liu is the cofounder and president of PerceptIn, working
on developing the next-generation robotics platform. Before found‐
ing PerceptIn, he worked on autonomous driving and deep learn‐
ing infrastructure at Baidu USA. Liu has a PhD in computer
engineering from the University of California, Irvine.

170 | Chapter 19: Creating Autonomous Vehicle Systems

PART VI

Integrating Human and
Machine Intelligence

In this final section of Artificial Intelligence Now, we confront the
larger aims of artificial intelligence: to better human life. Ben Lorica
and Adam Marcus discuss the development of human-AI hybrid
applications and workflows, and then Ben and Mike Tung discuss
using AI to map and access large-scale knowledge databases.

CHAPTER 20

Building Human-Assisted
AI Applications

Ben Lorica

In the August 25, 2016 episode of the O’Reilly Data Show, I spoke
with Adam Marcus, cofounder and CTO of B12, a startup focused
on building human-in-the-loop intelligent applications. We talked
about the open source platform Orchestra for coordinating human-
in-the-loop projects, the current wave of human-assisted AI applica‐
tions, best practices for reviewing and scoring experts, and flash
teams.

Here are some highlights from our conversation.

Orchestra: A Platform for Building Human-
Assisted AI Applications

I spent a total of three years doing web-scale structured data extrac‐
tion. Toward the end of that period, I started speaking with Nitesh
Banta, my cofounder at B12, and we said, “Hey, it’s really awesome
that you can coordinate all of these experts all over the world and
give them all of these human-assisted AIs to take a first pass at
work so that a lot of the labor goes away and you can use humans
where they’re uniquely positioned.” But we really only managed to
make a dent in data extraction and data entry. We thought that an
interesting work model was emerging here, where you had human-
assisted AIs and they were able to help experts do way more inter‐
esting knowledge work tasks. We’re interested, at B12, about
pushing all of this work up the knowledge work stack. The first

173

http://apple.co/2jxaGVz
http://oreil.ly/2jq7zkt
https://twitter.com/marcua
https://b12.io
https://github.com/b12io/orchestra
http://bit.ly/2jq5O6U
http://bit.ly/2jq5O6U

stage in this process is to build out the infrastructure to make this
possible.
This is where Orchestra comes in. It’s completely open source; it’s
available for anyone to use on GitHub and contribute to. What
Orchestra does is basically serve as the infrastructure for building
all sorts of human-in-the-loop and human-assisted AI applications.
It essentially helps coordinate teams of experts who are working on
really challenging workflows and pairs them up with all sorts of
automation, custom-user interfaces, and tools to make them a lot
more effective at their jobs.
The first product that we built on top of Orchestra is an intelligent
website product: a client will come to us and say that they’d like to
get their web presence set up. Orchestra will quickly recruit the best
designer, the best client executive, the best copywriter onto a team,
and it will follow a predefined workflow. The client executive will
be scheduled to interview the client. Once an interview is comple‐
ted, a designer is then staffed onto the project automatically.
Human-assisted AI, essentially an algorithmic design, is run so that
we can take some of the client’s preferences and automatically gen‐
erate a few initial passes at different websites for them, and then the
designer is presented with those and gets to make the critical crea‐
tive design decisions. Other folks are brought onto the project by
Orchestra as needed. If we need a copywriter, if we need more
expertise, then Orchestra can recruit the necessary staff. Essentially,
Orchestra is a workflow management tool that brings together all
sorts of experts, automates a lot of the really annoying project man‐
agement functionality that you typically have to bring project man‐
agers onboard to do, and empowers the experts with all sorts of
automation so they can focus on what they’re uniquely positioned
to do.

Bots and Data Flow Programming for Human-
in-the-Loop Projects

Your readers are probably really familiar with things like data flow
and workflow programming systems, and systems like that. In
Orchestra, you declaratively describe a workflow, where various
steps are either completed by humans or machines. It’s Orchestra’s
job at that point, when it’s time for a machine to jump in (and in
our case its algorithmic design) to take a first pass at designing a
website. It’s also Orchestra’s job to look at which steps in the work‐
flow have been completed and when it should do things like staff a
project, notice that the people executing the work are maybe falling
off course on the project and that we need more active process
management, bring in incentives, and so forth.

