Deep Learning

[an Goodfellow
Yoshua Bengio
Aaron Courville

Contents

Website

Acknowledgments

Notation

1

Introduction
1.1 ~ Who Should Read This Book?
1.2 Historical Trends in Deep Learning

I Applied Math and Machine Learning Basics

2

3

Linear Algebra

2.1 Scalars, Vectors, Matrices and Tensors
2.2 Multiplying Matrices and Vectors
2.3 Identity and Inverse Matrices
2.4 Linear Dependence and Span
2.5 Norms
2.6 Special Kinds of Matrices and Vectors
2.7 Eigendecomposition
2.8 Singular Value Decomposition
2.9 The Moore-Penrose Pseudoinverse
2.10 The Trace Operator,
2.11 The Determinant
2.12 Example: Principal Components Analysis

Probability and Information Theory
3.1 Why Probability? oo

vii

viii

xi

29

31
31
34
36
37
39
40
42
44
45
46
47
48

53

CONTENTS

4

5

I1

6

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

Random Variables
Probability Distributions
Marginal Probability
Conditional Probability
The Chain Rule of Conditional Probabilities
Independence and Conditional Independence
Expectation, Variance and Covariance
Common Probability Distributions
Useful Properties of Common Functions
Bayes’ Rule
Technical Details of Continuous Variables
Information Theory
Structured Probabilistic Models

Numerical Computation

4.1
4.2
4.3
4.4
4.5

Overflow and Underflow
Poor Conditioning,
Gradient-Based Optimization
Constrained Optimization
Example: Linear Least Squares

Machine Learning Basics

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11

Learning Algorithms
Capacity, Overfitting and Underfitting
Hyperparameters and Validation Sets
Estimators, Bias and Variance
Maximum Likelihood Estimation
Bayesian Statistics o
Supervised Learning Algorithms
Unsupervised Learning Algorithms
Stochastic Gradient Descent
Building a Machine Learning Algorithm
Challenges Motivating Deep Learning

Deep Networks: Modern Practices

Deep Feedforward Networks

6.1
6.2

Example: Learning XOR
Gradient-Based Learning

ii

80
80
82
82
93
96

98

99
110
120
122
131
135
139
145
150
152
154

165

CONTENTS

6.3 Hidden Units 190
6.4 Architecture Design oL 196
6.5 Back-Propagation and Other Differentiation Algorithms 203
6.6 Historical Notes 224
7 Regularization for Deep Learning 228
7.1 Parameter Norm Penalties 230
7.2 Norm Penalties as Constrained Optimization. 237
7.3 Regularization and Under-Constrained Problems 239
7.4 Dataset Augmentation 240
7.5 Noise Robustness 242
7.6 Semi-Supervised Learning 244
7.7 Multi-Task Learningo 0o 245
7.8 Early Stopping 246
7.9 Parameter Tying and Parameter Sharing 251
7.10 Sparse Representations 253
7.11 Bagging and Other Ensemble Methods 255
7.12 Dropout 257
7.13 Adversarial Training 267
7.14 Tangent Distance, Tangent Prop, and Manifold Tangent Classifier 268
8 Optimization for Training Deep Models 274
8.1 How Learning Differs from Pure Optimization 275
8.2 Challenges in Neural Network Optimization 282
8.3 Basic Algorithms 294
8.4 Parameter Initialization Strategies 301
8.5 Algorithms with Adaptive Learning Rates 306
8.6 Approximate Second-Order Methods 310
8.7 Optimization Strategies and Meta-Algorithms 318
9 Convolutional Networks 331
9.1 The Convolution Operation 332
9.2 Motivation e 336
9.3 Pooling. 340
9.4 Convolution and Pooling as an Infinitely Strong Prior. 346
9.5 Variants of the Basic Convolution Function 348
9.6 Structured Outputs 359
9.7 DataTypes 361
9.8 Efficient Convolution Algorithms 363
9.9 Random or Unsupervised Features 364

iii

CONTENTS

9.10 The Neuroscientific Basis for Convolutional Networks 365
9.11 Convolutional Networks and the History of Deep Learning 372
10 Sequence Modeling: Recurrent and Recursive Nets 374
10.1 Unfolding Computational Graphs 376
10.2 Recurrent Neural Networks 379
10.3 Bidirectional RNNs 396
10.4 Encoder-Decoder Sequence-to-Sequence Architectures 397
10.5 Deep Recurrent Networks 399
10.6 Recursive Neural Networks 401
10.7 The Challenge of Long-Term Dependencies 403
10.8 Echo State Networks 406
10.9 Leaky Units and Other Strategies for Multiple Time Scales 409
10.10 The Long Short-Term Memory and Other Gated RNNs. 411
10.11 Optimization for Long-Term Dependencies 415
10.12 Explicit Memory 419
11 Practical methodology 424
11.1 Performance Metrics 425
11.2 Default Baseline Models 428
11.3 Determining Whether to Gather More Data 429
11.4 Selecting Hyperparameters 430
11.5 Debugging Strategies L. 439
11.6 Example: Multi-Digit Number Recognition 443
12 Applications 446
12.1 Large Scale Deep Learning 446
12.2 Computer Vision 455
12.3 Speech Recognition 461
12.4 Natural Language Processing 464
12.5 Other Applications, 480
IIT Deep Learning Research 489
13 Linear Factor Models 492
13.1 Probabilistic PCA and Factor Analysis 493
13.2 Independent Component Analysis (ICA) 494
13.3 Slow Feature Analysis 496

13.4 Sparse Coding 499

iv

CONTENTS

13.5 Manifold Interpretation of PCA 502
14 Autoencoders 505
14.1 Undercomplete Autoencoders 506
14.2 Regularized Autoencoders 507
14.3 Representational Power, Layer Size and Depth 511
14.4 Stochastic Encoders and Decoders 512
14.5 Denoising Autoencoders 513
14.6 Learning Manifolds with Autoencoders 518
14.7 Contractive Autoencoders 524
14.8 Predictive Sparse Decomposition 526
14.9 Applications of Autoencoders 527
15 Representation Learning 529
15.1 Greedy Layer-Wise Unsupervised Pretraining 531
15.2 Transfer Learning and Domain Adaptation 539
15.3 Semi-Supervised Disentangling of Causal Factors 544
15.4 Distributed Representation. 549
15.5 Exponential Gains from Depth 556
15.6 Providing Clues to Discover Underlying Causes 5b7
16 Structured Probabilistic Models for Deep Learning 561
16.1 The Challenge of Unstructured Modeling 562
16.2 Using Graphs to Describe Model Structure 566
16.3 Sampling from Graphical Models 583
16.4 Advantages of Structured Modeling 584
16.5 Learning about Dependencies 585
16.6 Inference and Approximate Inference 586
16.7 The Deep Learning Approach to Structured Probabilistic Models 587
17 Monte Carlo Methods 593
17.1 Sampling and Monte Carlo Methods 593
17.2 TImportance Sampling 595
17.3 Markov Chain Monte Carlo Methods 598
17.4 Gibbs Sampling 602
17.5 The Challenge of Mixing between Separated Modes 602
18 Confronting the Partition Function 608
18.1 The Log-Likelihood Gradient 609
18.2 Stochastic Maximum Likelihood and Contrastive Divergence . . . 610

CONTENTS

18.3
18.4
18.5
18.6
18.7

Pseudolikelihood oo
Score Matching and Ratio Matching
Denoising Score Matching
Noise-Contrastive Estimation
Estimating the Partition Function

19 Approximate inference

19.1
19.2
19.3
19.4
19.5

Inference as Optimization
Expectation Maximization
MAP Inference and Sparse Coding
Variational Inference and Learning
Learned Approximate Inference

20 Deep Generative Models

20.1 Boltzmann Machines
20.2 Restricted Boltzmann Machines
20.3 Deep Belief Networks,
20.4 Deep Boltzmann Machines
20.5 Boltzmann Machines for Real-Valued Data
20.6 Convolutional Boltzmann Machines
20.7 Boltzmann Machines for Structured or Sequential Outputs
20.8 Other Boltzmann Machines
20.9 Back-Propagation through Random Operations
20.10 Directed Generative Nets
20.11 Drawing Samples from Autoencoders
20.12 Generative Stochastic Networks
20.13 Other Generation Schemes
20.14 Evaluating Generative Models
20.15 Conclusiono

Bibliography

Index

vi

634
636
637
638
641
653

656
656
658
662
665
678
685
687
688
689
694
712
716
717
719
721

723

780

Website

www.deeplearningbook.org

This book is accompanied by the above website. The website provides a
variety of supplementary material, including exercises, lecture slides, corrections of
mistakes, and other resources that should be useful to both readers and instructors.

vii

Acknowledgments

This book would not have been possible without the contributions of many people.

We would like to thank those who commented on our proposal for the book
and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho,
Gaglar Gilgehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas
Rohée.

We would like to thank the people who offered feedback on the content of the
book itself. Some offered feedback on many chapters: Martin Abadi, Guillaume
Alain, Ton Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Bigici, Matko
Bosnjak, John Boersma, Greg Brockman, Pierre Luc Carrier, Sarath Chandar,
Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent Dinh, Stephan Dreseitl,
Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis, Nando de Freitas, Caglar
Giilcehre, Jurgen Van Gael, Javier Alonso Garcia, Jonathan Hunt, Gopi Jeyaram,
Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade, Akiel Khan, John King, Diederik
P. Kingma, Yann LeCun, Rudolf Mathey, Matias Mattamala, Abhinav Maurya,
Kevin Murphy, Oleg Miirk, Roman Novak, Augustus Q. Odena, Simon Pavlik,
Karl Pichotta, Kari Pulli, Tapani Raiko, Anurag Ranjan, Johannes Roith, Halis
Sak, César Salgado, Grigory Sapunov, Mike Schuster, Julian Serban, Nir Shabat,
Ken Shirriff, Scott Stanley, David Sussillo, Ilya Sutskever, Carles Gelada Séez,
Graham Taylor, Valentin Tolmer, An Tran, Shubhendu Trivedi, Alexey Umnov,
Vincent Vanhoucke, Marco Visentini-Scarzanella, David Warde-Farley, Dustin
Webb, Kelvin Xu, Wei Xue, Li Yao, Zygmunt Zajac and Ozan Caglayan.

We would also like to thank those who provided us with useful feedback on
individual chapters:

e Chapter 1, Introduction: Yusuf Akgul, Sebastien Bratieres, Samira Ebrahimi,
Charlie Gorichanaz, Brendan Loudermilk, Eric Morris, Cosmin Parvulescu
and Alfredo Solano.

e Chapter 2, Linear Algebra: Amjad Almahairi, Nikola Bani¢, Kevin Bennett,

Viil

CONTENTS

Philippe Castonguay, Oscar Chang, Eric Fosler-Lussier, Sergey Oreshkov,
Istvan Petras, Dennis Prangle, Thomas Rohée, Colby Toland, Massimiliano
Tomassoli, Alessandro Vitale and Bob Welland.

e Chapter 3, Probability and Information Theory: John Philip Anderson, Kai
Arulkumaran, Vincent Dumoulin, Rui Fa, Stephan Gouws, Artem Oboturov,
Antti Rasmus, Andre Simpelo, Alexey Surkov and Volker Tresp.

e Chapter 4, Numerical Computation: Tran Lam An, Ian Fischer, and Hu
Yuhuang.

e Chapter 5, Machine Learning Basics: Dzmitry Bahdanau, Nikhil Garg,
Makoto Otsuka, Bob Pepin, Philip Popien, Emmanuel Rayner, Kee-Bong
Song, Zheng Sun and Andy Wu.

e Chapter 6, Deep Feedforward Networks: Uriel Berdugo, Fabrizio Bottarel,
Elizabeth Burl, Ishan Durugkar, Jeff Hlywa, Jong Wook Kim, David Krueger
and Aditya Kumar Praharaj.

e Chapter 7, Regularization for Deep Learning: Inkyu Lee, Sunil Mohan and
Joshua Salisbury.

e Chapter 8, Optimization for Training Deep Models: Marcel Ackermann,
Rowel Atienza, Andrew Brock, Tegan Maharaj, James Martens and Klaus
Strobl.

e Chapter 9, Convolutional Networks: Martin Arjovsky, Eugene Brevdo, Eric
Jensen, Asifullah Khan, Mehdi Mirza, Alex Paino, Eddie Pierce, Marjorie
Sayer, Ryan Stout and Wentao Wu.

e Chapter 10, Sequence Modeling: Recurrent and Recursive Nets: Gokgen
Eraslan, Steven Hickson, Razvan Pascanu, Lorenzo von Ritter, Rui Rodrigues,
Mihaela Rosca, Dmitriy Serdyuk, Dongyu Shi and Kaiyu Yang.

e Chapter 11, Practical methodology: Daniel Beckstein.
e Chapter 12, Applications: George Dahl and Ribana Roscher.
e Chapter 15, Representation Learning: Kunal Ghosh.

e Chapter 16, Structured Probabilistic Models for Deep Learning: Minh Lé
and Anton Varfolom.

e Chapter 18, Confronting the Partition Function: Sam Bowman.

X

CONTENTS

e Chapter 20, Deep Generative Models: Nicolas Chapados, Daniel Galvez,
Wenming Ma, Fady Medhat, Shakir Mohamed and Grégoire Montavon.

e Bibliography: Leslie N. Smith.

We also want to thank those who allowed us to reproduce images, figures or
data from their publications. We indicate their contributions in the figure captions
throughout the text.

We would like to thank Ian’s wife Daniela Flori Goodfellow for patiently
supporting Ian during the writing of the book as well as for help with proofreading.

We would like to thank the Google Brain team for providing an intellectual
environment where Ian could devote a tremendous amount of time to writing this
book and receive feedback and guidance from colleagues. We would especially like
to thank Tan’s former manager, Greg Corrado, and his current manager, Samy
Bengio, for their support of this project. Finally, we would like to thank Geoffrey
Hinton for encouragement when writing was difficult.

Notation

This section provides a concise reference describing the notation used throughout
this book. If you are unfamiliar with any of the corresponding mathematical
concepts, this notation reference may seem intimidating. However, do not despair,
we describe most of these ideas in chapters 2-4.

N > o

~

o0

diag(a)

Numbers and Arrays

A scalar (integer or real)

A vector

A matrix

A tensor

Identity matrix with n rows and n columns

Identity matrix with dimensionality implied by
context

Standard basis vector [0,...,0,1,0,...,0] with a
1 at position 2

A square, diagonal matrix with diagonal entries
given by a

A scalar random variable
A vector-valued random variable

A matrix-valued random variable

X1

CONTENTS

Sets and Graphs
A A set

R The set of real numbers
{0,1} The set containing 0 and 1
{0,1,...,n} The set of all integers between 0 and n

[a, D] The real interval including a and b
(a,b] The real interval excluding a but including b
A\B Set subtraction, i.e., the set containing the ele-
ments of A that are not in B
g A graph

Pag(x;) The parents of x; in G

Indexing

a; Element i of vector a, with indexing starting at 1
a_; All elements of vector a except for element ¢
A;; Element 7, j of matrix A
A;. Row ¢ of matrix A
A.; Column 7 of matrix A
A ;i Element (7,7,k) of a 3-D tensor A
A..; 2-D slice of a 3-D tensor

a; Element 7 of the random vector a

Linear Algebra Operations

AT Transpose of matrix A

AT Moore-Penrose pseudoinverse of A
A ® B Element-wise (Hadamard) product of A and B
det(A) Determinant of A

xii

CONTENTS

Calculus

Derivative of y with respect to x.

Partial derivative of y with respect to x
Gradient of y with respect to @
Matrix derivatives of y with respect to X

Tensor containing derivatives of y with respect to

X
Jacobian matrix J € R™*" of f: R" — R™
The Hessian matrix of f at input point @

Definite integral over the entire domain of @

Definite integral with respect to & over the set S

Probability and Information Theory

alb
alb|c
P(a)

p(a)

a~ P
Ex~p[f(z)] or Ef (x)
Var(f(z))
Cov(f(z),9(x))
H(x)
Dgr(P[|Q)
N(z; p, X)

The random variables a and b are independent
They are are conditionally independent given c
A probability distribution over a discrete variable

A probability distribution over a continuous vari-
able, or over a variable whose type has not been
specified

Random variable a has distribution P
Expectation of f(x) with respect to P(x)
Variance of f(x) under P(x)

Covariance of f(x) and g(z) under P(x)
Shannon entropy of the random variable x
Kullback-Leibler divergence of P and Q

Gaussian distribution over & with mean g and
covariance X

xiii

CONTENTS

Functions
f:A—B The function f with domain A and range B

fog Composition of the functions f and g

f(x;0) A function of x parametrized by 6. Sometimes
we just write f(x) and ignore the argument 6 to
lighten notation.

log x Natural logarithm of x
o(x) Logistic sigmoid, m
¢(x) Softplus, log(1 + exp(z))
|| LP norm of x
||| L? norm of x
n

Positive part of x, i.e., max(0,x)

1condition 1s 1 if the condition is true, O otherwise

Sometimes we use a function f whose argument is a scalar, but apply it to a vector,
matrix, or tensor: f(x), f(X), or f(X). This means to apply f to the array
element-wise. For example, if C = o(X), then C; j, = o(X; ;) for all valid values
of 7, 7 and k.

Datasets and distributions
Pdata The data generating distribution

Ddata The empirical distribution defined by the training

set
X A set of training examples
2 The i-th example (input) from a dataset
y(i) or y @) The target associated with =(?) for supervised learn-
ing
X The m x n matrix with input example £ in row

X;.

9.

Xiv

Chapter 1

Introduction

Inventors have long dreamed of creating machines that think. This desire dates
back to at least the time of ancient Greece. The mythical figures Pygmalion,
Daedalus, and Hephaestus may all be interpreted as legendary inventors, and
Galatea, Talos, and Pandora may all be regarded as artificial life (,
; , ; :)-
When programmable computers were first conceived, people wondered whether
they might become intelligent, over a hundred years before one was built (,
). Today, artificial intelligence (Al) is a thriving field with many practical
applications and active research topics. We look to intelligent software to automate
routine labor, understand speech or images, make diagnoses in medicine and
support basic scientific research.

In the early days of artificial intelligence, the field rapidly tackled and solved
problems that are intellectually difficult for human beings but relatively straight-
forward for computers—problems that can be described by a list of formal, math-
ematical rules. The true challenge to artificial intelligence proved to be solving
the tasks that are easy for people to perform but hard for people to describe
formally—problems that we solve intuitively, that feel automatic, like recognizing
spoken words or faces in images.

This book is about a solution to these more intuitive problems. This solution is
to allow computers to learn from experience and understand the world in terms of a
hierarchy of concepts, with each concept defined in terms of its relation to simpler
concepts. By gathering knowledge from experience, this approach avoids the need
for human operators to formally specify all of the knowledge that the computer
needs. The hierarchy of concepts allows the computer to learn complicated concepts
by building them out of simpler ones. If we draw a graph showing how these

1

CHAPTER 1. INTRODUCTION

concepts are built on top of each other, the graph is deep, with many layers. For
this reason, we call this approach to Al deep learning.

Many of the early successes of Al took place in relatively sterile and formal
environments and did not require computers to have much knowledge about
the world. For example, IBM’s Deep Blue chess-playing system defeated world
champion Garry Kasparov in 1997 (,). Chess is of course a very simple
world, containing only sixty-four locations and thirty-two pieces that can move
in only rigidly circumscribed ways. Devising a successful chess strategy is a
tremendous accomplishment, but the challenge is not due to the difficulty of
describing the set of chess pieces and allowable moves to the computer. Chess
can be completely described by a very brief list of completely formal rules, easily
provided ahead of time by the programmer.

Ironically, abstract and formal tasks that are among the most difficult mental
undertakings for a human being are among the easiest for a computer. Computers
have long been able to defeat even the best human chess player, but are only
recently matching some of the abilities of average human beings to recognize objects
or speech. A person’s everyday life requires an immense amount of knowledge
about the world. Much of this knowledge is subjective and intuitive, and therefore
difficult to articulate in a formal way. Computers need to capture this same
knowledge in order to behave in an intelligent way. One of the key challenges in
artificial intelligence is how to get this informal knowledge into a computer.

Several artificial intelligence projects have sought to hard-code knowledge about
the world in formal languages. A computer can reason about statements in these
formal languages automatically using logical inference rules. This is known as the
knowledge base approach to artificial intelligence. None of these projects has led to
a major success. One of the most famous such projects is Cyc (,

). Cyc is an inference engine and a database of statements in a language
called CycL. These statements are entered by a staff of human supervisors. It is an
unwieldy process. People struggle to devise formal rules with enough complexity
to accurately describe the world. For example, Cyc failed to understand a story
about a person named Fred shaving in the morning (:). Its inference
engine detected an inconsistency in the story: it knew that people do not have
electrical parts, but because Fred was holding an electric razor, it believed the
entity “FredWhileShaving” contained electrical parts. It therefore asked whether
Fred was still a person while he was shaving.

The difficulties faced by systems relying on hard-coded knowledge suggest that
Al systems need the ability to acquire their own knowledge, by extracting patterns
from raw data. This capability is known as machine learning. The introduction

CHAPTER 1. INTRODUCTION

of machine learning allowed computers to tackle problems involving knowledge
of the real world and make decisions that appear subjective. A simple machine
learning algorithm called logistic regression can determine whether to recommend
cesarean delivery (,). A simple machine learning algorithm
called naive Bayes can separate legitimate e-mail from spam e-mail.

The performance of these simple machine learning algorithms depends heavily
on the representation of the data they are given. For example, when logistic
regression is used to recommend cesarean delivery, the Al system does not examine
the patient directly. Instead, the doctor tells the system several pieces of relevant
information, such as the presence or absence of a uterine scar. Each piece of
information included in the representation of the patient is known as a feature.
Logistic regression learns how each of these features of the patient correlates with
various outcomes. However, it cannot influence the way that the features are
defined in any way. If logistic regression was given an MRI scan of the patient,
rather than the doctor’s formalized report, it would not be able to make useful
predictions. Individual pixels in an MRI scan have negligible correlation with any
complications that might occur during delivery.

This dependence on representations is a general phenomenon that appears
throughout computer science and even daily life. In computer science, opera-
tions such as searching a collection of data can proceed exponentially faster if
the collection is structured and indexed intelligently. People can easily perform
arithmetic on Arabic numerals, but find arithmetic on Roman numerals much
more time-consuming. It is not surprising that the choice of representation has an
enormous effect on the performance of machine learning algorithms. For a simple
visual example, see Fig. 1.1.

Many artificial intelligence tasks can be solved by designing the right set of
features to extract for that task, then providing these features to a simple machine
learning algorithm. For example, a useful feature for speaker identification from
sound is an estimate of the size of speaker’s vocal tract. It therefore gives a strong
clue as to whether the speaker is a man, woman, or child.

However, for many tasks, it is difficult to know what features should be extracted.
For example, suppose that we would like to write a program to detect cars in
photographs. We know that cars have wheels, so we might like to use the presence
of a wheel as a feature. Unfortunately, it is difficult to describe exactly what a
wheel looks like in terms of pixel values. A wheel has a simple geometric shape but
its image may be complicated by shadows falling on the wheel, the sun glaring off
the metal parts of the wheel, the fender of the car or an object in the foreground
obscuring part of the wheel, and so on.

CHAPTER 1. INTRODUCTION

Cartesian coordinates Polar coordinates

Figure 1.1: Example of different representations: suppose we want to separate two
categories of data by drawing a line between them in a scatterplot. In the plot on the left,
we represent some data using Cartesian coordinates, and the task is impossible. In the plot
on the right, we represent the data with polar coordinates and the task becomes simple to
solve with a vertical line. (Figure produced in collaboration with David Warde-Farley)

One solution to this problem is to use machine learning to discover not only
the mapping from representation to output but also the representation itself.
This approach is known as representation learning. Learned representations often
result in much better performance than can be obtained with hand-designed
representations. They also allow Al systems to rapidly adapt to new tasks, with
minimal human intervention. A representation learning algorithm can discover a
good set of features for a simple task in minutes, or a complex task in hours to
months. Manually designing features for a complex task requires a great deal of
human time and effort; it can take decades for an entire community of researchers.

The quintessential example of a representation learning algorithm is the au-
toencoder. An autoencoder is the combination of an encoder function that converts
the input data into a different representation, and a decoder function that converts
the new representation back into the original format. Autoencoders are trained to
preserve as much information as possible when an input is run through the encoder
and then the decoder, but are also trained to make the new representation have
various nice properties. Different kinds of autoencoders aim to achieve different
kinds of properties.

When designing features or algorithms for learning features, our goal is usually
to separate the factors of variation that explain the observed data. In this context,
we use the word “factors” simply to refer to separate sources of influence; the factors
are usually not combined by multiplication. Such factors are often not quantities

4

CHAPTER 1. INTRODUCTION

that are directly observed. Instead, they may exist either as unobserved objects
or unobserved forces in the physical world that affect observable quantities. They
may also exist as constructs in the human mind that provide useful simplifying
explanations or inferred causes of the observed data. They can be thought of as
concepts or abstractions that help us make sense of the rich variability in the data.
When analyzing a speech recording, the factors of variation include the speaker’s
age, their sex, their accent and the words that they are speaking. When analyzing
an image of a car, the factors of variation include the position of the car, its color,
and the angle and brightness of the sun.

A major source of difficulty in many real-world artificial intelligence applications
is that many of the factors of variation influence every single piece of data we are
able to observe. The individual pixels in an image of a red car might be very close
to black at night. The shape of the car’s silhouette depends on the viewing angle.
Most applications require us to disentangle the factors of variation and discard the
ones that we do not care about.

Of course, it can be very difficult to extract such high-level, abstract features
from raw data. Many of these factors of variation, such as a speaker’s accent,
can be identified only using sophisticated, nearly human-level understanding of
the data. When it is nearly as difficult to obtain a representation as to solve the
original problem, representation learning does not, at first glance, seem to help us.

Deep learning solves this central problem in representation learning by introduc-
ing representations that are expressed in terms of other, simpler representations.
Deep learning allows the computer to build complex concepts out of simpler con-
cepts. Fig. 1.2 shows how a deep learning system can represent the concept of an
image of a person by combining simpler concepts, such as corners and contours,
which are in turn defined in terms of edges.

The quintessential example of a deep learning model is the feedforward deep
network or multilayer perceptron (MLP). A multilayer perceptron is just a mathe-
matical function mapping some set of input values to output values. The function
is formed by composing many simpler functions. We can think of each application
of a different mathematical function as providing a new representation of the input.

The idea of learning the right representation for the data provides one perspec-
tive on deep learning. Another perspective on deep learning is that depth allows the
computer to learn a multi-step computer program. Each layer of the representation
can be thought of as the state of the computer’s memory after executing another
set of instructions in parallel. Networks with greater depth can execute more
instructions in sequence. Sequential instructions offer great power because later
instructions can refer back to the results of earlier instructions. According to this

)

CHAPTER 1. INTRODUCTION

Figure 1.2: Illustration of a deep learning model. It is difficult for a computer to understand
the meaning of raw sensory input data, such as this image represented as a collection
of pixel values. The function mapping from a set of pixels to an object identity is very
complicated. Learning or evaluating this mapping seems insurmountable if tackled directly.
Deep learning resolves this difficulty by breaking the desired complicated mapping into a
series of nested simple mappings, each described by a different layer of the model. The
input is presented at the , so named because it contains the variables that we
are able to observe. Then a series of extracts increasingly abstract features

from the image. These layers are called “hidden” because their values are not given in
the data; instead the model must determine which concepts are useful for explaining
the relationships in the observed data. The images here are visualizations of the kind
of feature represented by each hidden unit. Given the pixels, the first layer can easily
identify edges, by comparing the brightness of neighboring pixels. Given the first hidden
layer’s description of the edges, the second hidden layer can easily search for corners and
extended contours, which are recognizable as collections of edges. Given the second hidden
layer’s description of the image in terms of corners and contours, the third hidden layer
can detect entire parts of specific objects, by finding specific collections of contours and
corners. Finally, this description of the image in terms of the object parts it contains can
be used to recognize the objects present in the image. Images reproduced with permission
from Zeiler and Fergus (2014).

CHAPTER 1. INTRODUCTION

%
[OR S

OO0

Figure 1.3: Ilustration of computational graphs mapping an input to an output where
each node performs an operation. Depth is the length of the longest path from input to
output but depends on the definition of what constitutes a possible computational step.
The computation depicted in these graphs is the output of a logistic regression model,

, where is the logistic sigmoid function. If we use addition, multiplication and

logistic sigmoids as the elements of our computer language, then this model has depth
three. If we view logistic regression as an element itself, then this model has depth one.

view of deep learning, not all of the information in a layer’s activations necessarily
encodes factors of variation that explain the input. The representation also stores
state information that helps to execute a program that can make sense of the input.
This state information could be analogous to a counter or pointer in a traditional
computer program. It has nothing to do with the content of the input specifically,
but it helps the model to organize its processing.

There are two main ways of measuring the depth of a model. The first view is
based on the number of sequential instructions that must be executed to evaluate
the architecture. We can think of this as the length of the longest path through
a flow chart that describes how to compute each of the model’s outputs given
its inputs. Just as two equivalent computer programs will have different lengths
depending on which language the program is written in, the same function may be
drawn as a flowchart with different depths depending on which functions we allow
to be used as individual steps in the flowchart. Fig. 1.3 illustrates how this choice
of language can give two different measurements for the same architecture.

Another approach, used by deep probabilistic models, regards the depth of a
model as being not the depth of the computational graph but the depth of the
graph describing how concepts are related to each other. In this case, the depth
of the flowchart of the computations needed to compute the representation of

7

CHAPTER 1. INTRODUCTION

each concept may be much deeper than the graph of the concepts themselves.
This is because the system’s understanding of the simpler concepts can be refined
given information about the more complex concepts. For example, an Al system
observing an image of a face with one eye in shadow may initially only see one eye.
After detecting that a face is present, it can then infer that a second eye is probably
present as well. In this case, the graph of concepts only includes two layers—a
layer for eyes and a layer for faces—but the graph of computations includes
layers if we refine our estimate of each concept given the other times.

Because it is not always clear which of these two views—the depth of the
computational graph, or the depth of the probabilistic modeling graph—is most
relevant, and because different people choose different sets of smallest elements
from which to construct their graphs, there is no single correct value for the
depth of an architecture, just as there is no single correct value for the length of
a computer program. Nor is there a consensus about how much depth a model
requires to qualify as “deep.” However, deep learning can safely be regarded as the
study of models that either involve a greater amount of composition of learned
functions or learned concepts than traditional machine learning does.

To summarize, deep learning, the subject of this book, is an approach to Al
Specifically, it is a type of machine learning, a technique that allows computer
systems to improve with experience and data. According to the authors of this
book, machine learning is the only viable approach to building Al systems that
can operate in complicated, real-world environments. Deep learning is a particular
kind of machine learning that achieves great power and flexibility by learning to
represent the world as a nested hierarchy of concepts, with each concept defined in
relation to simpler concepts, and more abstract representations computed in terms
of less abstract ones. Fig. 1.4 illustrates the relationship between these different
Al disciplines. Fig. 1.5 gives a high-level schematic of how each works.

This book can be useful for a variety of readers, but we wrote it with two main
target audiences in mind. One of these target audiences is university students
(undergraduate or graduate) learning about machine learning, including those who
are beginning a career in deep learning and artificial intelligence research. The
other target audience is software engineers who do not have a machine learning
or statistics background, but want to rapidly acquire one and begin using deep
learning in their product or platform. Deep learning has already proven useful in
many software disciplines including computer vision, speech and audio processing,

8

CHAPTER 1. INTRODUCTION

Figure 1.4: A Venn diagram showing how deep learning is a kind of representation learning,
which is in turn a kind of machine learning, which is used for many but not all approaches
to Al. Each section of the Venn diagram includes an example of an Al technology.

CHAPTER 1. INTRODUCTION

Figure 1.5: Flowcharts showing how the different parts of an Al system relate to each
other within different AT disciplines. Shaded boxes indicate components that are able to
learn from data.

10

CHAPTER 1. INTRODUCTION

natural language processing, robotics, bioinformatics and chemistry, video games,
search engines, online advertising and finance.

This book has been organized into three parts in order to best accommodate a
variety of readers. Part I introduces basic mathematical tools and machine learning
concepts. Part II describes the most established deep learning algorithms that are
essentially solved technologies. Part [II describes more speculative ideas that are
widely believed to be important for future research in deep learning.

Readers should feel free to skip parts that are not relevant given their interests
or background. Readers familiar with linear algebra, probability, and fundamental
machine learning concepts can skip Part I, for example, while readers who just want
to implement a working system need not read beyond Part 1. To help choose which

chapters to read, Fig. 1.6 provides a flowchart showing the high-level organization
of the book.

We do assume that all readers come from a computer science background. We
assume familiarity with programming, a basic understanding of computational
performance issues, complexity theory, introductory level calculus and some of the
terminology of graph theory.

It is easiest to understand deep learning with some historical context. Rather than
providing a detailed history of deep learning, we identify a few key trends:

Deep learning has had a long and rich history, but has gone by many names
reflecting different philosophical viewpoints, and has waxed and waned in
popularity:.

Deep learning has become more useful as the amount of available training
data has increased.

Deep learning models have grown in size over time as computer hardware
and software infrastructure for deep learning has improved.

Deep learning has solved increasingly complicated applications with increasing
accuracy over time.

11

CHAPTER 1. INTRODUCTION

Y

Y

/N

Y

Figure 1.6: The high-level organization of the book. An arrow from one chapter to another
indicates that the former chapter is prerequisite material for understanding the latter.

12

CHAPTER 1. INTRODUCTION

We expect that many readers of this book have heard of deep learning as an
exciting new technology, and are surprised to see a mention of “history” in a book
about an emerging field. In fact, deep learning dates back to the 1940s. Deep
learning only appears to be new, because it was relatively unpopular for several
years preceding its current popularity, and because it has gone through many
different names, and has only recently become called “deep learning.” The field
has been rebranded many times, reflecting the influence of different researchers
and different perspectives.

A comprehensive history of deep learning is beyond the scope of this textbook.
However, some basic context is useful for understanding deep learning. Broadly
speaking, there have been three waves of development of deep learning: deep learn-
ing known as cybernetics in the 1940s-1960s, deep learning known as connectionism
in the 1980s-1990s, and the current resurgence under the name deep learning
beginning in 2006. This is quantitatively illustrated in Fig. 1.7.

Some of the earliest learning algorithms we recognize today were intended
to be computational models of biological learning, i.e. models of how learning
happens or could happen in the brain. As a result, one of the names that deep
learning has gone by is artificial neural networks (ANNs). The corresponding
perspective on deep learning models is that they are engineered systems inspired
by the biological brain (whether the human brain or the brain of another animal).
While the kinds of neural networks used for machine learning have sometimes
been used to understand brain function (,), they are
generally not designed to be realistic models of biological function. The neural
perspective on deep learning is motivated by two main ideas. One idea is that
the brain provides a proof by example that intelligent behavior is possible, and a
conceptually straightforward path to building intelligence is to reverse engineer the
computational principles behind the brain and duplicate its functionality. Another
perspective is that it would be deeply interesting to understand the brain and the
principles that underlie human intelligence, so machine learning models that shed
light on these basic scientific questions are useful apart from their ability to solve
engineering applications.

The modern term “deep learning” goes beyond the neuroscientific perspective
on the current breed of machine learning models. It appeals to a more general
principle of learning multiple levels of composition, which can be applied in machine
learning frameworks that are not necessarily neurally inspired.

13

CHAPTER 1. INTRODUCTION

Figure 1.7: The figure shows two of the three historical waves of artificial neural nets
research, as measured by the frequency of the phrases “cybernetics” and “connectionism” or
“neural networks” according to Google Books (the third wave is too recent to appear). The
first wave started with cybernetics in the 1940s-1960s, with the development of theories

of biological learning (, ;)) and implementations of
the first models such as the perceptron (,) allowing the training of a single
neuron. The second wave started with the connectionist approach of the 1980-1995 period,
with back-propagation ()) to train a neural network with one or two

hidden layers. The current and third wave, deep learning, started around 2006 (

, ; , ; ,), and is just now appearing in book
form as of 2016. The other two waves similarly appeared in book form much later than
the corresponding scientific activity occurred.

14

CHAPTER 1. INTRODUCTION

The earliest predecessors of modern deep learning were simple linear models
motivated from a neuroscientific perspective. These models were designed to
take a set of input values and associate them with an output
These models would learn a set of weights and compute their output

. This first wave of neural networks research was
known as cybernetics, as illustrated in Fig. 1.7.

The McCulloch-Pitts Neuron (:) was an early model
of brain function. This linear model could recognize two different categories of
inputs by testing whether is positive or negative. Of course, for the model
to correspond to the desired definition of the categories, the weights needed to be
set correctly. These weights could be set by the human operator. In the 1950s,
the perceptron (, :) became the first model that could learn
the weights defining the categories given examples of inputs from each category.
The adaptive linear element (ADALINE), which dates from about the same time,
simply returned the value of itself to predict a real number (

,), and could also learn to predict these numbers from data.

These simple learning algorithms greatly affected the modern landscape of
machine learning. The training algorithm used to adapt the weights of the ADA-
LINE was a special case of an algorithm called stochastic gradient descent. Slightly
modified versions of the stochastic gradient descent algorithm remain the dominant
training algorithms for deep learning models today.

Models based on the used by the perceptron and ADALINE are called
linear models. These models remain some of the most widely used machine learning
models, though in many cases they are in different ways than the original
models were trained.

Linear models have many limitations. Most famously, they cannot learn the
XOR function, where and but
and . Critics who observed these flaws in linear models caused
a backlash against biologically inspired learning in general (,
). This was the first major dip in the popularity of neural networks.

Today, neuroscience is regarded as an important source of inspiration for deep
learning researchers, but it is no longer the predominant guide for the field.

The main reason for the diminished role of neuroscience in deep learning
research today is that we simply do not have enough information about the brain
to use it as a guide. To obtain a deep understanding of the actual algorithms used
by the brain, we would need to be able to monitor the activity of (at the very
least) thousands of interconnected neurons simultaneously. Because we are not
able to do this, we are far from understanding even some of the most simple and

15

CHAPTER 1. INTRODUCTION

well-studied parts of the brain (:).

Neuroscience has given us a reason to hope that a single deep learning algorithm
can solve many different tasks. Neuroscientists have found that ferrets can learn to
“see” with the auditory processing region of their brain if their brains are rewired
to send visual signals to that area (,). This suggests that
much of the mammalian brain might use a single algorithm to solve most of the
different tasks that the brain solves. Before this hypothesis, machine learning
research was more fragmented, with different communities of researchers studying
natural language processing, vision, motion planning and speech recognition. Today,
these application communities are still separate, but it is common for deep learning
research groups to study many or even all of these application areas simultaneously.

We are able to draw some rough guidelines from neuroscience. The basic idea of
having many computational units that become intelligent only via their interactions
with each other is inspired by the brain. The Neocognitron (,)
introduced a powerful model architecture for processing images that was inspired
by the structure of the mammalian visual system and later became the basis for

the modern convolutional network (:), as we will see in Sec. 9.10.
Most neural networks today are based on a model neuron called the rectified linear
unit. The original Cognitron (:) introduced a more complicated

version that was highly inspired by our knowledge of brain function. The simplified
modern version was developed incorporating ideas from many viewpoints, with
() and () citing neuroscience as an influence, and
() citing more engineering-oriented influences. While neuroscience
is an important source of inspiration, it need not be taken as a rigid guide. We
know that actual neurons compute very different functions than modern rectified
linear units, but greater neural realism has not yet led to an improvement in
machine learning performance. Also, while neuroscience has successfully inspired
several neural network , we do not yet know enough about biological
learning for neuroscience to offer much guidance for the we
use to train these architectures.

Media accounts often emphasize the similarity of deep learning to the brain.
While it is true that deep learning researchers are more likely to cite the brain as an
influence than researchers working in other machine learning fields such as kernel
machines or Bayesian statistics, one should not view deep learning as an attempt
to simulate the brain. Modern deep learning draws inspiration from many fields,
especially applied math fundamentals like linear algebra, probability, information
theory, and numerical optimization. While some deep learning researchers cite
neuroscience as an important source of inspiration, others are not concerned with

16

CHAPTER 1. INTRODUCTION

neuroscience at all.

It is worth noting that the effort to understand how the brain works on
an algorithmic level is alive and well. This endeavor is primarily known as
“computational neuroscience” and is a separate field of study from deep learning.
It is common for researchers to move back and forth between both fields. The
field of deep learning is primarily concerned with how to build computer systems
that are able to successfully solve tasks requiring intelligence, while the field of
computational neuroscience is primarily concerned with building more accurate
models of how the brain actually works.

In the 1980s, the second wave of neural network research emerged in great part
via a movement called connectionism or parallel distributed processing (

, ; ,). Connectionism arose in the context of
cognitive science. Cognitive science is an interdisciplinary approach to understand-
ing the mind, combining multiple different levels of analysis. During the early
1980s, most cognitive scientists studied models of symbolic reasoning. Despite their
popularity, symbolic models were difficult to explain in terms of how the brain
could actually implement them using neurons. The connectionists began to study
models of cognition that could actually be grounded in neural implementations
(,), reviving many ideas dating back to the work of
psychologist Donald Hebb in the 1940s (,).

The central idea in connectionism is that a large number of simple computational
units can achieve intelligent behavior when networked together. This insight
applies equally to neurons in biological nervous systems and to hidden units in
computational models.

Several key concepts arose during the connectionism movement of the 1980s
that remain central to today’s deep learning.

One of these concepts is that of distributed representation (,).
This is the idea that each input to a system should be represented by many features,
and each feature should be involved in the representation of many possible inputs.
For example, suppose we have a vision system that can recognize cars, trucks, and
birds and these objects can each be red, green, or blue. One way of representing
these inputs would be to have a separate neuron or hidden unit that activates for
each of the nine possible combinations: red truck, red car, red bird, green truck, and
so on. This requires nine different neurons, and each neuron must independently
learn the concept of color and object identity. One way to improve on this situation
is to use a distributed representation, with three neurons describing the color and
three neurons describing the object identity. This requires only six neurons total
instead of nine, and the neuron describing redness is able to learn about redness

17

CHAPTER 1. INTRODUCTION

from images of cars, trucks and birds, not only from images of one specific category
of objects. The concept of distributed representation is central to this book, and
will be described in greater detail in Chapter 15.

Another major accomplishment of the connectionist movement was the suc-
cessful use of back-propagation to train deep neural networks with internal repre-
sentations and the popularization of the back-propagation algorithm (

, ;)). This algorithm has waxed and waned in popularity
but as of this writing is currently the dominant approach to training deep models.

During the 1990s, researchers made important advances in modeling sequences

with neural networks. () and () identified some
of the fundamental mathematical difficulties in modeling long sequences, described
in Sec. 10.7. () introduced the long short-term

memory or LSTM network to resolve some of these difficulties. Today, the LSTM
is widely used for many sequence modeling tasks, including many natural language
processing tasks at Google.

The second wave of neural networks research lasted until the mid-1990s. Ven-
tures based on neural networks and other Al technologies began to make unrealisti-
cally ambitious claims while seeking investments. When Al research did not fulfill
these unreasonable expectations, investors were disappointed. Simultaneously,
other fields of machine learning made advances. Kernel machines (

: , : ,) and graphical models (

,) both achieved good results on many important tasks. These two factors

Y

led to a decline in the popularity of neural networks that lasted until 2007.

During this time, neural networks continued to obtain impressive performance
on some tasks (, ; ,). The Canadian Institute
for Advanced Research (CIFAR) helped to keep neural networks research alive
via its Neural Computation and Adaptive Perception (NCAP) research initiative.
This program united machine learning research groups led by Geoffrey Hinton
at University of Toronto, Yoshua Bengio at University of Montreal, and Yann
LeCun at New York University. The CIFAR NCAP research initiative had a
multi-disciplinary nature that also included neuroscientists and experts in human
and computer vision.

At this point in time, deep networks were generally believed to be very difficult
to train. We now know that algorithms that have existed since the 1980s work
quite well, but this was not apparent circa 2006. The issue is perhaps simply that
these algorithms were too computationally costly to allow much experimentation
with the hardware available at the time.

The third wave of neural networks research began with a breakthrough in

18

CHAPTER 1. INTRODUCTION

2006. Geoffrey Hinton showed that a kind of neural network called a deep belief
network could be efficiently trained using a strategy called greedy layer-wise
pretraining (,), which will be described in more detail in Sec.
15.1. The other CIFAR-affiliated research groups quickly showed that the same
strategy could be used to train many other kinds of deep networks (,

; ,) and systematically helped to improve generalization
on test examples. This wave of neural networks research popularized the use of the
term deep learning to emphasize that researchers were now able to train deeper
neural networks than had been possible before, and to focus attention on the
theoretical importance of depth (, ; ,

: , : ,). At this time, deep neural
networks outperformed competing Al systems based on other machine learning
technologies as well as hand-designed functionality. This third wave of popularity
of neural networks continues to the time of this writing, though the focus of deep
learning research has changed dramatically within the time of this wave. The
third wave began with a focus on new unsupervised learning techniques and the
ability of deep models to generalize well from small datasets, but today there is
more interest in much older supervised learning algorithms and the ability of deep
models to leverage large labeled datasets.