174 | Chapter 20: Building Human-Assisted AI Applications

https://github.com/b12io/orchestra

The way we’ve accomplished all of this project automation in
Orchestra is through bots, the super popular topic right now. The
way it works for us is that Orchestra is pretty tightly integrated with
Slack. At this point, probably everyone has used Slack for commu‐
nicating with some kind of organization. Whenever an expert is
brought into a project that Orchestra is working on, it will invite
that expert to a Slack channel, where all of the other experts on his
or her team are as well. Since the experts on our platform are using
Orchestra and Slack together, we’ve created these bots that help
automate process and project automation. All sorts of things like
staffing, process management, incentives, and review hierarchies
are managed through conversation.
I’ll give you an example in the world of staffing. Before we added
staffing functionality to Orchestra, whenever we wanted to bring a
designer onto a project, we’d have to send a bunch of messages over
Slack: “Hey, is anyone available to work on a project?” The design‐
ers didn’t have a lot of context, so sometimes it would take about an
hour of work for us to actually do the recruiting, and experts
wouldn’t get back to us for a day or two. We built a staffbot into
Orchestra in response to this problem, and now the staffbot has a
sense of how well experts have completed various tasks in the past,
how much they already have on their plates, and the staffbot can
create a ranking of the experts on the platform and reach out to the
ones who are the best matches.
...Orchestra reaches out to the best expert matches over Slack and
sends a message along the lines of, “Hey, here’s a client brief for this
particular project. Would you like to accept the task and join the
team?” An expert who is interested just has to click a button, and
then he or she is integrated into the Orchestra project and folded
into the Slack group that’s completing that task. We’ve reduced the
time to staff a project from a few days down to a little less than five
minutes.

Related Resources
• “Crowdsourcing at GoDaddy: How I Learned to Stop Worrying

and Love the Crowd” (a presentation by Adam Marcus)
• “Why data preparation frameworks rely on human-in-the-loop

systems”
• “Building a business that combines human experts and data sci‐

ence”
• “Metadata services can lead to performance and organizational

improvements”

Related Resources | 175

http://bit.ly/2jqbRbN
http://oreil.ly/2jqdlCR
http://oreil.ly/2jqdlCR
http://oreil.ly/2jqc5zF
http://oreil.ly/2jqc5zF
http://oreil.ly/2jq7fT2
http://oreil.ly/2jq7fT2
http://oreil.ly/2jqccv5
http://oreil.ly/2jqccv5

Ben Lorica
Ben Lorica is the Chief Data Scientist and Director of Content
Strategy for Data at O’Reilly Media, Inc. He has applied business
intelligence, data mining, machine learning, and statistical analysis
in a variety of settings including direct marketing, consumer and
market research, targeted advertising, text mining, and financial
engineering. His background includes stints with an investment
management company, internet startups, and financial services.

176 | Chapter 20: Building Human-Assisted AI Applications

CHAPTER 21

Using AI to Build a Comprehensive
Database of Knowledge

Ben Lorica

Extracting structured information from semi-structured or unstruc‐
tured data sources (“dark data”) is an important problem. One can
take it a step further by attempting to automatically build a knowl‐
edge graph from the same data sources. Knowledge databases and
graphs are built using (semi-supervised) machine learning, and then
subsequently used to power intelligent systems that form the basis of
AI applications. The more advanced messaging and chat bots you’ve
encountered rely on these knowledge stores to interact with users.

In the June 2, 2016 episode of the Data Show, I spoke with Mike
Tung, founder and CEO of Diffbot, a company dedicated to building
large-scale knowledge databases. Diffbot is at the heart of many web
applications, and it’s starting to power a wide array of intelligent
applications. We talked about the challenges of building a web-scale
platform for doing highly accurate, semi-supervised, structured data
extraction. We also took a tour through the AI landscape and the
early days of self-driving cars.

Here are some highlights from our conversation.

177

http://bit.ly/2jqkIdp
http://bit.ly/2jqkIdp
http://apple.co/2jxaGVz
https://twitter.com/mikektung
https://twitter.com/mikektung
http://www.diffbot.com

Building the Largest Structured Database of
Knowledge

If you think about the web as a virtual world, there are more pixels
on the surface area of the web than there are square millimeters on
the surface of the earth. As a surface for computer vision and pars‐
ing, it’s amazing, and you don’t have to actually build a physical
robot in order to traverse the web. It is pretty tricky though.
… For example, Google has a knowledge graph team—I’m sure
your listeners are aware from a startup that was building something
called Freebase, which is crowdsourced, kind of like a Wikipedia
for data. They’ve continued to build upon that at Google adding
more and more human curators. … It’s a mix of software, but
there’s definitely thousands and thousands of people that actually
contribute to their knowledge graph. Whereas in contrast, we are a
team of 15 of the top AI people in the world. We don’t have anyone
that’s curating the knowledge. All of the knowledge is completely
synthesized by our AI system. When our customers use our service,
they’re directly using the output of the AI. There’s no human
involved in the loop of our business model.
...Our high-level goal is to build the largest structured database of
knowledge. The most comprehensive map of all of the entities and
the facts about those entities. The way we’re doing it is by combin‐
ing multiple data sources. One of them is the web, so we have this
crawler that’s crawling the entire surface area of the web.