One may wonder why deep learning has only recently become recognized as a
crucial technology though the first experiments with artificial neural networks were
conducted in the 1950s. Deep learning has been successfully used in commercial
applications since the 1990s, but was often regarded as being more of an art than
a technology and something that only an expert could use, until recently. It is true
that some skill is required to get good performance from a deep learning algorithm.
Fortunately, the amount of skill required reduces as the amount of training data
increases. The learning algorithms reaching human performance on complex tasks
today are nearly identical to the learning algorithms that struggled to solve toy
problems in the 1980s, though the models we train with these algorithms have
undergone changes that simplify the training of very deep architectures. The most
important new development is that today we can provide these algorithms with
the resources they need to succeed. Fig. 1.8 shows how the size of benchmark
datasets has increased remarkably over time. This trend is driven by the increasing
digitization of society. As more and more of our activities take place on computers,
more and more of what we do is recorded. As our computers are increasingly
networked together, it becomes easier to centralize these records and curate them

19

CHAPTER 1. INTRODUCTION

into a dataset appropriate for machine learning applications. The age of “Big
Data” has made machine learning much easier because the key burden of statistical
estimation—generalizing well to new data after observing only a small amount
of data—has been considerably lightened. As of 2016, a rough rule of thumb
is that a supervised deep learning algorithm will generally achieve acceptable
performance with around 5,000 labeled examples per category, and will match or
exceed human performance when trained with a dataset containing at least 10
million labeled examples. Working successfully with datasets smaller than this is
an important research area, focusing in particular on how we can take advantage
of large quantities of unlabeled examples, with unsupervised or semi-supervised
learning.

Another key reason that neural networks are wildly successful today after enjoying
comparatively little success since the 1980s is that we have the computational
resources to run much larger models today. One of the main insights of connection-
ism is that animals become intelligent when many of their neurons work together.
An individual neuron or small collection of neurons is not particularly useful.

Biological neurons are not especially densely connected. As seen in Fig. 1.10,
our machine learning models have had a number of connections per neuron that
was within an order of magnitude of even mammalian brains for decades.

In terms of the total number of neurons, neural networks have been astonishingly
small until quite recently, as shown in Fig. 1.11. Since the introduction of hidden
units, artificial neural networks have doubled in size roughly every 2.4 years. This
growth is driven by faster computers with larger memory and by the availability
of larger datasets. Larger networks are able to achieve higher accuracy on more
complex tasks. This trend looks set to continue for decades. Unless new technologies
allow faster scaling, artificial neural networks will not have the same number of
neurons as the human brain until at least the 2050s. Biological neurons may
represent more complicated functions than current artificial neurons, so biological
neural networks may be even larger than this plot portrays.

In retrospect, it is not particularly surprising that neural networks with fewer
neurons than a leech were unable to solve sophisticated artificial intelligence prob-
lems. Even today’s networks, which we consider quite large from a computational
systems point of view, are smaller than the nervous system of even relatively
primitive vertebrate animals like frogs.

The increase in model size over time, due to the availability of faster CPUs,

20

CHAPTER 1. INTRODUCTION

Figure 1.8: Dataset sizes have increased greatly over time. In the early 1900s, statisticians
studied datasets using hundreds or thousands of manually compiled measurements (,
; , : , ; ,). In the 1950s through 1980s, the pioneers
of biologically inspired machine learning often worked with small, synthetic datasets, such
as low-resolution bitmaps of letters, that were designed to incur low computational cost and
demonstrate that neural networks were able to learn specific kinds of functions (

, ; ,). In the 1980s and 1990s, machine learning
became more statistical in nature and began to leverage larger datasets containing tens
of thousands of examples such as the MNIST dataset (shown in Fig. 1.9) of scans of
handwritten numbers (,). In the first decade of the 2000s, more
sophisticated datasets of this same size, such as the CIFAR-10 dataset (

,) continued to be produced. Toward the end of that decade and throughout
the first half of the 2010s, significantly larger datasets, containing hundreds of thousands
to tens of millions of examples, completely changed what was possible with deep learning.
These datasets included the public Street View House Numbers dataset (,

), various versions of the ImageNet dataset (, , ;

,), and the Sports-1M dataset (,). At the top of the
graph, we see that datasets of translated sentences, such as IBM’s dataset constructed
from the Canadian Hansard (,) and the WMT 2014 English to French
dataset (,) are typically far ahead of other dataset sizes.

21

CHAPTER 1. INTRODUCTION

‘H“’{‘QQ&

-

QIN|N BT A D [~ = [N [R W= R |~
Wilrr|on|~|a PP PN (VN [NV~ |p | W
N[RV CP|~=|00|d |~ |~ ||| [o|o | |vx |

Q| [o[O[3 [opfop [« [[y <
DX |D |0 |RO 0|0 (SN |0 o|Os (| W~

N | RHD OO0 || |Wo |~ |x| e N
oo || o |~ L& W 0r |0 |G|~ |Os | |Ww

N[~ |~ |2 NP2 P (D |~ w0 R
~i~IR | oldi=0 s 2 | WIS|I~NNINvI~|alalsy

So| |~ |=[0~c0 |Q|Q |~ |C|R|Wlea|~|a~ ||~
IR A SR IR 191Y B AR PR I A N N N By SO B S (G Y
IR BTSRRI TS ENE I G RN EN U B Y
N VO[R[N B N B[W O (sa|w |RN
N WSl EIFEIRIN R D ISR =se N~
O hi<|c| KON |on R | & Oles [|| ~|e~|~ |0 W
WI~Q|R[~|ov o || F R D=0V [|7 =0 e~
®|IR~RRON[R[ORIKR| SN =WIPIN
SV PN E BN (e Y[1N ERN TN ISR AV [S AN ERY S0 PN

¢
J:,l
d
3
7
3
/
Z
4
y
A
s
Y
L
{
-
9
i
?

Q|Gy| R | BIN I O ISRy o= W

47:3/4??!3é¢4¢?5’7ﬂf?

Figure 1.9: Example inputs from the MNIST dataset. The “NIST” stands for National
Institute of Standards and Technology, the agency that originally collected this data.
The “M” stands for “modified,” since the data has been preprocessed for easier use with
machine learning algorithms. The MNIST dataset consists of scans of handwritten digits
and associated labels describing which digit 0-9 is contained in each image. This simple
classification problem is one of the simplest and most widely used tests in deep learning
research. It remains popular despite being quite easy for modern techniques to solve.
Geoffrey Hinton has described it as “the of machine learning,” meaning that
it allows machine learning researchers to study their algorithms in controlled laboratory
conditions, much as biologists often study fruit flies.

22

CHAPTER 1. INTRODUCTION

the advent of general purpose GPUs (described in Sec. 12.1.2), faster network
connectivity and better software infrastructure for distributed computing, is one of
the most important trends in the history of deep learning. This trend is generally
expected to continue well into the future.

Since the 1980s, deep learning has consistently improved in its ability to provide
accurate recognition or prediction. Moreover, deep learning has consistently been
applied with success to broader and broader sets of applications.

The earliest deep models were used to recognize individual objects in tightly
cropped, extremely small images (,). Since then there has
been a gradual increase in the size of images neural networks could process. Modern
object recognition networks process rich high-resolution photographs and do not
have a requirement that the photo be cropped near the object to be recognized
(,). Similarly, the earliest networks could only recognize
two kinds of objects (or in some cases, the absence or presence of a single kind of
object), while these modern networks typically recognize at least 1,000 different
categories of objects. The largest contest in object recognition is the ImageNet
Large-Scale Visual Recognition Challenge (ILSVRC) held each year. A dramatic
moment in the meteoric rise of deep learning came when a convolutional network
won this challenge for the first time and by a wide margin, bringing down the
state-of-the-art top-5 error rate from 26.1% to 15.3% (:)
meaning that the convolutional network produces a ranked list of possible categories
for each image and the correct category appeared in the first five entries of this
list for all but 15.3% of the test examples. Since then, these competitions are
consistently won by deep convolutional nets, and as of this writing, advances in
deep learning have brought the latest top-5 error rate in this contest down to 3.6%,
as shown in Fig. 1.12.

Deep learning has also had a dramatic impact on speech recognition. After
improving throughout the 1990s, the error rates for speech recognition stagnated
starting in about 2000. The introduction of deep learning (, :

, : , : ,) to speech recognition resulted
in a sudden drop of error rates, with some error rates cut in half. We will explore
this history in more detail in Sec. 12.3.

Deep networks have also had spectacular successes for pedestrian detection and
image segmentation (, X , X ,
) and yielded superhuman performance in traffic sign classification (

23

CHAPTER 1. INTRODUCTION

Figure 1.10: Initially, the number of connections between neurons in artificial neural
networks was limited by hardware capabilities. Today, the number of connections between
neurons is mostly a design consideration. Some artificial neural networks have nearly as
many connections per neuron as a cat, and it is quite common for other neural networks
to have as many connections per neuron as smaller mammals like mice. Even the human
brain does not have an exorbitant amount of connections per neuron. Biological neural
network sizes from ().

24

CHAPTER 1. INTRODUCTION

, 2012).

At the same time that the scale and accuracy of deep networks has increased,
so has the complexity of the tasks that they can solve. ()
showed that neural networks could learn to output an entire sequence of characters
transcribed from an image, rather than just identifying a single object. Previously,
it was widely believed that this kind of learning required labeling of the individual
elements of the sequence (,). Recurrent neural networks,
such as the LSTM sequence model mentioned above, are now used to model
relationships between sequences and other sequences rather than just fixed inputs.
This sequence-to-sequence learning seems to be on the cusp of revolutionizing
another application: machine translation (, : ,

).

This trend of increasing complexity has been pushed to its logical conclusion
with the introduction of neural Turing machines (:) that learn
to read from memory cells and write arbitrary content to memory cells. Such
neural networks can learn simple programs from examples of desired behavior. For
example, they can learn to sort lists of numbers given examples of scrambled and
sorted sequences. This self-programming technology is in its infancy, but in the
future could in principle be applied to nearly any task.

Another crowning achievement of deep learning is its extension to the domain
of reinforcement learning. In the context of reinforcement learning, an autonomous
agent must learn to perform a task by trial and error, without any guidance from
the human operator. DeepMind demonstrated that a reinforcement learning system
based on deep learning is capable of learning to play Atari video games, reaching
human-level performance on many tasks (,). Deep learning has
also significantly improved the performance of reinforcement learning for robotics

(, 2015).

Many of these applications of deep learning are highly profitable. Deep learning
is now used by many top technology companies including Google, Microsoft,
Facebook, IBM, Baidu, Apple, Adobe, Netflix, NVIDIA and NEC.

Advances in deep learning have also depended heavily on advances in software
infrastructure. Software libraries such as Theano (, ;

,), PyLearn2 (,), Torch (,)
DistBelief (,), Caffe (Jia,), MXNet (:), and
TensorFlow (,) have all supported important research projects or

commercial products.

Deep learning has also made contributions back to other sciences. Modern
convolutional networks for object recognition provide a model of visual processing

25

CHAPTER 1. INTRODUCTION

that neuroscientists can study (,). Deep learning also provides useful
tools for processing massive amounts of data and making useful predictions in
scientific fields. It has been successfully used to predict how molecules will interact
in order to help pharmaceutical companies design new drugs (,),
to search for subatomic particles (,), and to automatically parse
microscope images used to construct a 3-D map of the human brain (

,). We expect deep learning to appear in more and more scientific
fields in the future.

In summary, deep learning is an approach to machine learning that has drawn
heavily on our knowledge of the human brain, statistics and applied math as it
developed over the past several decades. In recent years, it has seen tremendous
growth in its popularity and usefulness, due in large part to more powerful com-
puters, larger datasets and techniques to train deeper networks. The years ahead
are full of challenges and opportunities to improve deep learning even further and
bring it to new frontiers.

26

CHAPTER 1. INTRODUCTION

= 11 1

Figure 1.11: Since the introduction of hidden units, artificial neural networks have doubled
in size roughly every 2.4 years. Biological neural network sizes from Wikipedia (2015).

27

CHAPTER 1. INTRODUCTION

Figure 1.12: Since deep networks reached the scale necessary to compete in the ImageNet
Large Scale Visual Recognition Challenge, they have consistently won the competition
every year, and yielded lower and lower error rates each time. Data from

() and ().

28

Part 1

Applied Math and Machine
Learning Basics

29

This part of the book introduces the basic mathematical concepts needed to
understand deep learning. We begin with general ideas from applied math that
allow us to define functions of many variables, find the highest and lowest points
on these functions and quantify degrees of belief.

Next, we describe the fundamental goals of machine learning. We describe how
to accomplish these goals by specifying a model that represents certain beliefs,
designing a cost function that measures how well those beliefs correspond with
reality and using a training algorithm to minimize that cost function.

This elementary framework is the basis for a broad variety of machine learning
algorithms, including approaches to machine learning that are not deep. In the
subsequent parts of the book, we develop deep learning algorithms within this
framework.

30

Chapter 2

Linear Algebra

Linear algebra is a branch of mathematics that is widely used throughout science
and engineering. However, because linear algebra is a form of continuous rather
than discrete mathematics, many computer scientists have little experience with it.
A good understanding of linear algebra is essential for understanding and working
with many machine learning algorithms, especially deep learning algorithms. We
therefore precede our introduction to deep learning with a focused presentation of
the key linear algebra prerequisites.

If you are already familiar with linear algebra, feel free to skip this chapter. If
you have previous experience with these concepts but need a detailed reference
sheet to review key formulas, we recommend The Matriz Cookbook (

,). If you have no exposure at all to linear algebra, this chapter
will teach you enough to read this book, but we highly recommend that you also
consult another resource focused exclusively on teaching linear algebra, such as

(). This chapter will completely omit many important linear algebra
topics that are not essential for understanding deep learning.

2.1 Scalars, Vectors, Matrices and Tensors
The study of linear algebra involves several types of mathematical objects:

e Scalars: A scalar is just a single number, in contrast to most of the other
objects studied in linear algebra, which are usually arrays of multiple numbers.
We write scalars in italics. We usually give scalars lower-case variable names.
When we introduce them, we specify what kind of number they are. For

31

CHAPTER 2. LINEAR ALGEBRA

example, we might say “Let s € R be the slope of the line,” while defining a
real-valued scalar, or “Let n € N be the number of units,” while defining a
natural number scalar.

e Vectors: A vector is an array of numbers. The numbers are arranged in
order. We can identify each individual number by its index in that ordering.
Typically we give vectors lower case names written in bold typeface, such
as . The elements of the vector are identified by writing its name in italic
typeface, with a subscript. The first element of x is x1, the second element
is 2 and so on. We also need to say what kind of numbers are stored in
the vector. If each element is in R, and the vector has n elements, then the
vector lies in the set formed by taking the Cartesian product of R n times,
denoted as R™. When we need to explicitly identify the elements of a vector,
we write them as a column enclosed in square brackets:

= |
z=| 7| (2.1)

L

We can think of vectors as identifying points in space, with each element
giving the coordinate along a different axis.

Sometimes we need to index a set of elements of a vector. In this case, we
define a set containing the indices and write the set as a subscript. For
example, to access 1, x3 and xg, we define the set S = {1,3,6} and write
xg. We use the — sign to index the complement of a set. For example x_ is
the vector containing all elements of « except for x1, and x_g is the vector
containing all of the elements of x except for x, 3 and xg.

e Matrices: A matrix is a 2-D array of numbers, so each element is identified by
two indices instead of just one. We usually give matrices upper-case variable
names with bold typeface, such as A. If a real-valued matrix A has a height
of m and a width of n, then we say that A € R™*™. We usually identify
the elements of a matrix using its name in italic but not bold font, and the
indices are listed with separating commas. For example, A1 ; is the upper
left entry of A and A,,,, is the bottom right entry. We can identify all of
the numbers with vertical coordinate ¢ by writing a “:” for the horizontal
coordinate. For example, A;. denotes the horizontal cross section of A with
vertical coordinate ¢. This is known as the i-th row of A. Likewise, A.; is

32

CHAPTER 2. LINEAR ALGEBRA

Figure 2.1: The transpose of the matrix can be thought of as a mirror image across the
main diagonal.

the i-th column of A. When we need to explicitly identify the elements of a
matrix, we write them as an array enclosed in square brackets:

Ain Arg }
’ ’) 2.2
{ Az Azp (2:2)

Sometimes we may need to index matrix-valued expressions that are not just
a single letter. In this case, we use subscripts after the expression, but do
not convert anything to lower case. For example, f(A); ; gives element (4, 7)
of the matrix computed by applying the function f to A.

e Tensors: In some cases we will need an array with more than two axes. In
the general case, an array of numbers arranged on a regular grid with a
variable number of axes is known as a tensor. We denote a tensor named “A”
with this typeface: A. We identify the element of A at coordinates (i, 7, k)
by writing A; ; .

One important operation on matrices is the transpose. The transpose of a
matrix is the mirror image of the matrix across a diagonal line, called the main
diagonal, running down and to the right, starting from its upper left corner. See
Fig. 2.1 for a graphical depiction of this operation. We denote the transpose of a
matrix A as AT, and it is defined such that

(A1) = A (2.3)

Vectors can be thought of as matrices that contain only one column. The
transpose of a vector is therefore a matrix with only one row. Sometimes we

33

CHAPTER 2. LINEAR ALGEBRA

define a vector by writing out its elements in the text inline as a row matrix,
then using the transpose operator to turn it into a standard column vector, e.g.,

I = [513'1,:13'2, Z’g]T.

A scalar can be thought of as a matrix with only a single entry. From this, we

can see that a scalar is its own transpose: a = a'.

We can add matrices to each other, as long as they have the same shape, just
by adding their corresponding elements: C' = A + B where C; j = A; ; + B; ;.

We can also add a scalar to a matrix or multiply a matrix by a scalar, just
by performing that operation on each element of a matrix: D =a - B + ¢ where
Di,j =a- Bi,j + c.

In the context of deep learning, we also use some less conventional notation.
We allow the addition of matrix and a vector, yielding another matrix: C = A + b,
where C; j = A; ; +b;. In other words, the vector b is added to each row of the
matrix. This shorthand eliminates the need to define a matrix with b copied into
each row before doing the addition. This implicit copying of b to many locations
is called broadcasting.

2.2 Multiplying Matrices and Vectors

One of the most important operations involving matrices is multiplication of two
matrices. The matriz product of matrices A and B is a third matrix C. In order
for this product to be defined, A must have the same number of columns as B has
rows. If A is of shape m x n and B is of shape n x p, then C' is of shape m x p.
We can write the matrix product just by placing two or more matrices together,
e.g.

C =AB. (2.4)

The product operation is defined by

Cij =Y AixBpj. (2.5)
k

Note that the standard product of two matrices is not just a matrix containing
the product of the individual elements. Such an operation exists and is called the
element-wise product or Hadamard product, and is denoted as A ® B.

The dot product between two vectors « and y of the same dimensionality is the
matrix product & 'y. We can think of the matrix product C = AB as computing
C;; as the dot product between row 7 of A and column j of B.

34

CHAPTER 2. LINEAR ALGEBRA

Matrix product operations have many useful properties that make mathematical
analysis of matrices more convenient. For example, matrix multiplication is

distributive:
AB+C)=AB + AC. (2.6)

It is also associative:

A(BC) = (AB)C. (2.7)

Matrix multiplication is not commutative (the condition AB = BA does not
always hold), unlike scalar multiplication. However, the dot product between two

vectors is commutative:
' y=y' x. (2.8)

The transpose of a matrix product has a simple form:
(AB)' =BTAT. (2.9)

This allows us to demonstrate Eq. 2.8, by exploiting the fact that the value of
such a product is a scalar and therefore equal to its own transpose:

-
x'y = (:BTy) =y x. (2.10)

Since the focus of this textbook is not linear algebra, we do not attempt to
develop a comprehensive list of useful properties of the matrix product here, but
the reader should be aware that many more exist.

We now know enough linear algebra notation to write down a system of linear

equations:
Ax =b (2.11)

where A € R™*" is a known matrix, b € R™ is a known vector, and x € R™ is a
vector of unknown variables we would like to solve for. Each element x; of x is one
of these unknown variables. Each row of A and each element of b provide another
constraint. We can rewrite Eq. 2.11 as:

A =10 (2.12)
Ay.x = b (2.13)
(2.14)
Ap.x=by (2.15)
or, even more explicitly, as:
A1+ Ao+ -+ Az, =Dy (2.16)

35

CHAPTER 2. LINEAR ALGEBRA

1 0 0
010
0 01
Figure 2.2: : Thisis I
A271$1 + A272x2 + e+ A2,n$n = by (2.17)
(2.18)
Am,lxl + Am,2$2 + e Am,nxn - bm . (219)

Matrix-vector product notations provides a more compact representation for
equations of this form.

2.3 Identity and Inverse Matrices

Linear algebra offers a powerful tool called matriz inversion that allows us to
analytically solve Eq. 2.11 for many values of A.

To describe matrix inversion, we first need to define the concept of an identity
matriz. An identity matrix is a matrix that does not change any vector when we
multiply that vector by that matrix. We denote the identity matrix that preserves
n-dimensional vectors as I,. Formally, I,, € R™*" and

Ve e R", I, x = . (2.20)

The structure of the identity matrix is simple: all of the entries along the main
diagonal are 1, while all of the other entries are zero. See Fig. 2.2 for an example.

The matriz inverse of A is denoted as A~!, and it is defined as the matrix
such that
A'A=1,. (2.21)

We can now solve Eq. 2.11 by the following steps:

Ax=b (2.22)
A7t Az =A"" (2.23)
ILx=A"b (2.24)

36

CHAPTER 2. LINEAR ALGEBRA

xr=A"1b. (2.25)

Of course, this depends on it being possible to find A~!. We discuss the
conditions for the existence of A~! in the following section.

When A~ exists, several different algorithms exist for finding it in closed form.
In theory, the same inverse matrix can then be used to solve the equation many
times for different values of b. However, A~! is primarily useful as a theoretical
tool, and should not actually be used in practice for most software applications.
Because A~! can be represented with only limited precision on a digital computer,
algorithms that make use of the value of b can usually obtain more accurate
estimates of «.

2.4 Linear Dependence and Span

In order for A~ to exist, Eq. 2.11 must have exactly one solution for every value
of b. However, it is also possible for the system of equations to have no solutions
or infinitely many solutions for some values of b. It is not possible to have more
than one but less than infinitely many solutions for a particular b; if both & and y
are solutions then

z=ax+ (1—a)y (2.26)

is also a solution for any real a.

To analyze how many solutions the equation has, we can think of the columns
of A as specifying different directions we can travel from the origin (the point
specified by the vector of all zeros), and determine how many ways there are of
reaching b. In this view, each element of & specifies how far we should travel in
each of these directions, with x; specifying how far to move in the direction of
column 2:

)

In general, this kind of operation is called a linear combination. Formally, a linear
combination of some set of vectors {v (... v(™} is given by multiplying each
vector v by a corresponding scalar coefficient and adding the results:

v, (2.28)
i
The span of a set of vectors is the set 1l points obtainable by linear combination

of the original vectors.

37

CHAPTER 2. LINEAR ALGEBRA

Determining whether Ax= b has a solution thus amounts to testing whether
b is in the span of the columns of A. This particular span is known as the column
space or the range of A.

In order for the system Ax = b to have a solution for all values of b € R™,
we therefore require that the column space of A be all of R™. If any point in R
is excluded from the column space, that point is a potential value of b that has
no solution. The requirement that the column space of A be all of R™ implies
immediately that A must have at least m columns, i.e., n > m. Otherwise, the
dimensionality of the column space would be less than m. For example, consider a
3 x 2 matrix. The target bis 3-D, but x is only 2-D, so modifying the value of @
at best allows us to trace out a 2-D plane within R3. The equation has a solution
if and only if b lies on that plane.

Having n > m is only a necessary condition for every point to have a solution.
It is not a sufficient condition, because it is possible for some of the columns to be
redundant. Consider a 2 x 2 matrix where both of the columns are equal to each
other. This has the same column space as a 2 X 1 matrix containing only one copy
of the replicated column. In other words, the column space is still just a line, and
fails to encompass all of R? even though there are two columns.

Formally, this kind of redundancy is known as linear dependence. A set of
vectors is linearly independent if no vector in the set is a linear combination of the
other vectors. If we add a vector to a set that is a linear combination of the other
vectors in the set, the new vector does not add any points to the set’s span. This
means that for the column space of the matrix to encompass all of R, the matrix
must contain at least one set of m linearly independent columns. This condition
is both necessary and sufficient for Eq. 2.11 to have a solution for every value of
b. Note that the requirement is for a set to have exactly m linear independent
columns, not at least m. No set of m-dimensional vectors can have more than m
mutually linearly independent columns, but a matrix with more than m columns
may have more than one such set.

In order for the matrix to have an inverse, we additionally need to ensure that
Eq. 2.11 has at most one solution for each value of b. To do so, we need to ensure
that the matrix has at most m columns. Otherwise there is more than one way of
parametrizing each solution.

Together, this means that the matrix must be square, that is, we require that
m = n and that all of the columns must be linearly independent. A square matrix
with linearly dependent columns is known as singular.

If A is not square or is square but singular, it can still be possible to solve the

38

CHAPTER 2. LINEAR ALGEBRA

equation. However, we can not use the method of matrix inversion to find the
solution.

So far we have discussed matrix inverses as being multiplied on the left. It is
also possible to define an inverse that is multiplied on the right:

AATI =T (2.29)

For square matrices, the left inverse and right inverse are equal.

2.5 Norms

Sometimes we need to measure the size of a vector. In machine learning, we usually
measure the size of vectors using a function called a norm. Formally, the LP norm
is given by

||, = in|p> (2.30)

forpe R,p>1.

Norms, including the L? norm, are functions mapping vectors to non-negative
values. On an intuitive level, the norm of a vector & measures the distance from
the origin to the point . More rigorously, a norm is any function f that satisfies
the following properties:

e flx)=0=x =
e flx+y) < f(x)+ f(y) (the triangle inequality)

e Va € R, flax) = |off(z)

The L? norm, with p = 2, is known as the Fuclidean norm. It is simply the
Euclidean distance from the origin to the point identified by . The L? norm is
used so frequently in machine learning that it is often denoted simply as ||x||, with
the subscript 2 omitted. It is also common to measure the size of a vector using

the squared L? norm, which can be calculated simply as = "x.

The squared L? norm is more convenient to work with mathematically and
computationally than the L2 norm itself. For example, the derivatives of the
squared L? norm with respect to each element of @ each depend only on the
corresponding element of , while all of the derivatives of the L? norm depend
on the entire vector. In many contexts, the squared L? norm may be undesirable

39

CHAPTER 2. LINEAR ALGEBRA

because it increases very slowly near the origin. In several machine learning
applications, it is important to discriminate between elements that are exactly
zero and elements that are small but nonzero. In these cases, we turn to a function
that grows at the same rate in all locations, but retains mathematical simplicity:
the L' norm. The L' norm may be simplified to

[l = Z i (2.31)

The L' norm is commonly used in machine learning when the difference between
zero and nonzero elements is very important. Every time an element of & moves
away from 0 by €, the L' norm increases by e.

We sometimes measure the size of the vector by counting its number of nonzero
elements. Some authors refer to this function as the “L° norm,” but this is incorrect
terminology. The number of non-zero entries in a vector is not a norm, because
scaling the vector by a does not change the number of nonzero entries. The L'
norm is often used as a substitute for the number of nonzero entries.

One other norm that commonly arises in machine learning is the L* norm,
also known as the max norm. This norm simplifies to the absolute value of the
element with the largest magnitude in the vector,

||Z]|o0 = max |5 |. (2.32)

Sometimes we may also wish to measure the size of a matrix. In the context
of deep learning, the most common way to do this is with the otherwise obscure
Frobenius norm

1Al r= \/ZA?,J-, (2.33)
i

which is analogous to the L? norm of a vector.

The dot product of two vectors can be rewritten in terms of norms. Specifically,
z'y = ||2||2|lyl|2 cos b (2.34)

where 0 is the angle between x and y.

2.6 Special Kinds of Matrices and Vectors

Some special kinds of matrices and vectors are particularly useful.

40

CHAPTER 2. LINEAR ALGEBRA

Diagonal matrices consist mostly of zeros and have non-zero entries only along
the main diagonal. Formally, a matrix D is diagonal if and only if D;; = 0 for
all 7 #% j. We have already seen one example of a diagonal matrix: the identity
matrix, where all of the diagonal entries are 1. We write diag(v) to denote a square
diagonal matrix whose diagonal entries are given by the entries of the vector w.
Diagonal matrices are of interest in part because multiplying by a diagonal matrix
is very computationally efficient. To compute diag(v)x, we only need to scale each
element x; by v;. In other words, diag(v)xr = v ® x. Inverting a square diagonal
matrix is also efficient. The inverse exists only if every diagonal entry is nonzero,
and in that case, diag(v)~! = diag([1/v1,...,1/v5]). In many cases, we may
derive some very general machine learning algorithm in terms of arbitrary matrices,
but obtain a less expensive (and less descriptive) algorithm by restricting some
matrices to be diagonal.

Not all diagonal matrices need be square. It is possible to construct a rectangular
diagonal matrix. Non-square diagonal matrices do not have inverses but it is still
possible to multiply by them cheaply. For a non-square diagonal matrix D, the
product D« will involve scaling each element of @, and either concatenating some
zeros to the result if D is taller than it is wide, or discarding some of the last
elements of the vector if D is wider than it is tall.

A symmetric matrix is any matrix that is equal to its own transpose:
A=A (2.35)

Symmetric matrices often arise when the entries are generated by some function of
two arguments that does not depend on the order of the arguments. For example,
if A is a matrix of distance measurements, with A; ; giving the distance from point
i to point 7, then A;; = A;; because distance functions are symmetric.

A wunit vector is a vector with unit norm:

2|l = 1. (2.36)

A vector « and a vector y are orthogonal to each other if & Ty = 0. If both
vectors have nonzero norm, this means that they are at a 90 degree angle to each
other. In R”, at most nvectors may be mutually orthogonal with nonzero norm.
If the vectors are not only orthogonal but also have unit norm, we call them
orthonormal.

An orthogonal matriz is a square matrix whose rows are mutually orthonormal
and whose columns are mutually orthonormal:

ATA=AA" =1. (2.37)
41

CHAPTER 2. LINEAR ALGEBRA

This implies that
A t=AT (2.38)

so orthogonal matrices are of interest because their inverse is very cheap to compute.
Pay careful attention to the definition of orthogonal matrices. Counterintuitively,
their rows are not merely orthogonal but fully orthonormal. There is no special
term for a matrix whose rows or columns are orthogonal but not orthonormal.

2.7 Eigendecomposition

Many mathematical objects can be understood better by breaking them into
constituent parts, or finding some properties of them that are universal, not caused
by the way we choose to represent them.

For example, integers can be decomposed into prime factors. The way we
represent the number 12 will change depending on whether we write it in base ten
or in binary, but it will always be true that 12 = 2 x 2 x 3. From this representation
we can conclude useful properties, such as that 12 is not divisible by 5, or that any
integer multiple of 12 will be divisible by 3.

Much as we can discover something about the true nature of an integer by
decomposing it into prime factors, we can also decompose matrices in ways that
show us information about their functional properties that is not obvious from the
representation of the matrix as an array of elements.

One of the most widely used kinds of matrix decomposition is called eigen-
decomposition, in which we decompose a matrix into a set of eigenvectors and
eigenvalues.

An eigenvector of a square matrix A is a non-zero vector v such that multipli-
cation by A alters only the scale of v:

Av =). (2.39)

The scalar \is known as the eigenvalue corresponding to this eigenvector. (One
can also find a left eigenvector such that v’ A = v T, but we are usually concerned
with right eigenvectors).

If v is an eigenvector of A, then so is any rescaled vector sv for s € R, s # 0.
Moreover, sv still has the same eigenvalue. For this reason, we usually only look
for unit eigenvectors.

Suppose that a matrix A has n linearly independent eigenvectors, {v(l), cee
v} with corresponding eigenvalues {\;, ..., \,}. We may concatenate all of the

42

CHAPTER 2. LINEAR ALGEBRA

Figure 2.3: An example of the effect of eigenvectors and eigenvalues. Here, we have
a matrix A with two orthonormal eigenvectors, v with eigenvalue A and v with
eigenvalue \ . We plot the set of all unit vectors w € R as a unit circle.

We plot the set of all points Au. By observing the way that A distorts the unit circle, we
can see that it scales space in direction v by A .

eigenvectors to form a matrix V' with one eigenvector per column: V = [v(l), cee
v(”)]. Likewise, we can concatenate the eigenvalues to form a vector A= [\1,...,
M]T. The eigendecomposition of A is then given by

A = Vdiag ANV (2.40)

We have seen that constructing matrices with specific eigenvalues and eigenvec-
tors allows us to stretch space in desired directions. However, we often want to
decompose matrices into their eigenvalues and eigenvectors. Doing so can help us
to analyze certain properties of the matrix, much as decomposing an integer into
its prime factors can help us understand the behavior of that integer.

Not every matrix can be decomposed into eigenvalues and eigenvectors. In some

43

CHAPTER 2. LINEAR ALGEBRA

cases, the decomposition exists, but may involve complex rather than real numbers.
Fortunately, in this book, we usually need to decompose only a specific class of
matrices that have a simple decomposition. Specifically, every real symmetric
matrix can be decomposed into an expression using only real-valued eigenvectors
and eigenvalues:

A=qQ Q. (2.41)

where @ is an orthogonal matrix composed of eigenvectors of A, and is a
diagonal matrix. The eigenvalue A;; is associated with the eigenvector in column ¢
of Q, denoted as Q. ;. Because Q is an orthogonal matrix, we can think of A as
scaling space by N in direction v(9. See Fig. 2.3 for an example.

While any real symmetric matrix A is guaranteed to have an eigendecomposi-
tion, the eigendecomposition may not be unique. If any two or more eigenvectors
share the same eigenvalue, then any set of orthogonal vectors lying in their span
are also eigenvectors with that eigenvalue, and we could equivalently choose a Q
using those eigenvectors instead. By convention, we usually sort the entries of
in descending order. Under this convention, the eigendecomposition is unique only
if all of the eigenvalues are unique.

The eigendecomposition of a matrix tells us many useful facts about the
matrix. The matrix is singular if and only if any of the eigenvalues are 0. The
eigendecomposition of a real symmetric matrix can also be used to optimize
quadratic expressions of the form f(x) = &' Ax subject to ||z||o = 1. Whenever x
is equal to an eigenvector of A, f takes on the value of the corresponding eigenvalue.
The maximum value of f within the constraint region is the maximum eigenvalue
and its minimum value within the constraint region is the minimum eigenvalue.

A matrix whose eigenvalues are all positive is called positive definite. A matrix
whose eigenvalues are all positive or zero-valued is called positive semidefinite.
Likewise, if all eigenvalues are negative, the matrix is negative definite, and if
all eigenvalues are negative or zero-valued, it is negative semidefinite. Positive
semidefinite matrices are interesting because they guarantee that Vo, & ' Az > 0.
Positive definite matrices additionally guarantee that € "Az = 0 = = =

2.8 Singular Value Decomposition

In Sec. 2.7, we saw how to decompose a matrix into eigenvectors and eigenvalues.
The singular value decomposition (SVD) provides another way to factorize a matrix,
into singular vectors and singular values. The SVD allows us to discover some of
the same kind of information as the eigendecomposition. However, the SVD is

44

CHAPTER 2. LINEAR ALGEBRA

more generally applicable. Every real matrix has a singular value decomposition,
but the same is not true of the eigenvalue decomposition. For example, if a matrix
is not square, the eigendecomposition is not defined, and we must use a singular
value decomposition instead.

Recall that the eigendecomposition involves analyzing a matrix A to discover
a matrix V of eigenvectors and a vector of eigenvalues A such that we can rewrite

A as
A = Vdiag(\)V 1, (2.42)

The singular value decomposition is similar, except this time we will write A
as a product of three matrices:

A=UDV " (2.43)

Suppose that A is an m x n matrix. Then U is defined to be an m x m matrix,
D to be an m x n matrix, and V to be an n X n matrix.

Each of these matrices is defined to have a special structure. The matrices U
and V are both defined to be orthogonal matrices. The matrix D is defined to be
a diagonal matrix. Note that D is not necessarily square.

The elements along the diagonal of D are known as the singular values of the
matrix A. The columns of U are known as the left-singular vectors. The columns
of V' are known as as the right-singular vectors.

We can actually interpret the singular value decomposition of A in terms of
the eigendecomposition of functions of A. The left-singular vectors of A are the
eigenvectors of AAT. The right-singular vectors of A are the eigenvectors of AT A.
The non-zero singular values of A are the square roots of the eigenvalues of AT A.
The same is true for AAT.

Perhaps the most useful feature of the SVD is that we can use it to partially
generalize matrix inversion to non-square matrices, as we will see in the next
section.

2.9 The Moore-Penrose Pseudoinverse

Matrix inversion is not defined for matrices that are not square. Suppose we want
to make a left-inverse B of a matrix A, so that we can solve a linear equation

Ax =y (2.44)

45

CHAPTER 2. LINEAR ALGEBRA

by left-multiplying each side to obtain
x = By. (2.45)

Depending on the structure of the problem, it may not be possible to design a
unique mapping from A to B.

If A is taller than it is wide, then it is possible for this equation to have
no solution. If A is wider than it is tall, then there could be multiple possible
solutions.

The Moore-Penrose pseudotnverse allows us to make some headway in these
cases. The pseudoinverse of A is defined as a matrix

At = h{% (ATA+al)" AT, (2.46)

Practical algorithms for computing the pseudoinverse are not based on this defini-
tion, but rather the formula

At =vD'UT, (2.47)

where U, D and V are the singular value decomposition of A, and the pseudoinverse
D™ of a diagonal matrix D is obtained by taking the reciprocal of its non-zero
elements then taking the transpose of the resulting matrix.

When A has more columns than rows, then solving a linear equation using the
pseudoinverse provides one of the many possible solutions. Specifically, it provides
the solution * = ATy with minimal Euclidean norm |||l among all possible
solutions.

When A has more rows than columns, it is possible for there to be no solution.
In this case, using the pseudoinverse gives us the & for which Ax is as close as
possible to y in terms of Euclidean norm ||Ax — yl|2.

2.10 The Trace Operator

The trace operator gives the sum of all of the diagonal entries of a matrix:

TI‘(A) = A, (2.48)

The trace operator is useful for a V&I‘ieEf:Of reasons. Some operations that are
difficult to specify without resorting to summation notation can be specified using

46

CHAPTER 2. LINEAR ALGEBRA

matrix products and the trace operator. For example, the trace operator provides
an alternative way of writing the Frobenius norm of a matrix:

14]|p = /Tr(AAT). (2.49)

Writing an expression in terms of the trace operator opens up opportunities to
manipulate the expression using many useful identities. For example, the trace
operator is invariant to the transpose operator:

Tr(A) = Tr(AT). (2.50)

The trace of a square matrix composed of many factors is also invariant to
moving the last factor into the first position, if the shapes of the corresponding
matrices allow the resulting product to be defined:

Tr(ABC) = Tr(CAB) = Te(BCA) (2.51)

or more generally,

n n—1
T(J[FY) = Te(F™ [T F?). (2.52)
=1 =1

This invariance to cyclic permutation holds even if the resulting product has a
different shape. For example, for A € R™*"™ and B € R™*™ we have

Tr(AB) = Tr(BA) (2.53)

even though AB € R™*™ and BA € R™"*™.

Another useful fact to keep in mind is that a scalar is its own trace: a = Tr(a).

2.11 The Determinant

The determinant of a square matrix, denoted det(A), is a function mapping
matrices to real scalars. The determinant is equal to the product of all the
eigenvalues of the matrix. The absolute value of the determinant can be thought
of as a measure of how much multiplication by the matrix expands or contracts
space. If the determinant is 0, then space is contracted completely along at least
one dimension, causing it to lose all of its volume. If the determinant is 1, then
the transformation is volume-preserving.

47

CHAPTER 2. LINEAR ALGEBRA

2.12 Example: Principal Components Analysis

One simple machine learning algorithm, principal components analysis or PCA can
be derived using only knowledge of basic linear algebra.

Suppose we have a collection of m points {:13(1), e ,az(m)} in R". Suppose we
would like to apply lossy compression to these points. Lossy compression means
storing the points in a way that requires less memory but may lose some precision.
We would like to lose as little precision as possible.

One way we can encode these points is to represent a lower-dimensional version
of them. For each point (9 € R” we will find a corresponding code vector c® e R
If [is smaller than n, it will take less memory to store the code points than the
original data. We will want to find some encoding function that produces the code
for an input, f(x) = ¢, and a decoding function that produces the reconstructed
input given its code, x ~ g(f(x)).

PCA is defined by our choice of the decoding function. Specifically, to make the
decoder very simple, we choose to use matrix multiplication to map the code back
into R”. Let g(¢) = Dec, where D € R**! is the matrix defining the decoding.

Computing the optimal code for this decoder could be a difficult problem. To
keep the encoding problem easy, PCA constrains the columns of D to be orthogonal
to each other. (Note that D is still not technically “an orthogonal matrix” unless
l=n)

With the problem as described so far, many solutions are possible, because we
can increase the scale of D. ; if we decrease ¢; proportionally for all points. To give
the problem a unique solution, we constrain all of the columns of D to have unit
norm.

In order to turn this basic idea into an algorithm we can implement, the first
thing we need to do is figure out how to generate the optimal code point ¢* for
each input point &. One way to do this is to minimize the distance between the
input point @ and its reconstruction, g(c*). We can measure this distance using a
norm. In the principal components algorithm, we use the L? norm:

¢’ = argmin ||z — g(c)||2. (2.54)

We can switch to the squared L? norm instead of the L? norm itself, because
both are minimized by the same value of ¢. This is because the L? norm is non-
negative and the squaring operation is monotonically increasing for non-negative

48

CHAPTER 2. LINEAR ALGEBRA

arguments.

c* = argmin ||z — g(c)||3. (2.55)

The function being minimized simplifies to
(x —g(c) " (z — g(e)) (2.56)
(by the definition of the L? norm, Eq. 2.30)
—z'z—x'g(c) —g(c) 'z +g(c) "g(c) (2.57)
(by the distributive property)
—a'xz— 2z g(c) +g(c) g(c) (2.58)

(because the scalar g(x)" « is equal to the transpose of itself).

We can now change the function being minimized again, to omit the first term,
since this term does not depend on c:

¢* = argmin —2z" g(c) + g(e) g(c). (2.59)

To make further progress, we must substitute in the definition of g(c):
¢* =argmin —2z' Dc+¢' D' De (2.60)
— argmin —2z' Dc+ ¢’ Iic (2.61)
(by the orthogonality and unit norm constraints on D)

— argmin —2x ' Dc+c¢'c (2.62)

We can solve this optimization problem using vector calculus (see Sec. 4.3 if
you do not know how to do this):

V (=22 Dc+c'c) = (2.63)
—2D" x4 2¢ = (2.64)
c=D'zx. (2.65)

This makes the algorithm efficient: we can optimally encode x just using a
matrix-vector operation. To encode a vector, we apply the encoder function

f)=D'x. (2.66)
49

CHAPTER 2. LINEAR ALGEBRA

Using a further matrix multiplication, we can also define the PCA reconstruction
operation:

r(x) =g (f(x)) = DD . (2.67)

Next, we need to choose the encoding matrix D. To do so, we revisit the
idea of minimizing the L? distance between inputs and reconstructions. However,
since we will use the same matrix D to decode all of the points, we can no longer
consider the points in isolation. Instead, we must minimize the Frobenius norm of
the matrix of errors computed over all dimensions and all points:

: 2
D* = argmin Z (xy) - r(m(i))j> subject to DTD = T, (2.68)
0]

To derive the algorithm for finding D*, we will start by considering the case
where [= 1. In this case, D is just a single vector, d. Substituting Eq. 2.67 into
Eq. 2.68 and simplifying D into d, the problem reduces to

d* = arg min Z |2 — dd 2|2 subject to ||d||2 = 1. (2.69)

The above formulation is the most direct way of performing the substitution,
but is not the most stylistically pleasing way to write the equation. It places the
scalar value d "z ™ on the right of the vector d. It is more conventional to write
scalar coefficients on the left of vector they operate on. We therefore usually write
such a formula as

d* = argmin » _ |lz —d 2™ d]||3 subject to ||d|]2 = 1, (2.70)

or, exploiting the fact that a scalar is its own transpose, as

d* =argmin Y _ [[a) — zTdd||3 subject to ||d||; = 1. (2.71)

The reader should aim to become familiar with such cosmetic rearrangements.

At this point, it can be helpful to rewrite the problem in terms of a single
design matrix of examples, rather than as a sum over separate example vectors.
This will allow us to use more compact notation. Let X € R™*" be the matrix
defined by stacking all of the vectors describing the points, such that X;. =« @
We can now rewrite the problem as

d* = argmin||X — Xdd " |[% subject to d" d = 1. (2.72)

50

CHAPTER 2. LINEAR ALGEBRA

Disregarding the constraint for the moment, we can simplify the Frobenius norm
portion as follows:
argmin || X — Xdd" |[% (2.73)

T T T
— argmin Tr <(X ~ Xdd) (X ~ Xdd)) (2.74)
(by Eq. 2.49)
—argminTr(X' X - X 'Xdd'—dd" XX +dd" X" Xdd") (2.75)

—argminTr(X' X) - Tr(X ' Xdd") — Tr(dd" X" X) +Tr(dd" X " X dd")

(2.76)
— argmin — Tr(X ' Xdd") —Tr(dd "X " X))+ Tr(dd' X " Xdd") (2.77)

(because terms not involving d do not affect the arg min)

—argmin —2Tr(X 'Xdd") + Tr(dd' X" Xdd") (2.78)

(because we can cycle the order of the matrices inside a trace, Eq. 2.52)

—argmin —2Tr(X 'Xdd") + Tr(X " Xdd' dd") (2.79)

(using the same property again)

At this point, we re-introduce the constraint:

argmin —2Tr(X " Xdd") + Tr(X "Xdd"'dd") subject tod'd=1 (2.80)

— argmin —2Tr(X' Xdd') + Tr(X ' Xdd') subject tod'd=1 (2.81)

(due to the constraint)

— argmin — Tr(X ' Xdd ") subject to d'd = 1 (2.82)
= argmaxTr(X ' Xdd') subject to d' d =1 (2.83)
— argmaxTr(d "X " X d) subject tod'd =1 (2.84)

51

CHAPTER 2. LINEAR ALGEBRA

This optimization problem may be solved using eigendecomposition. Specifically,
the optimal d is given by the eigenvector of X T X corresponding to the largest
eigenvalue.