Knowledge Component of an AI System
If you look at other groups doing AI research, a lot of them are
focused on very much the same as the academic style of research,
which is coming out of new algorithms and publishing to sort of
the same conferences. If you look at some of these industrial AI
labs—they’re doing the same kind of work that they would be doing
in academia—whereas what we’re doing, in terms of building this
large data set, would not have been created otherwise without start‐
ing this effort. … I think you need really good algorithms, and you
also need really good data.
… One of the key things we believe is that it might be possible to
build a human-level reasoning system. If you just had enough
structured information to do it on.
… Basically, the semantic web vision never really got fully realized
because of the chicken-and-egg problem. You need enough people
to annotate data, and annotate it for the purpose of the semantic

178 | Chapter 21: Using AI to Build a Comprehensive Database of Knowledge

https://en.wikipedia.org/wiki/Freebase

web—to build a comprehensiveness of knowledge—and not for the
actual purpose, which is perhaps showing web pages to end users.
Then, with this comprehensiveness of knowledge, people can build
a lot of apps on top of it. Then the idea would be this virtuous cycle
where you have a bunch of killer apps for this data, and then that
would prompt more people to tag more things. That virtuous cycle
never really got going in my view, and there have been a lot of
efforts to do that over the years with RDS/RSS and things like that.
… What we’re trying to do is basically take the annotation aspect
out of the hands of humans. The idea here is that these AI algo‐
rithms are good enough that we can actually have AI build the
semantic web.

Leveraging Open Source Projects: WebKit and
Gigablast

… Roughly, what happens when our robot first encounters a page is
we render the page in our own customized rendering engine, which
is a fork of WebKit that’s basically had its face ripped off. It doesn’t
have all the human niceties of a web browser, and it runs much
faster than a browser because it doesn’t need those human-facing
components. ...The other difference is we’ve instrumented the
whole rendering process. We have access to all of the pixels on the
page for each XY position. ...[We identify many] features that feed
into our semi-supervised learning system. Then millions of lines of
code later, out comes knowledge.
… Our VP of search, Matt Wells, is the founder of the Gigablast
search engine. Years ago, Gigablast competed against Google and
Inktomi and AltaVista and others. Gigablast actually had a larger
real-time search index than Google at that time. Matt is a world
expert in search and has been developing his C++ crawler Gigablast
for, I would say, almost a decade. … Gigablast scales much, much
better than Lucene. I know because I’m a former user of Lucene
myself. It’s a very elegant system. It’s a fully symmetric, masterless
system. It has its own UDP-based communications protocol. It
includes a full web crawler, indexer. It has real-time search capabil‐
ity.

Editor’s note: Mike Tung is on the advisory committee for the
upcoming O’Reilly Artificial Intelligence conference.

Leveraging Open Source Projects: WebKit and Gigablast | 179

https://webkit.org
http://bit.ly/2jqdZQN
http://oreil.ly/2jq9yVY

Related Resources
• Hadoop cofounder Mike Cafarella on the Data Show: “From

search to distributed computing to large-scale information
extraction”

• Up and Running with Deep Learning: Tools, techniques, and
workflows to train deep neural networks

• “Building practical AI systems”
• “Using computer vision to understand big visual data”

Ben Lorica
Ben Lorica is the Chief Data Scientist and Director of Content
Strategy for Data at O’Reilly Media, Inc. He has applied business
intelligence, data mining, machine learning, and statistical analysis
in a variety of settings including direct marketing, consumer and
market research, targeted advertising, text mining, and financial
engineering. His background includes stints with an investment
management company, internet startups, and financial services.

180 | Chapter 21: Using AI to Build a Comprehensive Database of Knowledge

http://oreil.ly/2jq9Igh
http://oreil.ly/2jq9Igh
http://oreil.ly/2jq9Igh
http://oreil.ly/2jqafP2
http://oreil.ly/2jqafP2
http://oreil.ly/2jq5O6J
http://oreil.ly/2jq5Qvn

	Strata
	Copyright
	Table of Contents
	Introduction
	Part I. The AI Landscape
	Chapter 1. The State of Machine Intelligence 3.0
	Ready Player World
	Why Even Bot-Her?
	On to 11111000001
	Peter Pan’s Never-Never Land
	Inspirational Machine Intelligence
	Looking Forward

	Chapter 2. The Four Dynamic Forces Shaping AI
	Abundance and Scarcity of Ingredients
	Forces Driving Abundance and Scarcity of Ingredients
	Possible Scenarios for the Future of AI
	Broadening the Discussion