In the general case, where [> 1, the matrix D is given by the [eigenvectors
corresponding to the largest eigenvalues. This may be shown using proof by
induction. We recommend writing this proof as an exercise.

Linear algebra is one of the fundamental mathematical disciplines that is
necessary to understand deep learning. Another key area of mathematics that is
ubiquitous in machine learning is probability theory, presented next.

52

Chapter 3

Probability and Information
Theory

In this chapter, we describe probability theory and information theory.

Probability theory is a mathematical framework for representing uncertain
statements. It provides a means of quantifying uncertainty and axioms for deriving
new uncertain statements. In artificial intelligence applications, we use probability
theory in two major ways. First, the laws of probability tell us how Al systems
should reason, so we design our algorithms to compute or approximate various
expressions derived using probability theory. Second, we can use probability and
statistics to theoretically analyze the behavior of proposed Al systems.

Probability theory is a fundamental tool of many disciplines of science and
engineering. We provide this chapter to ensure that readers whose background is
primarily in software engineering with limited exposure to probability theory can
understand the material in this book.

While probability theory allows us to make uncertain statements and reason
in the presence of uncertainty, information allows us to quantify the amount of
uncertainty in a probability distribution.

If you are already familiar with probability theory and information theory,
you may wish to skip all of this chapter except for Sec. 3.14, which describes the
graphs we use to describe structured probabilistic models for machine learning. If
you have absolutely no prior experience with these subjects, this chapter should
be sufficient to successfully carry out deep learning research projects, but we do
suggest that you consult an additional resource, such as ().

53

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

3.1 Why Probability?

Many branches of computer science deal mostly with entities that are entirely
deterministic and certain. A programmer can usually safely assume that a CPU will
execute each machine instruction flawlessly. Errors in hardware do occur, but are
rare enough that most software applications do not need to be designed to account
for them. Given that many computer scientists and software engineers work in a
relatively clean and certain environment, it can be surprising that machine learning
makes heavy use of probability theory.

This is because machine learning must always deal with uncertain quantities,
and sometimes may also need to deal with stochastic (non-deterministic) quantities.
Uncertainty and stochasticity can arise from many sources. Researchers have made
compelling arguments for quantifying uncertainty using probability since at least
the 1980s. Many of the arguments presented here are summarized from or inspired

by (1988).

Nearly all activities require some ability to reason in the presence of uncertainty.
In fact, beyond mathematical statements that are true by definition, it is difficult
to think of any proposition that is absolutely true or any event that is absolutely
guaranteed to occur.

There are three possible sources of uncertainty:

1. Inherent stochasticity in the system being modeled. For example, most
interpretations of quantum mechanics describe the dynamics of subatomic
particles as being probabilistic. We can also create theoretical scenarios that
we postulate to have random dynamics, such as a hypothetical card game
where we assume that the cards are truly shuffled into a random order.

2. Incomplete observability. Even deterministic systems can appear stochastic
when we cannot observe all of the variables that drive the behavior of the
system. For example, in the Monty Hall problem, a game show contestant is
asked to choose between three doors and wins a prize held behind the chosen
door. Two doors lead to a goat while a third leads to a car. The outcome
given the contestant’s choice is deterministic, but from the contestant’s point
of view, the outcome is uncertain.

3. Incomplete modeling. When we use a model that must discard some of
the information we have observed, the discarded information results in
uncertainty in the model’s predictions. For example, suppose we build a
robot that can exactly observe the location of every object around it. If the

54

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

robot discretizes space when predicting the future location of these objects,
then the discretization makes the robot immediately become uncertain about
the precise position of objects: each object could be anywhere within the
discrete cell that it was observed to occupy.

In many cases, it is more practical to use a simple but uncertain rule rather
than a complex but certain one, even if the true rule is deterministic and our
modeling system has the fidelity to accommodate a complex rule. For example, the
simple rule “Most birds fly” is cheap to develop and is broadly useful, while a rule
of the form, “Birds fly, except for very young birds that have not yet learned to
fly, sick or injured birds that have lost the ability to fly, flightless species of birds
including the cassowary, ostrich and kiwi...” is expensive to develop, maintain and
communicate, and after all of this effort is still very brittle and prone to failure.

Given that we need a means of representing and reasoning about uncertainty,
it is not immediately obvious that probability theory can provide all of the tools
we want for artificial intelligence applications. Probability theory was originally
developed to analyze the frequencies of events. It is easy to see how probability
theory can be used to study events like drawing a certain hand of cards in a
game of poker. These kinds of events are often repeatable. When we say that
an outcome has a probability p of occurring, it means that if we repeated the
experiment (e.g., draw a hand of cards) infinitely many times, then proportion p
of the repetitions would result in that outcome. This kind of reasoning does not
seem immediately applicable to propositions that are not repeatable. If a doctor
analyzes a patient and says that the patient has a 40% chance of having the flu,
this means something very different—we can not make infinitely many replicas of
the patient, nor is there any reason to believe that different replicas of the patient
would present with the same symptoms yet have varying underlying conditions. In
the case of the doctor diagnosing the patient, we use probability to represent a
degree of belief, with 1 indicating absolute certainty that the patient has the flu
and 0 indicating absolute certainty that the patient does not have the flu. The
former kind of probability, related directly to the rates at which events occur, is
known as frequentist probability, while the latter, related to qualitative levels of
certainty, is known as Bayesian probability.

If we list several properties that we expect common sense reasoning about
uncertainty to have, then the only way to satisfy those properties is to treat
Bayesian probabilities as behaving exactly the same as frequentist probabilities.
For example, if we want to compute the probability that a player will win a poker
game given that she has a certain set of cards, we use exactly the same formulas
as when we compute the probability that a patient has a disease given that she

55

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

has certain symptoms. For more details about why a small set of common sense
assumptions implies that the same axioms must control both kinds of probability,
see ().

Probability can be seen as the extension of logic to deal with uncertainty. Logic
provides a set of formal rules for determining what propositions are implied to
be true or false given the assumption that some other set of propositions is true
or false. Probability theory provides a set of formal rules for determining the
likelihood of a proposition being true given the likelihood of other propositions.

3.2 Random Variables

A random variable is a variable that can take on different values randomly. We
typically denote the random variable itself with a lower case letter in plain typeface,
and the values it can take on with lower case script letters. For example, 1 and x»
are both possible values that the random variable x can take on. For vector-valued
variables, we would write the random variable as x and one of its values as . On
its own, a random variable is just a description of the states that are possible; it
must be coupled with a probability distribution that specifies how likely each of
these states are.

Random variables may be discrete or continuous. A discrete random variable
is one that has a finite or countably infinite number of states. Note that these
states are not necessarily the integers; they can also just be named states that
are not considered to have any numerical value. A continuous random variable is
associated with a real value.

3.3 Probability Distributions

A probability distribution is a description of how likely a random variable or
set of random variables is to take on each of its possible states. The way we
describe probability distributions depends on whether the variables are discrete or
continuous.

3.3.1 Discrete Variables and Probability Mass Functions

A probability distribution over discrete variables may be described using a proba-
bility mass function (PMF). We typically denote probability mass functions with a
capital P. Often we associate each random variable with a different probability

56

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

mass function and the reader must infer which probability mass function to use
based on the identity of the random variable, rather than the name of the function;
P x is usually not the same as P y .

The probability mass function maps from a state of a random variable to
the probability of that random variable taking on that state. The probability
that x =z is denoted as P x , with a probability of 1 indicating that x =z is
certain and a probability of 0 indicating that x x is impossible. Sometimes
to disambiguate which PMF to use, we write the name of the random variable
explicitly: P x x . Sometimes we define a variable first, then use = notation to
specify which distribution it follows later: x P x .

Probability mass functions can act on many variables at the same time. Such
a probability distribution over many variables is known as a joint probability
distribution. P x x,y y denotes the probability that x xzand y y
simultaneously. We may also write P x,y for brevity.

To be a probability mass function on a random variable x, a function P must
satisfy the following properties:

The domain of P must be the set of all possible states of x.

X, x . An impossible event has probability and no state can
be less probable than that. Likewise, an event that is guaranteed to happen

has probability , and no state can have a greater chance of occurring.

P x . We refer to this property as being normalized. Without this
property, we could obtain probabilities greater than one by computing the
probability of one of many events occurring.

For example, consider a single discrete random variable x with k different states.
We can place a uniform distribution on x—that is, make each of its states equally
likely—by setting its probability mass function to

Px =z A (3-1)

for all .. We can see that this fits the requirements for a probability mass function.
The value L is positive because k is a positive integer. We also see that

Px =z - =, (3.2)

so the distribution is properly normalized.

o7

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

3.3.2 Continuous Variables and Probability Density Functions

When working with continuous random variables, we describe probability dis-
tributions using a probability density function (PDF) rather than a probability
mass function. To be a probability density function, a function p must satisfy the
following properties:

The domain of p must be the set of all possible states of x.

r X,px . Note that we do not require p x

p T dx

A probability density function p does not give the probability of a specific
state directly, instead the probability of landing inside an infinitesimal region with
volume 4z is given by p x dx.

We can integrate the density function to find the actual probability mass of a
set of points. Specifically, the probability that x lies in some set is given by the
integral of p x over that set. In the univariate example, the probability that x
lies in the interval a,b is given by [P dx.

For an example of a probability density function corresponding to a specific
probability density over a continuous random variable, consider a uniform distribu-
tion on an interval of the real numbers. We can do this with a function v x a,b |
where a and b are the endpoints of the interval, with b > a. The “;” notation means
“parametrized by”; we consider x to be the argument of the function, while a and
b are parameters that define the function. To ensure that there is no probability
mass outside the interval, we say v x a,b for all . a,b . Within a,b,
uxab —L_ We can see that this is nonnegative everywhere. Additionally, it

integrates to 1. We often denote that x follows the uniform distribution on a,b

by writingx U a,b .

3.4 Marginal Probability

Sometimes we know the probability distribution over a set of variables and we want
to know the probability distribution over just a subset of them. The probability
distribution over the subset is known as the marginal probability distribution.

For example, suppose we have discrete random variables x and y, and we know

P x,y . We can find P x with the sum rule:

¢t x,Px =z Px zy vy. (3.3)

o8

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

The name “marginal probability” comes from the process of computing marginal
probabilities on paper. When the values of P x,y are written in a grid with
different values of x in rows and different values of y in columns, it is natural to
sum across a row of the grid, then write P = in the margin of the paper just to
the right of the row.

For continuous variables, we need to use integration instead of summation:

px px,y dy. (3.4)

3.5 Conditional Probability

In many cases, we are interested in the probability of some event, given that some
other event has happened. This is called a conditional probability. We denote
the conditional probability that y y givenx x as Py x . This

X
conditional probability can be computed with the formula Y
Py yx =z
Py vy x = Px = (3:5)

The conditional probability is only defined when P x a > . We cannot compute
the conditional probability conditioned on an event that never happens.

It is important not to confuse conditional probability with computing what
would happen if some action were undertaken. The conditional probability that
a person is from Germany given that they speak German is quite high, but if
a randomly selected person is taught to speak German, their country of origin
does not change. Computing the consequences of an action is called making an
intervention query. Intervention queries are the domain of causal modeling, which
we do not explore in this book.

3.6 The Chain Rule of Conditional Probabilities

Any joint probability distribution over many random variables may be decomposed
into conditional distributions over only one variable:

pxW .. x0 px® ZQPX() X(l)’”.7X(D (3.6)

This observation is known as the chain rule or product rule of probability. It
follows immediately from the definition of conditional probability in Eq. 3.5. For

99

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

example, applying the definition twice, we get

P ab, c Pa b,cPb,c
P b,c Pb cPc
P a,b,c Pa bcPb cPc.

3.7 Independence and Conditional Independence

Two random variables x and y are independent if their probability distribution can
be expressed as a product of two factors, one involving only x and one involving

only y:

r XYy Y,pPX X,y Yy pPX TPy Y. (3.7)

Two random variables x and y are conditionally independent given a random
variable z if the conditional probability distribution over x and y factorizes in this
way for every value of z:

r XY V,2 Z,pX Xy Y Z2 Z PX X Z Zpy Y Z Z.

(3.8)
We can denote independence and conditional independence with compact
notation: . means that x and y are independent, while x y g means that x

and y are conditionally independent given z.

3.8 Expectation, Variance and Covariance

The ezpectation or expected value of some function f x with respect to a probability
distribution P x is the average or mean value that f takes on when z is drawn
from P. For discrete variables this can be computed with a summation:

fx Pz fua, (3.9)
while for continuous variables, it is computed with an integral:
fx px faxdr. (3.10)

60

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

When the identity of the distribution is clear from the context, we may simply
write the name of the random variable that the expectation is over, as in f «x
If it is clear which random variable the expectation is over, we may omit the
subscript entirely, asin f = . By default, we can assume that averages over
the values of all the random variables inside the brackets. Likewise, when there is
no ambiguity, we may omit the square brackets.

Expectations are linear, for example,

af x Bgr « fx B gz (3.11)

when o and 8 are not dependent on .

The variance gives a measure of how much the values of a function of a random
variable x vary as we sample different values of x from its probability distribution:

fa fr fa 2 (3.12)

When the variance is low, the values of f = cluster near their expected value. The
square root of the variance is known as the standard deviation.

The covariance gives some sense of how much two values are linearly related to
each other, as well as the scale of these variables:

fa.gy fea fx gy gy . (3.13)

High absolute values of the covariance mean that the values change very much
and are both far from their respective means at the same time. If the sign of the
covariance is positive, then both variables tend to take on relatively high values
simultaneously. If the sign of the covariance is negative, then one variable tends to
take on a relatively high value at the times that the other takes on a relatively low
value and vice versa. Other measures such as correlation normalize the contribution
of each variable in order to measure only how much the variables are related, rather
than also being affected by the scale of the separate variables.

The notions of covariance and dependence are related, but are in fact distinct
concepts. They are related because two variables that are independent have zero
covariance, and two variables that have non-zero covariance are dependent. How-
ever, independence is a distinct property from covariance. For two variables to have
zero covariance, there must be no linear dependence between them. Independence
is a stronger requirement than zero covariance, because independence also excludes
nonlinear relationships. It is possible for two variables to be dependent but have
zero covariance. For example, suppose we first sample a real number x from a
uniform distribution over the interval , . We next sample a random variable

61

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

s. With probability —%, we choose the value of s to be . Otherwise, we choose
the value of s to be . We can then generate a random variable y by assigning
y sx. Clearly, x and y are not independent, because x completely determines

the magnitude of y. However, T,y

The covariance matrixz of a random vector x is an non matrix, such that
X X ;X . (3.14)
The diagonal elements of the covariance give the variance:

X ,X X . (3.15)

3.9 Common Probability Distributions

Several simple probability distributions are useful in many contexts in machine
learning.

3.9.1 Bernoulli Distribution

The Bernoulli distribution is a distribution over a single binary random variable.
It is controlled by a single parameter , , which gives the probability of the
random variable being equal to 1. It has the following properties:

Px é (3.16)

Px s (3.17)
Px x ¢ b ! (3.18)
x & (3.19)

x 6 & (3.20)

3.9.2 Multinoulli Distribution

The multinoulli or categorical distribution is a distribution over a single discrete
variable with k different states, where k is finite. The multinoulli distribution is

“Multinoulli” is a term that was recently coined by Gustavo Lacerdo and popularized by
(). The multinoulli distribution is a special case of the distribution. A
multinomial distribution is the distribution over vectors in representing how many
times each of the categories is visited when samples are drawn from a multinoulli distribution.
Many texts use the term “multinomial” to refer to multinoulli distributions without clarifying
that they refer only to the case.

62

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

parametrized by a vector , 1, where p gives the probability of the i-th
state. The final, k-th state’s probability is given by 1 P- Note that we must
constrain 1 . Multinoulli distributions are often used to refer to distributions
over categories of objects, so we do not usually assume that state 1 has numerical
value 1, etc. For this reason, we do not usually need to compute the expectation
or variance of multinoulli-distributed random variables.

The Bernoulli and multinoulli distributions are sufficient to describe any distri-
bution over their domain. This is because they model discrete variables for which
it is feasible to simply enumerate all of the states. When dealing with continuous
variables, there are uncountably many states, so any distribution described by a
small number of parameters must impose strict limits on the distribution.

3.9.3 Gaussian Distribution

The most commonly used distribution over real numbers is the normal distribution,
also known as the Gaussian distribution:

2 _ _ 2
o — s B (3.21)

See Fig. 3.1 for a plot of the density function.

The two parameters and control the normal distribution.
The parameter p gives the coordinate of the ‘central peak. This is also the mean of
the distribution: x pu. The standard deviation of the distribution is given by
o, and the variance by o2

When we evaluate the PDF, we need to square and invert 0. When we need to
frequently evaluate the PDF with different parameter values, a more efficient way
of parametrizing the distribution is to use a parameter 3 , to control the
precision or inverse variance of the distribution:

1 E 2

T p,f T Bx op (3:22)

Normal distributions are a sensible choice for many applications. In the absence
of prior knowledge about what form a distribution over the real numbers should
take, the normal distribution is a good default choice for two major reasons.

First, many distributions we wish to model are truly close to being normal
distributions. The central ltmit theorem shows that the sum of many independent
random variables is approximately normally distributed. This means that in

63

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

T Qo

practice, many complicated systems can be modeled successfully as normally
distributed noise, even if the system can be decomposed into parts with more
structured behavior.

Second, out of all possible probability distributions with the same variance,
the normal distribution encodes the maximum amount of uncertainty over the
real numbers. We can thus think of the normal distribution as being the one that
inserts the least amount of prior knowledge into a model. Fully developing and
justifying this idea requires more mathematical tools, and is postponed to Sec.
19.4.2.

The normal distribution generalizes to , in which case it is known as the
multivariate normal distribution. It may be parametrized with a positive definite
symmetric matrix 33:

_ 31 . (3.23)

T p, T S T u T u

The parameter p still gives the mean of the distribution, though now it is
vector-valued. The parameter 3 gives the covariance matrix of the distribution.
As in the univariate case, when we wish to evaluate the PDF several times for

64

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

many different values of the parameters, the covariance is not a computationally
efficient way to parametrize the distribution, since we need to invert X to evaluate
the PDF. We can instead use a precision matriz 3:

z B WB Tz op B op (3.24)

We often fix the covariance matrix to be a diagonal matrix. An even simpler
version is the isotropic Gaussian distribution, whose covariance matrix is a scalar
times the identity matrix.

3.9.4 Exponential and Laplace Distributions

In the context of deep learning, we often want to have a probability distribution

with a sharp point at = . To accomplish this, we can use the exponential

distribution:
pz A Al AT (3.25)
The exponential distribution uses the indicator function 1 to assign probability

zero to all negative values of .

0

A closely related probability distribution that allows us to place a sharp peak
of probability mass at an arbitrary point p is the Laplace distribution

T,y T L. (3.26)
v v

3.9.5 The Dirac Distribution and Empirical Distribution

In some cases, we wish to specify that all of the mass in a probability distribution
clusters around a single point. This can be accomplished by defining a PDF using
the Dirac delta function, ¢ z :

pr o0x . (3.27)

The Dirac delta function is defined such that it is zero-valued everywhere except
0, yet integrates to 1. The Dirac delta function is not an ordinary function that
associates each value x with a real-valued output, instead it is a different kind of
mathematical object called a generalized function that is defined in terms of its
properties when integrated. We can think of the Dirac delta function as being the
limit point of a series of functions that put less and less mass on all points other
than pu.

65

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

By defining p « to be ¢ shifted by we obtain an infinitely narrow and
e . . K
infinitely high peak of probability mass where z p.

A common use of the Dirac delta distribution is as a component of an empirical
distribution,

p T ox :1:() (3.28)

which puts probability mass - on each of the m points 33(1), ...,z) forming
a given data set or collection of samples. The Dirac delta distribution is only
necessary to define the empirical distribution over continuous variables. For discrete
variables, the situation is simpler: an empirical distribution can be conceptualized
as a multinoulli distribution, with a probability associated to each possible input
value that is simply equal to the empirical frequency of that value in the training
set.

We can view the empirical distribution formed from a dataset of training
examples as specifying the distribution that we sample from when we train a model
on this dataset. Another important perspective on the empirical distribution is
that it is the probability density that maximizes the likelihood of the training data

(see Sec. 5.5).

3.9.6 Mixtures of Distributions

It is also common to define probability distributions by combining other simpler
probability distributions. One common way of combining distributions is to
construct a mizture distribution. A mixture distribution is made up of several
component distributions. On each trial, the choice of which component distribution
generates the sample is determined by sampling a component identity from a
multinoulli distribution:

Px Pc iPx c i (3.29)

where P ¢ is the multinoulli distribution over component identities.

We have already seen one example of a mixture distribution: the empirical
distribution over real-valued variables is a mixture distribution with one Dirac
component for each training example.

The mixture model is one simple strategy for combining probability distributions
to create a richer distribution. In Chapter 16, we explore the art of building complex
probability distributions from simple ones in more detail.

66

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

The mixture model allows us to briefly glimpse a concept that will be of
paramount importance later—the latent variable. A latent variable is a random
variable that we cannot observe directly. The component identity variable ¢ of the
mixture model provides an example. Latent variables may be related to x through
the joint distribution, in this case, P x,c P < c P ¢ . The distribution P ¢
over the latent variable and the distribution P . relating the latent variables
to the visible variables determines the shape of the distribution P x even though
it is possible to describe P x without reference to the latent variable. Latent
variables are discussed further in Sec. 16.5.

A very powerful and common type of mixture model is the Gaussian mixture
model, in which the components p X c ¢ are Gaussians. Each component has
a separately parametrized mean pu() and covariance X(). Some mixtures can have
more constraints. For example, the covariances could be shared across components
via the constraint) > As with a single Gaussian distribution, the mixture
of Gaussians might constrain the covariance matrix for each component to be
diagonal or isotropic.

In addition to the means and covariances, the parameters of a Gaussian mixture
specity the prior probability « P ¢ i given to each component ¢. The word
“prior” indicates that it expresses the model’s beliefs about ¢ it has observed
x. By comparison, P . . is a posterior probability, because it is computed
observation of x. A Gaussian mixture model is a universal approximator of
densities, in the sense that any smooth density can be approximated with any
specific, non-zero amount of error by a Gaussian mixture model with enough

components.

Fig. 3.2 shows samples from a Gaussian mixture model.

3.10 Useful Properties of Common Functions

Certain functions arise often while working with probability distributions, especially
the probability distributions used in deep learning models.

One of these functions is the logistic sigmoid:

ey —. (3.30)
X

The logistic sigmoid is commonly used to produce the ¢ parameter of a Bernoulli

distribution because its range is , , which lies within the valid range of values
for the ¢ parameter. See Fig. 3.3 for a graph of the sigmoid function. The sigmoid

67

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

function saturates when its argument is very positive or very negative, meaning
that the function becomes very flat and insensitive to small changes in its input.

Another commonly encountered function is the softplus function (,
):
Cz x . (3.31)
The softplus function can be useful for producing the 8 or ¢ parameter of a normal

distribution because its range is . It also arises commonly when manipulating
expressions involving sigmoids. The name of the softplus function comes from the
fact that it is a smoothed or “softened” version of

a* T (3.32)

See Fig. 3.4 for a graph of the softplus function.

The following properties are all useful enough that you may wish to memorize
them:

o (3.33)
x
d
deox ox o (3.34)

68

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

69

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

cr o =T (3.35)
ox ¢ x (3.36)
d
%C xr o (3.37)
vt - (3.38)
x
> , (' x x (3.39)
Cx oy dy (3.40)
(z ¢ =z = (3.41)

The function o 1 z is called the logit in statistics, but this term is more rarely
used in machine learning.
Eq. 3.41 provides extra justification for the name “softplus.” The softplus
function is intended as a smoothed version of the positive part function, =™
The positive part function is the counterpart of the negative part
function, x s - Yo obtain a smooth function that is analogous to the
negative part, one can "use ¢ r Just as x can be recovered from its positive part
and negative part via the identity a™ " x, it is also possible to recover x

using the same relationship between (* and (x , as shown in Eq. 3.41.

3.11 Bayes’ Rule

We often find ourselves in a situation where we know P X and need to know

P y - Fortunately, if we also know P X, we can compute the desired quantity
using Bayes’ rule:

PxPv x
Px vy P};‘/ . (3.42)

Note that while Py appears in the formula, it is usually feasible to compute

Py Py x P x,sowedo not need to begin with knowledge of P y .

Bayes’ rule is straightforward to derive from the definition of conditional
probability, but it is useful to know the name of this formula since many texts
refer to it by name. It is named after the Reverend Thomas Bayes, who first
discovered a special case of the formula. The general version presented here was
independently discovered by Pierre-Simon Laplace.

70

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

3.12 Technical Details of Continuous Variables

A proper formal understanding of continuous random variables and probability
density functions requires developing probability theory in terms of a branch of
mathematics known as measure theory. Measure theory is beyond the scope of
this textbook, but we can briefly sketch some of the issues that measure theory is
employed to resolve.

In Sec. 3.3.2, we saw that the probability of a continuous vector-valued x lying
in some set is given by the integral of p & over the set . Some choices of set
can produce paradoxes. For example, it is possible to construct two sets 1 and

o such that p - 1 Dy 2 > but 1 2 . These sets are generally
constructed making very heavy use of the infinite precision of real numbers, for
example by making fractal-shaped sets or sets that are defined by transforming
the set of rational numbers. One of the key contributions of measure theory is to
provide a characterization of the set of sets that we can compute the probability
of without encountering paradoxes. In this book, we only integrate over sets with
relatively simple descriptions, so this aspect of measure theory never becomes a
relevant concern.

For our purposes, measure theory is more useful for describing theorems that
apply to most points in but do not apply to some corner cases. Measure theory
provides a rigorous way of describing that a set of points is negligibly small. Such
a set is said to have “measure zero.” We do not formally define this concept in this
textbook. However, it is useful to understand the intuition that a set of measure
zero occupies no volume in the space we are measuring. For example, within 2, a
line has measure zero, while a filled polygon has positive measure. Likewise, an
individual point has measure zero. Any union of countably many sets that each
have measure zero also has measure zero (so the set of all the rational numbers

has measure zero, for instance).

Another useful term from measure theory is “almost everywhere.” A property
that holds almost everywhere holds throughout all of space except for on a set of
measure zero. Because the exceptions occupy a negligible amount of space, they
can be safely ignored for many applications. Some important results in probability
theory hold for all discrete values but only hold “almost everywhere” for continuous
values.

Another technical detail of continuous variables relates to handling continuous
random variables that are deterministic functions of one another. Suppose we have
two random variables, x and y, such that y ¢ @ | where g is an invertible, con-

The Banach-Tarski theorem provides a fun example of such sets.

71

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

tinuous, differentiable transformation. One might expect that p y p g1 y
This is actually not the case.

As a simple example, suppose we have scalar random variables x and y. Suppose
y - and < y > - If we use the rule p y p y then p will be 0
everywhere except the interval % , and it will be on this interval. This means

p ydy -, (3.43)

which violates the definition of a probability distribution.

This common mistake is wrong because it fails to account for the distortion
of space introduced by the function g. Recall that the probability of lying in
an infinitesimally small region with volume dx is given by p dx. Since g can
expand or contract space, the infinitesimal volume surrounding « in « space may
have different volume in y space.

To see how to correct the problem, we return to the scalar case. We need to
preserve the property

p gx dy p xdrv. (3.44)
Solving from this, we obtain
ox
P 1 — 3.45
y p o9ty g (3.45)
or equivalently
0g x
pr p guw %x - (3.46)
In higher dimensions, the derivative generalizes to the determinant of the Jacobian
matrix—the matrix with J — . Thus, for real-valued vectors and vy,
0g x
px p ogx gm : (3.47)

3.13 Information Theory

Information theory is a branch of applied mathematics that revolves around
quantifying how much information is present in a signal. It was originally invented
to study sending messages from discrete alphabets over a noisy channel, such as
communication via radio transmission. In this context, information theory tells how
to design optimal codes and calculate the expected length of messages sampled from

72

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

specific probability distributions using various encoding schemes. In the context of
machine learning, we can also apply information theory to continuous variables
where some of these message length interpretations do not apply. This field is
fundamental to many areas of electrical engineering and computer science. In this
textbook, we mostly use a few key ideas from information theory to characterize
probability distributions or quantify similarity between probability distributions.
For more detail on information theory, see () or

(2003).

The basic intuition behind information theory is that learning that an unlikely
event has occurred is more informative than learning that a likely event has
occurred. A message saying “the sun rose this morning” is so uninformative as
to be unnecessary to send, but a message saying “there was a solar eclipse this
morning” is very informative.

We would like to quantify information in a way that formalizes this intuition.
Specifically,

Likely events should have low information content, and in the extreme case,
events that are guaranteed to happen should have no information content
whatsoever.

Less likely events should have higher information content.

Independent events should have additive information. For example, finding
out that a tossed coin has come up as heads twice should convey twice as
much information as finding out that a tossed coin has come up as heads
once.

In order to satisfy all three of these properties, we define the self-information
of an event x x to be

Iz P x. (3.48)
In this book, we always use to mean the natural logarithm, with base e. Our
definition of I z is therefore written in units of nats. One nat is the amount of
information gained by observing an event of probability 1. Other texts use base-2
logarithms and units called bits or shannons; information measured in bits is just
a rescaling of information measured in nats.

When x is continuous, we use the same definition of information by analogy,
but some of the properties from the discrete case are lost. For example, an event
with unit density still has zero information, despite not being an event that is
guaranteed to occur.

73

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

Self-information deals only with a single outcome. We can quantify the amount
of uncertainty in an entire probability distribution using the Shannon entropy:

H x I Pz . (3.49)

also denoted H P . In other words, the Shannon entropy of a distribution is the
expected amount of information in an event drawn from that distribution. It gives
a lower bound on the number of bits (if the logarithm is base 2, otherwise the units
are different) needed on average to encode symbols drawn from a distribution P.
Distributions that are nearly deterministic (where the outcome is nearly certain)
have low entropy; distributions that are closer to uniform have high entropy. See
Fig. 3.5 for a demonstration. When x is continuous, the Shannon entropy is known
as the differential entropy.

If we have two separate probability distributions P x and X over the same

random variable x, we can measure how different these two distributions are using
the Kullback-Leibler (KL) divergence:

D Pz
KL P @Q Oz Pz Qr . (3.50)

74

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

In the case of discrete variables, it is the extra amount of information (measured
in bits if we use the base logarithm, but in machine learning we usually use nats
and the natural logarithm) needed to send a message containing symbols drawn
from probability distribution P, when we use a code that was designed to minimize
the length of messages drawn from probability distribution Q.

The KL divergence has many useful properties, most notably that it is non-
negative. The KL divergence is 0 if and only if P and () are the same distribution in
the case of discrete variables, or equal “almost everywhere” in the case of continuous
variables. Because the KL divergence is non-negative and measures the difference
between two distributions, it is often conceptualized as measuring some sort of
distance between these distributions. However it is not a true distance measure
because it is not symmetric: Dk, p QP for some P and (). This
asymmetry means that there are important consequences to the choice of whether

to use Dkr, p Q or DKL Q P . See Fig. 3.6 for more detail.
A quantity that is closely related to the KL divergence is the cross-entropy

H P,Q H P Dxki p Q> which is similar to the KL divergence but lacking
the term on the left:

HPQ Q. (3.51)

Minimizing the cross-entropy with respect to @) is equivalent to minimizing the
KL divergence, because () does not participate in the omitted term.

When computing many of these quantities, it is common to encounter expres-
sions of the form . By convention, in the context of information theory, we

treat these expressions as 0T x

3.14 Structured Probabilistic Models

Machine learning algorithms often involve probability distributions over a very
large number of random variables. Often, these probability distributions involve
direct interactions between relatively few variables. Using a single function to
describe the entire joint probability distribution can be very inefficient (both
computationally and statistically).

Instead of using a single function to represent a probability distribution, we
can split a probability distribution into many factors that we multiply together.
For example, suppose we have three random variables: a, b and c. Suppose that
a influences the value of b and b influences the value of ¢, but that a and ¢ are
independent given b. We can represent the probability distribution over all three

75

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

,-’ ~ !/ \
» b / \
q T
D
e P oqp
p q
D
pq
p p
D
qp 4

76

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

variables as a product of probability distributions over two variables:

pa,b,c papb apc b. (3.52)

These factorizations can greatly reduce the number of parameters needed
to describe the distribution. Each factor uses a number of parameters that is
exponential in the number of variables in the factor. This means that we can greatly
reduce the cost of representing a distribution if we are able to find a factorization
into distributions over fewer variables.

We can describe these kinds of factorizations using graphs. Here we use the
word “graph” in the sense of graph theory: a set of vertices that may be connected
to each other with edges. When we represent the factorization of a probability
distribution with a graph, we call it a structured probabilistic model or graphical
model.

There are two main kinds of structured probabilistic models: directed and
undirected. Both kinds of graphical models use a graph in which each node
in the graph corresponds to a random variable, and an edge connecting two
random variables means that the probability distribution is able to represent direct
interactions between those two random variables.

Directed models use graphs with directed edges, and they represent factoriza-
tions into conditional probability distributions, as in the example above. Specifically,
a directed model contains one factor for every random variable x in the distribution,
and that factor consists of the conditional distribution over x given the parents of
x , denoted Pa x

p X PX pg X - (3.53)

See Fig. 3.7 for an example of a directed graph and the factorization of probability
distributions it represents.

Undirected models use graphs with undirected edges, and they represent fac-
torizations into a set of functions; unlike in the directed case, these functions are
usually not probability distributions of any kind. Any set of nodes that are all
connected to each other in is called a clique. Each clique () in an undirected
model is associated with a factor () () . These factors are just functions, not
probability distributions. The output of each factor must be non-negative, but
there is no constraint that the factor must sum or integrate to 1 like a probability
distribution.

The probability of a configuration of random variables is proportional to the
product of all of these factors—assignments that result in larger factor values are

7

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

b, p p p y P p

more likely. Of course, there is no guarantee that this product will sum to 1. We
therefore divide by a normalizing constant Z, defined to be the sum or integral
over all states of the product of the ¢ functions, in order to obtain a normalized
probability distribution:

px 5 ¢ U (3.55)

See Fig. 3.8 for an example of an undirected graph and the factorization of
probability distributions it represents.

Keep in mind that these graphical representations of factorizations are a
language for describing probability distributions. They are not mutually exclusive
families of probability distributions. Being directed or undirected is not a property
of a probability distribution; it is a property of a particular description of a
probability distribution, but any probability distribution may be described in both
ways.

Throughout Part [and Part II of this book, we will use structured probabilistic
models merely as a language to describe which direct probabilistic relationships
different machine learning algorithms choose to represent. No further understanding
of structured probabilistic models is needed until the discussion of research topics,
in Part [II, where we will explore structured probabilistic models in much greater
detail.

78

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

Dy, 2¢ >7¢ 7¢ }

This chapter has reviewed the basic concepts of probability theory that are
most relevant to deep learning. One more set of fundamental mathematical tools
remains: numerical methods.

79

Chapter 4

Numerical Computation

Machine learning algorithms usually require a high amount of numerical compu-
tation. This typically refers to algorithms that solve mathematical problems by
methods that update estimates of the solution via an iterative process, rather than
analytically deriving a formula providing a symbolic expression for the correct so-
lution. Common operations include optimization (finding the value of an argument
that minimizes or maximizes a function) and solving systems of linear equations.
Even just evaluating a mathematical function on a digital computer can be difficult
when the function involves real numbers, which cannot be represented precisely
using a finite amount of memory.

4.1 Overflow and Underflow

The fundamental difficulty in performing continuous math on a digital computer
is that we need to represent infinitely many real numbers with a finite number
of bit patterns. This means that for almost all real numbers, we incur some
approximation error when we represent the number in the computer. In many
cases, this is just rounding error. Rounding error is problematic, especially when
it compounds across many operations, and can cause algorithms that work in
theory to fail in practice if they are not designed to minimize the accumulation of
rounding error.

One form of rounding error that is particularly devastating is underflow. Under-
flow occurs when numbers near zero are rounded to zero. Many functions behave
qualitatively differently when their argument is zero rather than a small positive
number. For example, we usually want to avoid division by zero (some software

80

CHAPTER 4. NUMERICAL COMPUTATION

environments will raise exceptions when this occurs, others will return a result
with a placeholder not-a-number value) or taking the logarithm of zero (this is
usually treated as —oo, which then becomes not-a-number if it is used for many
further arithmetic operations).

Another highly damaging form of numerical error is overflow. Overflow occurs
when numbers with large magnitude are approximated as oo or —oco. Further
arithmetic will usually change these infinite values into not-a-number values.

One example of a function that must be stabilized against underflow and
overflow is the softmax function. The softmax function is often used to predict the

probabilities associated with a multinoulli distribution. The softmax function is

defined to be

exp(x;)
Z?:1 exp(z;)
Consider what happens when all of the x; are equal to some constant c. Analytically,
we can see that all of the outputs should be equal to % Numerically, this may
not occur when c¢ has large magnitude. If ¢ is very negative, then exp(c) will
underflow. This means the denominator of the softmax will become 0, so the final
result is undefined. When ¢ is very large and positive, exp(c) will overflow, again
resulting in the expression as a whole being undefined. Both of these difficulties
can be resolved by instead evaluating softmax(z) where z = & — max; x;. Simple
algebra shows that the value of the softmax function is not changed analytically by
adding or subtracting a scalar from the input vector. Subtracting max; x; results
in the largest argument to exp being 0, which rules out the possibility of overflow.
Likewise, at least one term in the denominator has a value of 1, which rules out
the possibility of underflow in the denominator leading to a division by zero.

softmax(x); = (4.1)

There is still one small problem. Underflow in the numerator can still cause
the expression as a whole to evaluate to zero. This means that if we implement
log softmax(x) by first running the softmax subroutine then passing the result to
the log function, we could erroneously obtain —oo. Instead, we must implement
a separate function that calculates logsoftmax in a numerically stable way. The
log softmax function can be stabilized using the same trick as we used to stabilize
the softmax function.

For the most part, we do not explicitly detail all of the numerical considerations
involved in implementing the various algorithms described in this book. Developers
of low-level libraries should keep numerical issues in mind when implementing
deep learning algorithms. Most readers of this book can simply rely on low-
level libraries that provide stable implementations. In some cases, it is possible
to implement a new algorithm and have the new implementation automatically

81

CHAPTER 4. NUMERICAL COMPUTATION

stabilized. Theano (, : ,) is an example
of a software package that automatically detects and stabilizes many common
numerically unstable expressions that arise in the context of deep learning.

4.2 Poor Conditioning

Conditioning refers to how rapidly a function changes with respect to small changes
in its inputs. Functions that change rapidly when their inputs are perturbed slightly
can be problematic for scientific computation because rounding errors in the inputs
can result in large changes in the output.

Consider the function f(x) = A~ lz. When A € R™ " has an eigenvalue
decomposition, its condition number is

i

vk (4.2)

max
]

This is the ratio of the magnitude of the largest and smallest eigenvalue. When
this number is large, matrix inversion is particularly sensitive to error in the input.

This sensitivity is an intrinsic property of the matrix itself, not the result
of rounding error during matrix inversion. Poorly conditioned matrices amplify
pre-existing errors when we multiply by the true matrix inverse. In practice, the
error will be compounded further by numerical errors in the inversion process itself.

4.3 Gradient-Based Optimization

Most deep learning algorithms involve optimization of some sort. Optimization
refers to the task of either minimizing or maximizing some function f(x) by altering
x. We usually phrase most optimization problems in terms of minimizing f(x).
Maximization may be accomplished via a minimization algorithm by minimizing
—f(z).

The function we want to minimize or maximize is called the objective function
or criterton. When we are minimizing it, we may also call it the cost function,
loss function, or error function. In this book, we use these terms interchangeably,
though some machine learning publications assign special meaning to some of these
terms.

We often denote the value that minimizes or maximizes a function with a
superscript *. For example, we might say * = arg min f(x).

82

CHAPTER 4. NUMERICAL COMPUTATION

Gradient descent

2.0 T T T T
N /
15F ~ Global minimum at z =0. PR
N Since f(z)=0, gradient s
1ok ~\ descent halts here. . |
~ s
~ s
0.5}]
~ -~
e -
-~ — — - |
00T For 2 <0, we have f(z) <0, For x>0, we have f{z) >0,
so we can decrease f by so we can decrease f by
—0.5F moving rightward. moving leftward. =
—1.0}F g
— . _1,.2
f(z) =3
—15}F |
— f(z)=x

920 | | | I | T |

-20 —-15 —1.0 0.5 0.0 0.5 1.0 1.5 2.0

Figure 4.1: An illustration of how the derivatives of a function can be used to follow the
function downhill to a minimum. This technique is called gradient descent.

We assume the reader is already familiar with calculus, but provide a brief
review of how calculus concepts relate to optimization here.

Suppose we have a function y = f(z), where both x and y are real numbers.
The derivative of this function is denoted as f/(x) or as %. The derivative f’(z)
gives the slope of f(z) at the point . In other words, it specifies how to scale
a small change in the input in order to obtain the corresponding change in the
output: f(z +¢€) =~ f(z)+ef'(z).

The derivative is therefore useful for minimizing a function because it tells us
how to change x in order to make a small improvement in y. For example, we
know that f(x — esign(f’(x))) is less than f(z) for small enough e. We can thus
reduce f(z) by moving x in small steps with opposite sign of the derivative. This
technique is called gradient descent (,). See Fig. 4.1 for an example of
this technique.

When f/(x) = 0, the derivative provides no information about which direction
to move. Points where f/(x) = 0 are known as critical points or stationary points.
A local minimum is a point where f(x) is lower than at all neighboring points,
so it is no longer possible to decrease f(x) by making infinitesimal steps. A local
mazimum is a point where f(z) is higher than at all neighboring points, so it is

83

CHAPTER 4. NUMERICAL COMPUTATION

N

/N

Figure 4.2: Examples of each of the three types of critical points in 1-D. A critical point is
a point with zero slope. Such a point can either be a local minimum, which is lower than
the neighboring points, a local maximum, which is higher than the neighboring points, or
a saddle point, which has neighbors that are both higher and lower than the point itself.

not possible to increase f(x) by making infinitesimal steps. Some critical points
are neither maxima nor minima. These are known as saddle points. See Fig. 4.2
for examples of each type of critical point.

A point that obtains the absolute lowest value of f(z) is a global minimum. It
is possible for there to be only one global minimum or multiple global minima of
the function. It is also possible for there to be local minima that are not globally
optimal. In the context of deep learning, we optimize functions that may have
many local minima that are not optimal, and many saddle points surrounded by
very flat regions. All of this makes optimization very difficult, especially when the
input to the function is multidimensional. We therefore usually settle for finding a
value of f that is very low, but not necessarily minimal in any formal sense. See
Fig. 4.3 for an example.

We often minimize functions that have multiple inputs: f :R™ — R. For the
concept of “minimization” to make sense, there must still be only one (scalar)
output.

For functions with multiple inputs, we must make use of the concept of partial
derivatives. The partial derivative % (x) measures how f changes as only the
variable x; increases at point . The gradient generalizes the notion of derivative
to the case where the derivative is with respect to a vector: the gradient of f is the
vector containing all of the partial derivatives, denoted V f (). Element i of the
gradient is the partial derivative of f with respect to x;. In multiple dimensions,

84

CHAPTER 4. NUMERICAL COMPUTATION

Figure 4.3: Optimization algorithms may fail to find a global minimum when there are
multiple local minima or plateaus present. In the context of deep learning, we generally
accept such solutions even though they are not truly minimal, so long as they correspond
to significantly low values of the cost function.

critical points are points where every element of the gradient is equal to zero.

The directional derivative in direction w (a unit vector) is the slope of the
function f in direction u. In other words, the directional derivative is the derivative
of the function f(x+ au) with respect to a, evaluated at « = 0. Using the chain
rule, we can see that (%f(m +au)=u'V f(z).

To minimize f, we would like to find the direction in which f decreases the
fastest. We can do this using the directional derivative:

min_ u'V f(x) (4.3)

= min_1 |ulk||V f(x)|]2 cosb (4.4)
where 6 is the angle between u and the gradient. Substituting in ||u|l2 = 1 and
ignoring factors that do not depend on w, this simplifies to min cos#. This is
minimized when w points in the opposite direction as the gradient. In other
words, the gradient points directly uphill, and the negative gradient points directly
downhill. We can decrease f by moving in the direction of the negative gradient.
This is known as the method of steepest descent or gradient descent.

Steepest descent proposes a new point
' =x—eV f(x) (4.5)

85

CHAPTER 4. NUMERICAL COMPUTATION

where € is the learning rate, a positive scalar determining the size of the step. We
can choose € in several different ways. A popular approach is to set € to a small
constant. Sometimes, we can solve for the step size that makes the directional
derivative vanish. Another approach is to evaluate f (x — eV f(x)) for several
values of € and choose the one that results in the smallest objective function value.
This last strategy is called a line search.

Steepest descent converges when every element of the gradient is zero (or, in
practice, very close to zero). In some cases, we may be able to avoid running this
iterative algorithm, and just jump directly to the critical point by solving the
equation V f(x) =0 for x.