	Part II. Technology
	Chapter 3. To Supervise or Not to Supervise in AI?
	Chapter 4. Compressed Representations in the Age of Big Data
	Deep Neural Networks and Intelligent Mobile Applications
	Succinct: Search and Point Queries on Compressed Data Over Apache Spark
	Related Resources

	Chapter 5. Compressing and Regularizing Deep Neural Networks
	Current Training Methods Are Inadequate
	Deep Compression
	DSD Training
	Generating Image Descriptions
	Advantages of Sparsity

	Chapter 6. Reinforcement Learning Explained
	Q-Learning: A Commonly Used Reinforcement Learning Method
	Common Techniques of Reinforcement Learning
	What Is Reinforcement Learning Good For?
	Recent Applications
	Getting Started with Reinforcement Learning

	Chapter 7. Hello, TensorFlow!
	Names and Execution in Python and TensorFlow
	The Simplest TensorFlow Graph
	The Simplest TensorFlow Neuron
	See Your Graph in TensorBoard
	Making the Neuron Learn
	Training Diagnostics in TensorBoard

	Flowing Onward

	Chapter 8. Dive into TensorFlow with Linux
	Collecting Training Images
	Training the Model
	Build the Classifier
	Test the Classifier

	Chapter 9. A Poet Does TensorFlow
	Chapter 10. Complex Neural Networks Made Easy by Chainer
	Chainer Basics
	Chainer’s Design: Define-by-Run
	Implementing Complex Neural Networks
	Stochastically Changing Neural Networks
	Conclusion

	Chapter 11. Building Intelligent Applications with Deep Learning and TensorFlow
	Deep Learning at Google
	TensorFlow Makes Deep Learning More Accessible
	Synchronous and Asynchronous Methods for Training Deep Neural Networks
	Related Resources

	Part III. Homebuilt Autonomous Systems
	Chapter 12. How to Build a Robot That “Sees” with $100 and TensorFlow
	Building My Robot
	Programming My Robot
	Final Thoughts

	Chapter 13. How to Build an Autonomous, Voice-Controlled, Face-Recognizing Drone for $200
	Choosing a Prebuilt Drone
	Programming My Drone
	Architecture
	Getting Started
	Flying from the Command Line
	Flying from a Web Page
	Streaming Video from the Drone
	Running Face Recognition on the Drone Images
	Running Speech Recognition to Drive the Drone
	Autonomous Search Paths
	Conclusion

	Part IV. Natural Language
	Chapter 14. Three Three Tips for Getting Started with NLU
	Examples of Natural Language Understanding
	Begin Using NLU—Here’s Why and How
	Judging the Accuracy of an Algorithm

	Chapter 15. Training and Serving NLP Models Using Spark
	Constructing Predictive Models with Spark
	The Process of Building a Machine Learning Product
	Prediction
	Data Set
	Model Training

	Operationalization
	Spark’s Role
	What Are We Using Spark For?
	Feature Extraction
	Training
	Prediction
	Prediction Data Types

	Fitting It into Our Existing Platform with IdiML
	Why a Persistence Layer?

	Faster, Flexible Performant Systems

	Chapter 16. Capturing Semantic Meanings Using Deep Learning
	Word2Vec
	The CBOW Model
	The Continuous Skip-Gram Model

	Coding an Example
	Looking to Wikipedia for a Big Data Set

	Training the Model
	fastText
	Evaluating Embeddings: Analogies
	Results

	Part V. Use Cases
	Chapter 17. Bot Thots
	Text Isn’t the Final Form
	Discovery Hasn’t Been Solved Yet
	Platforms, Services, Commercial Incentives, and Transparency
	How Important Is Flawless Natural Language Processing?
	What Should We Call Them?

	Chapter 18. Infographic: The Bot Platforms Ecosystem
	Chapter 19. Creating Autonomous Vehicle Systems
	An Introduction to Autonomous Driving Technologies
	Autonomous Driving Algorithms
	Sensing
	Perception
	Decision

	The Client System
	Robotics Operating System
	Hardware Platform

	Cloud Platform
	Simulation
	HD Map Production
	Deep Learning Model Training

	Just the Beginning

	Part VI. Integrating Human and Machine Intelligence
	Chapter 20. Building Human-Assisted AI Applications
	Orchestra: A Platform for Building Human-Assisted AI Applications
	Bots and Data Flow Programming for Human-in-the-Loop Projects
	Related Resources

	Chapter 21. Using AI to Build a Comprehensive Database of Knowledge
	Building the Largest Structured Database of Knowledge
	Knowledge Component of an AI System
	Leveraging Open Source Projects: WebKit and Gigablast
	Related Resources