Although gradient descent is limited to optimization in continuous spaces, the
general concept of making small moves (that are approximately the best small move)
towards better configurations can be generalized to discrete spaces. Ascending an
objective function of discrete parameters is called hill climbing (,

).

Sometimes we need to find all of the partial derivatives of a function whose input
and output are both vectors. The matrix containing all such partial derivatives is
known as a Jacobian matriz. Specifically, if we have a function f:R™ — R", then
the Jacobian matrix J € R"*™ of f is defined such that J; ; = ;2-f(z);.

We are also sometimes interested in a derivative of a derivative. This is known
as a second derivative. For example, for a function f : R®™ — R, the derivative
with respect to z; of the derivative of f with respect to x; is denoted as afw f

In a single dimension, we can denote % f by f”(x). The second derivative tells
us how the first derivative will change as we vary the input. This is important
because it tells us whether a gradient step will cause as much of an improvement
as we would expect based on the gradient alone. We can think of the second
derivative as measuring curvature. Suppose we have a quadratic function (many
functions that arise in practice are not quadratic but can be approximated well
as quadratic, at least locally). If such a function has a second derivative of zero,
then there is no curvature. It is a perfectly flat line, and its value can be predicted
using only the gradient. If the gradient is 1, then we can make a step of size €
along the negative gradient, and the cost function will decrease by €. If the second
derivative is negative, the function curves downward, so the cost function will
actually decrease by more than e Finally, if the second derivative is positive, the
function curves upward, so the cost function can decrease by less than e. See Fig.

86

CHAPTER 4. NUMERICAL COMPUTATION

Figure 4.4: The second derivative determines the curvature of a function. Here we show
quadratic functions with various curvature. The dashed line indicates the value of the cost
function we would expect based on the gradient information alone as we make a gradient
step downhill. In the case of negative curvature, the cost function actually decreases
faster than the gradient predicts. In the case of no curvature, the gradient predicts the
decrease correctly. In the case of positive curvature, the function decreases slower than
expected and eventually begins to increase, so too large of step sizes can actually increase
the function inadvertently.

4.4 to see how different forms of curvature affect the relationship between the value
of the cost function predicted by the gradient and the true value.

When our function has multiple input dimensions, there are many second
derivatives. These derivatives can be collected together into a matrix called the
Hessian matriz. The Hessian matrix H (f)(x) is defined such that

o2
O0x;0x;

H(f)(x)i; = f(@). (4.6)

Equivalently, the Hessian is the Jacobian of the gradient.
Anywhere that the second partial derivatives are continuous, the differential
operators are commutative, i.e. their order can be swapped:
0? 0?
flzx) =
8:1% 827]' ox jaa;l-

f(@). (4.7)

This implies that H; ; = H ;;, so the Hessian matrix is symmetric at such points.
Most of the functions we encounter in the context of deep learning have a symmetric
Hessian almost everywhere. Because the Hessian matrix is real and symmetric,
we can decompose it into a set of real eigenvalues and an orthogonal basis of

87

CHAPTER 4. NUMERICAL COMPUTATION

eigenvectors. The second derivative in a specific direction represented by a unit
vector d is given by d" Hd. When d is an eigenvector of H , the second derivative
in that direction is given by the corresponding eigenvalue. For other directions of
d, the directional second derivative is a weighted average of all of the eigenvalues,
with weights between 0 and 1, and eigenvectors that have smaller angle with d
receiving more weight. The maximum eigenvalue determines the maximum second
derivative and the minimum eigenvalue determines the minimum second derivative.

The (directional) second derivative tells us how well we can expect a gradient
descent step to perform. We can make a second-order Taylor series approximation
to the function f(x) around the current point x(®:

f@)~ f@0) + (@ - 2)Tg+ (@2 H@ o). (43)

where g is the gradient and H is the Hessian at . If we use a learning rate
of €, then the new point = will be given by (%) — eg. Substituting this into our
approximation, we obtain

@@ —eg)~ f(@®) —egTg+ %e2gTHQ- (4.9)

There are three terms here: the original value of the function, the expected
improvement due to the slope of the function, and the correction we must apply
to account for the curvature of the function. When this last term is too large, the
gradient descent step can actually move uphill. When g Hg is zero or negative,
the Taylor series approximation predicts that increasing e forever will decrease f
forever. In practice, the Taylor series is unlikely to remain accurate for large €, so
one must resort to more heuristic choices of € in this case. When g ' Hg is positive,
solving for the optimal step size that decreases the Taylor series approximation of
the function the most yields
s_ 99
g' Hg
In the worst case, when g aligns with the eigenvector of H corresponding to the
maximal eigenvalue A.x, then this optimal step size is given by)\; To the

(4.10)

extent that the function we minimize can be approximated well by a quadratic
function, the eigenvalues of the Hessian thus determine the scale of the learning
rate.

The second derivative can be used to determine whether a critical point is a
local maximum, a local minimum, or saddle point. Recall that on a critical point,
f'(x) = 0. When f”(z) > 0, this means that f/(x) increases as we move to the
right, and f/(z) decreases as we move to the left. This means f'(x —¢) <0 and

88

CHAPTER 4. NUMERICAL COMPUTATION

f'(x+€)> 0 for small enough €. In other words, as we move right, the slope begins
to point uphill to the right, and as we move left, the slope begins to point uphill
to the left. Thus, when f’(z) =0 and f”(x) >0, we can conclude that z is a local
minimum. Similarly, when f’(z) = 0 and f” () < 0, we can conclude that z is a
local maximum. This is known as the second derivative test. Unfortunately, when
f"(x) =0, the test is inconclusive. In this case x may be a saddle point, or a part
of a flat region.

In multiple dimensions, we need to examine all of the second derivatives of the
function. Using the eigendecomposition of the Hessian matrix, we can generalize
the second derivative test to multiple dimensions. At a critical point, where
V f(x) =0, we can examine the eigenvalues of the Hessian to determine whether
the critical point is a local maximum, local minimum, or saddle point. When the
Hessian is positive definite (all its eigenvalues are positive), the point is a local
minimum. This can be seen by observing that the directional second derivative
in any direction must be positive, and making reference to the univariate second
derivative test. Likewise, when the Hessian is negative definite (all its eigenvalues
are negative), the point is a local maximum. In multiple dimensions, it is actually
possible to find positive evidence of saddle points in some cases. When at least
one eigenvalue is positive and at least one eigenvalue is negative, we know that
x is a local maximum on one cross section of f but a local minimum on another
cross section. See Fig. 4.5 for an example. Finally, the multidimensional second
derivative test can be inconclusive, just like the univariate version. The test is
inconclusive whenever all of the non-zero eigenvalues have the same sign, but at
least one eigenvalue is zero. This is because the univariate second derivative test is
inconclusive in the cross section corresponding to the zero eigenvalue.

In multiple dimensions, there can be a wide variety of different second derivatives
at a single point, because there is a different second derivative for each direction.
The condition number of the Hessian measures how much the second derivatives
vary. When the Hessian has a poor condition number, gradient descent performs
poorly. This is because in one direction, the derivative increases rapidly, while in
another direction, it increases slowly. Gradient descent is unaware of this change
in the derivative so it does not know that it needs to explore preferentially in
the direction where the derivative remains negative for longer. It also makes it
difficult to choose a good step size. The step size must be small enough to avoid
overshooting the minimum and going uphill in directions with strong positive
curvature. This usually means that the step size is too small to make significant
progress in other directions with less curvature. See Fig. 4.6 for an example.

This issue can be resolved by using information from the Hessian matrix to

89

CHAPTER 4. NUMERICAL COMPUTATION

Figure 4.5: A saddle point containing both positive and negative curvature. The function
in this example is f(x) = * — x . Along the axis corresponding to x , the function
curves upward. This axis is an eigenvector of the Hessian and has a positive eigenvalue.
Along the axis corresponding to z , the function curves downward. This direction is an
eigenvector of the Hessian with negative eigenvalue. The name “saddle point” derives from
the saddle-like shape of this function. This is the quintessential example of a function
with a saddle point. In more than one dimension, it is not necessary to have an eigenvalue
of 0 in order to get a saddle point: it is only necessary to have both positive and negative
eigenvalues. We can think of a saddle point with both signs of eigenvalues as being a local
maximum within one cross section and a local minimum within another cross section.

90

CHAPTER 4. NUMERICAL COMPUTATION

Figure 4.6: Gradient descent fails to exploit the curvature information contained in the
Hessian matrix. Here we use gradient descent to minimize a quadratic function f () whose
Hessian matrix has condition number 5. This means that the direction of most curvature
has five times more curvature than the direction of least curvature. In this case, the most
curvature is in the direction [1,1] and the least curvature is in the direction [1, —1] . The
red lines indicate the path followed by gradient descent. This very elongated quadratic
function resembles a long canyon. Gradient descent wastes time repeatedly descending
canyon walls, because they are the steepest feature. Because the step size is somewhat
too large, it has a tendency to overshoot the bottom of the function and thus needs to
descend the opposite canyon wall on the next iteration. The large positive eigenvalue
of the Hessian corresponding to the eigenvector pointed in this direction indicates that
this directional derivative is rapidly increasing, so an optimization algorithm based on
the Hessian could predict that the steepest direction is not actually a promising search
direction in this context.

91

CHAPTER 4. NUMERICAL COMPUTATION

guide the search. The simplest method for doing so is known as Newton’s method.
Newton’s method is based on using a second-order Taylor series expansion to
approximate f(z) near some point z(%):

f(@) ~ (@) +(@—aV) TV f(w(o))+%(w—w(o))TH(f)(w(o))(w—w(o))- (4.11)
If we then solve for the critical point of this function, we obtain:
o' =20 - H(f)(@)'v f(x®). (4.12)

When f is a positive definite quadratic function, Newton’s method consists of
applying Eq. 4.12 once to jump to the minimum of the function directly. When f is
not truly quadratic but can be locally approximated as a positive definite quadratic,
Newton’s method consists of applying Eq. 4.12 multiple times. Iteratively updating
the approximation and jumping to the minimum of the approximation can reach
the critical point much faster than gradient descent would. This is a useful property
near a local minimum, but it can be a harmful property near a saddle point. As
discussed in Sec. 8.2.3, Newton’s method is only appropriate when the nearby
critical point is a minimum (all the eigenvalues of the Hessian are positive), whereas
gradient descent is not attracted to saddle points unless the gradient points toward
them.

Optimization algorithms such as gradient descent that use only the gradient are
called first-order optimization algorithms. Optimization algorithms such as New-
ton’s method that also use the Hessian matrix are called second-order optimization
algorithms (:).

The optimization algorithms employed in most contexts in this book are
applicable to a wide variety of functions, but come with almost no guarantees. This
is because the family of functions used in deep learning is quite complicated. In
many other fields, the dominant approach to optimization is to design optimization
algorithms for a limited family of functions.

In the context of deep learning, we sometimes gain some guarantees by restrict-
ing ourselves to functions that are either Lipschitz continuous or have Lipschitz
continuous derivatives. A Lipschitz continuous function is a function f whose rate
of change is bounded by a Lipschitz constant L:

va, vy, |f(x) — f(y)] < Lz —yll2. (4.13)

This property is useful because it allows us to quantify our assumption that a
small change in the input made by an algorithm such as gradient descent will have
a small change in the output. Lipschitz continuity is also a fairly weak constraint,

92

CHAPTER 4. NUMERICAL COMPUTATION

and many optimization problems in deep learning can be made Lipschitz continuous
with relatively minor modifications.

Perhaps the most successful field of specialized optimization is convexr optimiza-
tion. Convex optimization algorithms are able to provide many more guarantees
by making stronger restrictions. Convex optimization algorithms are applicable
only to convex functions—functions for which the Hessian is positive semidefinite
everywhere. Such functions are well-behaved because they lack saddle points and
all of their local minima are necessarily global minima. However, most problems
in deep learning are difficult to express in terms of convex optimization. Convex
optimization is used only as a subroutine of some deep learning algorithms. Ideas
from the analysis of convex optimization algorithms can be useful for proving the
convergence of deep learning algorithms. However, in general, the importance of
convex optimization is greatly diminished in the context of deep learning. For
more information about convex optimization, see ()

or ().

4.4 Constrained Optimization

Sometimes we wish not only to maximize or minimize a function f(x) over all
possible values of x. Instead we may wish to find the maximal or minimal value of
f () for values of @ in some set S. This is known as constrained optimization. Points
x that lie within the set S are called feasible points in constrained optimization
terminology.

We often wish to find a solution that is small in some sense. A common
approach in such situations is to impose a norm constraint, such as ||z|| < 1.

One simple approach to constrained optimization is simply to modify gradient
descent taking the constraint into account. If we use a small constant step size e,
we can make gradient descent steps, then project the result back into S. If we use
a line search, we can search only over step sizes € that yield new x points that are
feasible, or we can project each point on the line back into the constraint region.
When possible, this method can be made more efficient by projecting the gradient
into the tangent space of the feasible region before taking the step or beginning
the line search (:).

A more sophisticated approach is to design a different, unconstrained opti-
mization problem whose solution can be converted into a solution to the original,
constrained optimization problem. For example, if we want to minimize f() for
x € R? with @ constrained to have exactly unit L? norm, we can instead minimize

93

CHAPTER 4. NUMERICAL COMPUTATION

g(0) = f([cosf,sin] ") with respect to 6, then return [cos 6, sin d] as the solution
to the original problem. This approach requires creativity; the transformation
between optimization problems must be designed specifically for each case we
encounter.

The Karush—Kuhn—Tucker (KKT) approach provides a very general solution
to constrained optimization. With the KKT approach, we introduce a new function
called the generalized Lagrangian or generalized Lagrange function.

To define the Lagrangian, we first need to describe S in terms of equations
and inequalities. We want a description of S in terms of m functions g(i) and n
functions h) so that S= {x | Vi, ¢”) () = 0 and V4, hY)(x) <0}. The equations
involving g(i) are called the equality constraints and the inequalities involving h (7
are called inequality constraints.

We introduce new variables)\; and o for each constraint, these are called the
KKT multipliers. The generalized Lagrangian is then defined as

L(z, A\ o) = f(z)+ leg@ (z) + Zajmj)(w). (4.14)

We can now solve a constrained minimization problem using unconstrained
optimization of the generalized Lagrangian. Observe that, so long as at least one
feasible point exists and f(x) is not permitted to have value oo, then

minmax max L(x, A,). (4.15)

)

has the same optimal objective function value and set of optimal points a as

rréign f(x). (4.16)

This follows because any time the constraints are satisfied,

max max Lz, A\ o) = f(x), (4.17)

pA—

while any time a constraint is violated,

max max Lz, A\,) = 0. (4.18)

P

These properties guarantee that no infeasible point will ever be optimal, and that
the optimum within the feasible points is unchanged.

The KKT approach generalizes the method of which allows equality
constraints but not inequality constraints.

94

CHAPTER 4. NUMERICAL COMPUTATION

To perform constrained maximization, we can construct the generalized La-
grange function of — f (), which leads to this optimization problem:

minmax max —)+ Z)\ D (x) + Zajh(j)(x). (4.19)

We may also convert this to a problem with maximization in the outer loop:

maxmin mln f(x —|—Z/\ g9 (x Za K9 (x (4.20)

The sign of the term for the equality constraints does not matter; we may define it
with addition or subtraction as we wish, because the optimization is free to choose
any sign for each \;.

The inequality constraints are particularly interesting. We say that a constraint
R () is active if K9 (2*) = 0. If a constraint is not active, then the solution to
the problem found using that constraint would remain at least a local solution if
that constraint were removed. It is possible that an inactive constraint excludes
other solutions. For example, a convex problem with an entire region of globally
optimal points (a wide, flat, region of equal cost) could have a subset of this
region eliminated by constraints, or a non-convex problem could have better local
stationary points excluded by a constraint that is inactive at convergence. However,
the point found at convergence remains a stationary point whether or not the
inactive constraints are included. Because an inactive h(® has negative value, then
the solution to min max max > L(z, A, o) will have oy = 0. We can thus
observe that at the solution, ah(x) = . In other words, for all 7, we know that at
least one of the constraints o; > 0 and h() (x) < 0 must be active at the solution.
To gain some intuition for this idea, we can say that either the solution is on
the boundary imposed by the inequality and we must use its KK'T multiplier to
influence the solution to @, or the inequality has no influence on the solution and
we represent this by zeroing out its KKT multiplier.

The properties that the gradient of the generalized Lagrangian is zero, all
constraints on both x and the KKT multipliers are satisfied, and o« ® h(x) =

are called the Karush-Kuhn-Tucker (KKT) conditions (, ;
). Together, these properties describe the optimal points of constrained

Y

optimization problems.

For more information about the KKT approach, see ().

95

CHAPTER 4. NUMERICAL COMPUTATION

4.5 Example: Linear Least Squares
Suppose we want to find the value of & that minimizes
1 2
f(z) = ;||Az — blf3. (4.21)

There are specialized linear algebra algorithms that can solve this problem efficiently.
However, we can also explore how to solve it using gradient-based optimization as
a simple example of how these techniques work.

First, we need to obtain the gradient:
V f(x)=AT (Ax —b)= A" Az — A'b. (4.22)

We can then follow this gradient downhill, taking small steps. See Algorithm 4.1
for details.

An algorithm to minimize f(x) = 3||Ax — b|[3 with respect to x
using gradient descent.

Set the step size (€) and tolerance (§) to small, positive numbers.
||A TA:B — ATb||2> 5
r+x—c(ATAr — ATb)

One can also solve this problem using Newton’s method. In this case, because
the true function is quadratic, the quadratic approximation employed by Newton’s
method is exact, and the algorithm converges to the global minimum in a single
step.

Now suppose we wish to minimize the same function, but subject to the
constraint '« < 1. To do so, we introduce the Lagrangian

L(z,\) = f(z) +) (a:Ta: . 1) . (4.23)
We can now solve the problem

i L(z, \). 4.24
min max I(x, A) (4.24)

The smallest-norm solution to the unconstrained least squares problem may be
found using the Moore-Penrose pseudoinverse: & = AT b. If this point is feasible,
then it is the solution to the constrained problem. Otherwise, we must find a

96

CHAPTER 4. NUMERICAL COMPUTATION

solution where the constraint is active. By differentiating the Lagrangian with
respect to x, we obtain the equation

ATAz —ATb+ 2 z =0. (4.25)
This tells us that the solution will take the form
x=(ATA+2)I)"'ATb. (4.26)

The magnitude of A must be chosen such that the result obeys the constraint. We
can find this value by performing gradient ascent on A. To do so, observe

0

LN =x'z—1. 4.27

L,) (127
When the norm of x exceeds 1, this derivative is positive, so to follow the derivative
uphill and increase the Lagrangian with respect to A\, we increase A\. Because the
coefficient on the &'« penalty has increased, solving the linear equation for = will
now yield a solution with smaller norm. The process of solving the linear equation

and adjusting A\ continues until has the correct norm and the derivative on A is
0.

This concludes the mathematical preliminaries that we use to develop machine
learning algorithms. We are now ready to build and analyze some full-fledged
learning systems.

97

Chapter 5

Machine Learning Basics

Deep learning is a specific kind of machine learning. In order to understand
deep learning well, one must have a solid understanding of the basic principles
of machine learning. This chapter provides a brief course in the most important
general principles that will be applied throughout the rest of the book. Novice
readers or those who want a wider perspective are encouraged to consider machine
learning textbooks with a more comprehensive coverage of the fundamentals, such
as () or (). If you are already familiar with machine
learning basics, feel free to skip ahead to Sec. 5.11. That section covers some per-
spectives on traditional machine learning techniques that have strongly influenced
the development of deep learning algorithms.

We begin with a definition of what a learning algorithm is, and present an
example: the linear regression algorithm. We then proceed to describe how the
challenge of fitting the training data differs from the challenge of finding patterns
that generalize to new data. Most machine learning algorithms have settings
called hyperparameters that must be determined external to the learning algorithm
itself; we discuss how to set these using additional data. Machine learning is
essentially a form of applied statistics with increased emphasis on the use of
computers to statistically estimate complicated functions and a decreased emphasis
on proving confidence intervals around these functions; we therefore present the
two central approaches to statistics: frequentist estimators and Bayesian inference.
Most machine learning algorithms can be divided into the categories of supervised
learning and unsupervised learning; we describe these categories and give some
examples of simple learning algorithms from each category. Most deep learning
algorithms are based on an optimization algorithm called stochastic gradient
descent. We describe how to combine various algorithm components such as an

98

CHAPTER 5. MACHINE LEARNING BASICS

optimization algorithm, a cost function, a model, and a dataset to build a machine
learning algorithm. Finally, in Sec. 5.11, we describe some of the factors that have
limited the ability of traditional machine learning to generalize. These challenges
have motivated the development of deep learning algorithms that overcome these
obstacles.

5.1 Learning Algorithms

A machine learning algorithm is an algorithm that is able to learn from data. But
what do we mean by learning? () provides the definition “A computer
program is said to learn from experience E with respect to some class of tasks T'
and performance measure P, if its performance at tasks in 7', as measured by P,
improves with experience E.” One can imagine a very wide variety of experiences
FE, tasks T', and performance measures P, and we do not make any attempt in this
book to provide a formal definition of what may be used for each of these entities.
Instead, the following sections provide intuitive descriptions and examples of the
different kinds of tasks, performance measures and experiences that can be used
to construct machine learning algorithms.

5.1.1 The Task, T

Machine learning allows us to tackle tasks that are too difficult to solve with
fixed programs written and designed by human beings. From a scientific and
philosophical point of view, machine learning is interesting because developing our
understanding of machine learning entails developing our understanding of the
principles that underlie intelligence.

In this relatively formal definition of the word “task,” the process of learning
itself is not the task. Learning is our means of attaining the ability to perform the
task. For example, if we want a robot to be able to walk, then walking is the task.
We could program the robot to learn to walk, or we could attempt to directly write
a program that specifies how to walk manually.

Machine learning tasks are usually described in terms of how the machine
learning system should process an ezample. An example is a collection of features
that have been quantitatively measured from some object or event that we want
the machine learning system to process. We typically represent an example as a
vector € R™ where each entry x; of the vector is another feature. For example,
the features of an image are usually the values of the pixels in the image.

99

CHAPTER 5. MACHINE LEARNING BASICS

Many kinds of tasks can be solved with machine learning. Some of the most
common machine learning tasks include the following:

o (lassification: In this type of task, the computer program is asked to specify
which of k categories some input belongs to. To solve this task, the learning
algorithm is usually asked to produce a function f: R"™ — {1,...,k}. When
y = f(x), the model assigns an input described by vector & to a category
identified by numeric code y. There are other variants of the classification
task, for example, where f outputs a probability distribution over classes.
An example of a classification task is object recognition, where the input
is an image (usually described as a set of pixel brightness values), and the
output is a numeric code identifying the object in the image. For example,
the Willow Garage PR2 robot is able to act as a waiter that can recognize
different kinds of drinks and deliver them to people on command (

,). Modern object recognition is best accomplished with
deep learning (, : :). Object
recognition is the same basic technology that allows computers to recognize
faces (,), which can be used to automatically tag people
in photo collections and allow computers to interact more naturally with
their users.

e C(lassification with missing inputs: Classification becomes more challenging if
the computer program is not guaranteed that every measurement in its input
vector will always be provided. In order to solve the classification task, the
learning algorithm only has to define a single function mapping from a vector
input to a categorical output. When some of the inputs may be missing,
rather than providing a single classification function, the learning algorithm
must learn a set of functions. Each function corresponds to classifying x with
a different subset of its inputs missing. This kind of situation arises frequently
in medical diagnosis, because many kinds of medical tests are expensive or
invasive. One way to efficiently define such a large set of functions is to learn
a probability distribution over all of the relevant variables, then solve the
classification task by marginalizing out the missing variables. With n input
variables, we can now obtain all 2" different classification functions needed
for each possible set of missing inputs, but we only need to learn a single
function describing the joint probability distribution. See
() for an example of a deep probabilistic model applied to such a task
in this way. Many of the other tasks described in this section can also be
generalized to work with missing inputs; classification with missing inputs is
just one example of what machine learning can do.

100

CHAPTER 5. MACHINE LEARNING BASICS

e Regression: In this type of task, the computer program is asked to predict a
numerical value given some input. To solve this task, the learning algorithm
is asked to output a function f: R™ — R. This type of task is similar to
classification, except that the format of output is different. An example of
a regression task is the prediction of the expected claim amount that an
insured person will make (used to set insurance premiums), or the prediction
of future prices of securities. These kinds of predictions are also used for
algorithmic trading.

e Transcription: In this type of task, the machine learning system is asked to
observe a relatively unstructured representation of some kind of data and
transcribe it into discrete, textual form. For example, in optical character
recognition, the computer program is shown a photograph containing an
image of text and is asked to return this text in the form of a sequence
of characters (e.g., in ASCII or Unicode format). Google Street View uses
deep learning to process address numbers in this way (,

). Another example is speech recognition, where the computer program
is provided an audio waveform and emits a sequence of characters or word
ID codes describing the words that were spoken in the audio recording. Deep
learning is a crucial component of modern speech recognition systems used
at major companies including Microsoft, IBM and Google (,

).

e Machine translation: In a machine translation task, the input already consists
of a sequence of symbols in some language, and the computer program must
convert this into a sequence of symbols in another language. This is commonly
applied to natural languages, such as to translate from English to French.

Deep learning has recently begun to have an important impact on this kind
of task (, : :).

e Structured output: Structured output tasks involve any task where the output
is a vector (or other data structure containing multiple values) with important
relationships between the different elements. This is a broad category, and
subsumes the transcription and translation tasks described above, but also
many other tasks. One example is parsing—mapping a natural language
sentence into a tree that describes its grammatical structure and tagging nodes
of the trees as being verbs, nouns, or adverbs, and so on. See ()
for an example of deep learning applied to a parsing task. Another example
is pixel-wise segmentation of images, where the computer program assigns
every pixel in an image to a specific category. For example, deep learning can

101

CHAPTER 5. MACHINE LEARNING BASICS

be used to annotate the locations of roads in aerial photographs (
:). The output need not have its form mirror the structure of

the input as closely as in these annotation-style tasks. For example, in image
captioning, the computer program observes an image and outputs a natural
language sentence describing the image (, ,b; ,
Y ? ? Y Y Y Y

) ;)). These tasks are called structured output

tasks because the program must output several values that are all tightly
inter-related. For example, the words produced by an image captioning

program must form a valid sentence.

o Anomaly detection: In this type of task, the computer program sifts through
a set of events or objects, and flags some of them as being unusual or atypical.
An example of an anomaly detection task is credit card fraud detection. By
modeling your purchasing habits, a credit card company can detect misuse
of your cards. If a thief steals your credit card or credit card information,
the thief’s purchases will often come from a different probability distribution
over purchase types than your own. The credit card company can prevent
fraud by placing a hold on an account as soon as that card has been used
for an uncharacteristic purchase. See () for a survey of
anomaly detection methods.

e Synthesis and sampling: In this type of task, the machine learning algorithm
is asked to generate new examples that are similar to those in the training
data. Synthesis and sampling via machine learning can be useful for media
applications where it can be expensive or boring for an artist to generate large
volumes of content by hand. For example, video games can automatically
generate textures for large objects or landscapes, rather than requiring an
artist to manually label each pixel (,). In some cases, we
want the sampling or synthesis procedure to generate some specific kind of
output given the input. For example, in a speech synthesis task, we provide a
written sentence and ask the program to emit an audio waveform containing
a spoken version of that sentence. This is a kind of structured output task,
but with the added qualification that there is no single correct output for
each input, and we explicitly desire a large amount of variation in the output,
in order for the output to seem more natural and realistic.

e Imputation of missing values: In this type of task, the machine learning
algorithm is given a new example x € R™, but with some entries z; of x
missing. The algorithm must provide a prediction of the values of the missing
entries.

102

CHAPTER 5. MACHINE LEARNING BASICS

e Denoising: In this type of task, the machine learning algorithm is given in
input a corrupted example € € R™ obtained by an unknown corruption process
from a clean example € R™. The learner must predict the clean example
x from its corrupted version &, or more generally predict the conditional
probability distribution p(x |).

e Density estimation or probability mass function estimation: In the density
estimation problem, the machine learning algorithm is asked to learn a
function p : R™ — R, where p (x) can be interpreted as a probability
density function (if is continuous) or a probability mass function (if is
discrete) on the space that the examples were drawn from. To do such a task
well (we will specify exactly what that means when we discuss performance
measures P), the algorithm needs to learn the structure of the data it
has seen. It must know where examples cluster tightly and where they
are unlikely to occur. Most of the tasks described above require that the
learning algorithm has at least implicitly captured the structure of the
probability distribution. Density estimation allows us to explicitly capture
that distribution. In principle, we can then perform computations on that
distribution in order to solve the other tasks as well. For example, if we
have performed density estimation to obtain a probability distribution p(x),
we can use that distribution to solve the missing value imputation task. If
a value x; is missing and all of the other values, denoted «x ;> are given,
then we know the distribution over it is given by p(z; | « ;). In practice,
density estimation does not always allow us to solve all of these related tasks,
because in many cases the required operations on p(«) are computationally
intractable.

Of course, many other tasks and types of tasks are possible. The types of tasks
we list here are intended only to provide examples of what machine learning can
do, not to define a rigid taxonomy of tasks.

5.1.2 The Performance Measure, P

In order to evaluate the abilities of a machine learning algorithm, we must design
a quantitative measure of its performance. Usually this performance measure P is
specific to the task T being carried out by the system.

For tasks such as classification, classification with missing inputs, and transcrip-
tion, we often measure the accuracy of the model. Accuracy is just the proportion
of examples for which the model produces the correct output. We can also obtain

103

CHAPTER 5. MACHINE LEARNING BASICS

equivalent information by measuring the error rate, the proportion of examples for
which the model produces an incorrect output. We often refer to the error rate as
the expected 0-1 loss. The 0-1 loss on a particular example is 0 if it is correctly
classified and 1 if it is not. For tasks such as density estimation, it does not make
sense to measure accuracy, error rate, or any other kind of 0-1 loss. Instead, we
must use a different performance metric that gives the model a continuous-valued
score for each example. The most common approach is to report the average
log-probability the model assigns to some examples.

Usually we are interested in how well the machine learning algorithm performs
on data that it has not seen before, since this determines how well it will work when
deployed in the real world. We therefore evaluate these performance measures
using a test set of data that is separate from the data used for training the machine
learning system.

The choice of performance measure may seem straightforward and objective,
but it is often difficult to choose a performance measure that corresponds well to
the desired behavior of the system.

In some cases, this is because it is difficult to decide what should be measured.
For example, when performing a transcription task, should we measure the accuracy
of the system at transcribing entire sequences, or should we use a more fine-grained
performance measure that gives partial credit for getting some elements of the
sequence correct? When performing a regression task, should we penalize the
system more if it frequently makes medium-sized mistakes or if it rarely makes
very large mistakes? These kinds of design choices depend on the application.

In other cases, we know what quantity we would ideally like to measure, but
measuring it is impractical. For example, this arises frequently in the context of
density estimation. Many of the best probabilistic models represent probability
distributions only implicitly. Computing the actual probability value assigned to
a specific point in space in many such models is intractable. In these cases, one
must design an alternative criterion that still corresponds to the design objectives,
or design a good approximation to the desired criterion.

5.1.3 The Experience, E

Machine learning algorithms can be broadly categorized as unsupervised or su-
pervised by what kind of experience they are allowed to have during the learning
process.

Most of the learning algorithms in this book can be understood as being allowed
to experience an entire dataset. A dataset is a collection of many examples, as

104

CHAPTER 5. MACHINE LEARNING BASICS

defined in Sec. 5.1.1. Sometimes we will also call examples data points.

One of the oldest datasets studied by statisticians and machine learning re-
searchers is the Iris dataset (:). It is a collection of measurements of
different parts of 150 iris plants. Each individual plant corresponds to one example.
The features within each example are the measurements of each of the parts of the
plant: the sepal length, sepal width, petal length and petal width. The dataset
also records which species each plant belonged to. Three different species are
represented in the dataset.

Unsupervised learning algorithms experience a dataset containing many features,
then learn useful properties of the structure of this dataset. In the context of deep
learning, we usually want to learn the entire probability distribution that generated
a dataset, whether explicitly as in density estimation or implicitly for tasks like
synthesis or denoising. Some other unsupervised learning algorithms perform other
roles, like clustering, which consists of dividing the dataset into clusters of similar
examples.

Supervised learning algorithms experience a dataset containing features, but
each example is also associated with a label or target. For example, the Iris dataset
is annotated with the species of each iris plant. A supervised learning algorithm
can study the Iris dataset and learn to classify iris plants into three different species
based on their measurements.

Roughly speaking, unsupervised learning involves observing several examples
of a random vector , and attempting to implicitly or explicitly learn the proba-
bility distribution p(), or some interesting properties of that distribution, while
supervised learning involves observing several examples of a random vector and
an associated value or vector , and learning to predict from , usually by
estimating p(|). The term supervised learning originates from the view of
the target being provided by an instructor or teacher who shows the machine
learning system what to do. In unsupervised learning, there is no instructor or
teacher, and the algorithm must learn to make sense of the data without this guide.

Unsupervised learning and supervised learning are not formally defined terms.
The lines between them are often blurred. Many machine learning technologies can
be used to perform both tasks. For example, the chain rule of probability states
that for a vector € R™, the joint distribution can be decomposed as

n

p()= p(xi|x,...,xi). (5.1)
i

This decomposition means that we can solve the ostensibly unsupervised problem of

modeling p() by splitting it into n supervised learning problems. Alternatively, we

105

CHAPTER 5. MACHINE LEARNING BASICS

can solve the supervised learning problem of learning p(y |) by using traditional
unsupervised learning technologies to learn the joint distribution p(,y) and
inferring
p(.y) ' (5.2)
y (5y)

Though unsupervised learning and supervised learning are not completely formal or
distinct concepts, they do help to roughly categorize some of the things we do with
machine learning algorithms. Traditionally, people refer to regression, classification
and structured output problems as supervised learning. Density estimation in

ply|)=

support of other tasks is usually considered unsupervised learning.

Other variants of the learning paradigm are possible. For example, in semi-
supervised learning, some examples include a supervision target but others do
not. In multi-instance learning, an entire collection of examples is labeled as
containing or not containing an example of a class, but the individual members
of the collection are not labeled. For a recent example of multi-instance learning
with deep models, see ().

Some machine learning algorithms do not just experience a fixed dataset. For
example, reinforcement learning algorithms interact with an environment, so there
is a feedback loop between the learning system and its experiences. Such algorithms

are beyond the scope of this book. Please see () or
() for information about reinforcement learning, and
() for the deep learning approach to reinforcement learning.

Most machine learning algorithms simply experience a dataset. A dataset can
be described in many ways. In all cases, a dataset is a collection of examples,
which are in turn collections of features.

One common way of describing a dataset is with a design matriz. A design
matrix is a matrix containing a different example in each row. Each column of the
matrix corresponds to a different feature. For instance, the Iris dataset contains
150 examples with four features for each example. This means we can represent
the dataset with a design matrix X € R , where X is the sepal length of
plant i, X; is the sepal width of plant 4, etc. We will describe most of the learning
algorithms in this book in terms of how they operate on design matrix datasets.

Of course, to describe a dataset as a design matrix, it must be possible to
describe each example as a vector, and each of these vectors must be the same size.
This is not always possible. For example, if you have a collection of photographs
with different widths and heights, then different photographs will contain different
numbers of pixels, so not all of the photographs may be described with the same
length of vector. Sec. 9.7 and Chapter 10 describe how to handle different types

106

CHAPTER 5. MACHINE LEARNING BASICS

of such heterogeneous data. In cases like these, rather than describing the dataset
as a matrix with m rows, we will describe it as a set containing m elements:
{z ,x ...,z ™ }. This notation does not imply that any two example vectors
' and £/ have the same size.

In the case of supervised learning, the example contains a label or target as
well as a collection of features. For example, if we want to use a learning algorithm
to perform object recognition from photographs, we need to specify which object
appears in each of the photos. We might do this with a numeric code, with 0
signifying a person, 1 signifying a car, 2 signifying a cat, etc. Often when working
with a dataset containing a design matrix of feature observations X, we also
provide a vector of labels y, with y; providing the label for example i.

Of course, sometimes the label may be more than just a single number. For
example, if we want to train a speech recognition system to transcribe entire
sentences, then the label for each example sentence is a sequence of words.

Just as there is no formal definition of supervised and unsupervised learning,
there is no rigid taxonomy of datasets or experiences. The structures described here
cover most cases, but it is always possible to design new ones for new applications.

5.1.4 Example: Linear Regression

Our definition of a machine learning algorithm as an algorithm that is capable
of improving a computer program’s performance at some task via experience is
somewhat abstract. To make this more concrete, we present an example of a simple
machine learning algorithm: linear regression. We will return to this example
repeatedly as we introduce more machine learning concepts that help to understand
its behavior.

As the name implies, linear regression solves a regression problem. In other
words, the goal is to build a system that can take a vector & € R” as input and
predict the value of a scalar y € R as its output. In the case of linear regression,
the output is a linear function of the input. Let § be the value that our model
predicts y should take on. We define the output to be

y=w x (5.3)

where w € R" is a vector of parameters.

Parameters are values that control the behavior of the system. In this case, w; is
the coefficient that we multiply by feature x; before summing up the contributions
from all the features. We can think of w as a set of weights that determine how
each feature affects the prediction. If a feature x; receives a positive weight w;,

107

CHAPTER 5. MACHINE LEARNING BASICS

then increasing the value of that feature increases the value of our prediction .
If a feature receives a negative weight, then increasing the value of that feature
decreases the value of our prediction. If a feature’s weight is large in magnitude,
then it has a large effect on the prediction. If a feature’s weight is zero, it has no
effect on the prediction.

We thus have a definition of our task 7": to predict y from a by outputting
y=w x. Next we need a definition of our performance measure, P.

Suppose that we have a design matrix of m example inputs that we will not
use for training, only for evaluating how well the model performs. We also have
a vector of regression targets providing the correct value of y for each of these
examples. Because this dataset will only be used for evaluation, we call it the test
set. We refer to the design matrix of inputs as X and the vector of regression
targets as y

One way of measuring the performance of the model is to compute the mean
squared error of the model on the test set. If gy gives the predictions of the
model on the test set, then the mean squared error is given by

MSE =— (g -y)i (5.4)
ey
Intuitively, one can see that this error measure decreases to 0 when gy =y
We can also see that
L.
MSE =—lg -y |, (5.5)
m

so the error increases whenever the Euclidean distance between the predictions
and the targets increases.

To make a machine learning algorithm, we need to design an algorithm that
will improve the weights w in a way that reduces MSE when the algorithm
is allowed to gain experience by observing a training set (X Y). One
intuitive way of doing this (which we will justify later, in Sec. 5.5.1) is just to
minimize the mean squared error on the training set, MSE

To minimize MSE | we can simply solve for where its gradient is
V MSE =0 (5.6)
L.
=V —|lg -y | =0 (5.7)
m
1
=—V || X w—y | =0 (5.8)
m

108

CHAPTER 5. MACHINE LEARNING BASICS

w
w
w Yy=wzx
w
=V X w—y X w—y =0 (5.9)
=V w X X w—2w X Y +vy Yy =
(5.10)
= 2X X w—2X Y =0 (5.11)
sw= X X X Y (5.12)

The system of equations whose solution is given by Eq. 5.12 is known as the
normal equations. Evaluating Eq. 5.12 constitutes a simple learning algorithm.
For an example of the linear regression learning algorithm in action, see Fig. 5.1.

It is worth noting that the term linear regression is often used to refer to a
slightly more sophisticated model with one additional parameter—an intercept
term b. In this model

g=w x=+b (5.13)

so the mapping from parameters to predictions is still a linear function but the
mapping from features to predictions is now an affine function. This extension to
affine functions means that the plot of the model’s predictions still looks like a
line, but it need not pass through the origin. Instead of adding the bias parameter
b, one can continue to use the model with only weights but augment & with an

109

CHAPTER 5. MACHINE LEARNING BASICS

extra entry that is always set to 1. The weight corresponding to the extra 1 entry
plays the role of the bias parameter. We will frequently use the term “linear” when
referring to affine functions throughout this book.

The intercept term b is often called the bias parameter of the affine transfor-
mation. This terminology derives from the point of view that the output of the
transformation is biased toward being b in the absence of any input. This term
is different from the idea of a statistical bias, in which a statistical estimation
algorithm’s expected estimate of a quantity is not equal to the true quantity.

Linear regression is of course an extremely simple and limited learning algorithm,
but it provides an example of how a learning algorithm can work. In the subsequent
sections we will describe some of the basic principles underlying learning algorithm
design and demonstrate how these principles can be used to build more complicated
learning algorithms.

5.2 Capacity, Overfitting and Underfitting

The central challenge in machine learning is that we must perform well on
inputs—not just those on which our model was trained. The
ability to perform well on previously unobserved inputs is called generalization.

Typically, when training a machine learning model, we have access to a training
set, we can compute some error measure on the training set called the training
error, and we reduce this training error. So far, what we have described is simply
an optimization problem. What separates machine learning from optimization is
that we want the generalization error, also called the test error, to be low as well.
The generalization error is defined as the expected value of the error on a new
input. Here the expectation is taken across different possible inputs, drawn from
the distribution of inputs we expect the system to encounter in practice.

We typically estimate the generalization error of a machine learning model by
measuring its performance on a test set of examples that were collected separately
from the training set.

In our linear regression example, we trained the model by minimizing the

training error,
1

X w-y I (5.14)
m

x w-y .

How can we affect performance on the test set when we get to observe only the
training set? The field of statistical learning theory provides some answers. If the

but we actually care about the test error, —

110

CHAPTER 5. MACHINE LEARNING BASICS

training and the test set are collected arbitrarily, there is indeed little we can do.
If we are allowed to make some assumptions about how the training and test set
are collected, then we can make some progress.

The train and test data are generated by a probability distribution over datasets
called the data generating process. We typically make a set of assumptions known
collectively as the 1.7.d. assumptions These assumptions are that the examples
in each dataset are independent from each other, and that the train set and test
set are wdentically distributed, drawn from the same probability distribution as
each other. This assumption allows us to describe the data generating process
with a probability distribution over a single example. The same distribution is
then used to generate every train example and every test example. We call that
shared underlying distribution the data generating distribution, denoted p . This
probabilistic framework and the i.i.d. assumptions allow us to mathematically
study the relationship between training error and test error.

One immediate connection we can observe between the training and test error
is that the expected training error of a randomly selected model is equal to the
expected test error of that model. Suppose we have a probability distribution
p(x,y) and we sample from it repeatedly to generate the train set and the test set.
For some fixed value w, then the expected training set error is exactly the same as
the expected test set error, because both expectations are formed using the same
dataset sampling process. The only difference between the two conditions is the
name we assign to the dataset we sample.

Of course, when we use a machine learning algorithm, we do not fix the
parameters ahead of time, then sample both datasets. We sample the training set,
then use it to choose the parameters to reduce training set error, then sample the
test set. Under this process, the expected test error is greater than or equal to
the expected value of training error. The factors determining how well a machine
learning algorithm will perform are its ability to:

1. Make the training error small.

2. Make the gap between training and test error small.

These two factors correspond to the two central challenges in machine learning;:
underfitting and overfitting. Underfitting occurs when the model is not able to
obtain a sufficiently low error value on the training set. Overfitting occurs when
the gap between the training error and test error is too large.

We can control whether a model is more likely to overfit or underfit by altering
its capacity. Informally, a model’s capacity is its ability to fit a wide variety of

111

CHAPTER 5. MACHINE LEARNING BASICS

functions. Models with low capacity may struggle to fit the training set. Models
with high capacity can overfit by memorizing properties of the training set that do
not serve them well on the test set.

One way to control the capacity of a learning algorithm is by choosing its
hypothesis space, the set of functions that the learning algorithm is allowed to
select as being the solution. For example, the linear regression algorithm has the
set of all linear functions of its input as its hypothesis space. We can generalize
linear regression to include polynomials, rather than just linear functions, in its
hypothesis space. Doing so increases the model’s capacity.

A polynomial of degree one gives us the linear regression model with which we
are already familiar, with prediction

y="b+ wz. (5.15)

By introducing x as another feature provided to the linear regression model, we
can learn a model that is quadratic as a function of x:

g=b+wzr+wzx. (5.16)
Though this model implements a quadratic function of its , the output is
still a linear function of the , so we can still use the normal equations

to train the model in closed form. We can continue to add more powers of x as
additional features, for example to obtain a polynomial of degree 9:

Machine learning algorithms will generally perform best when their capacity
is appropriate in regard to the true complexity of the task they need to perform
and the amount of training data they are provided with. Models with insufficient
capacity are unable to solve complex tasks. Models with high capacity can solve
complex tasks, but when their capacity is higher than needed to solve the present
task they may overfit.

Fig. 5.2 shows this principle in action. We compare a linear, quadratic and
degree-9 predictor attempting to fit a problem where the true underlying function
is quadratic. The linear function is unable to capture the curvature in the true un-
derlying problem, so it underfits. The degree-9 predictor is capable of representing
the correct function, but it is also capable of representing infinitely many other
functions that pass exactly through the training points, because we have more

112

CHAPTER 5. MACHINE LEARNING BASICS

parameters than training examples. We have little chance of choosing a solution
that generalizes well when so many wildly different solutions exist. In this example,
the quadratic model is perfectly matched to the true structure of the task so it
generalizes well to new data.

/

So far we have only described changing a model’s capacity by changing the
number of input features it has (and simultaneously adding new parameters
associated with those features). There are in fact many ways of changing a model’s
capacity. Capacity is not determined only by the choice of model. The model
specifies which family of functions the learning algorithm can choose from when
varying the parameters in order to reduce a training objective. This is called the
representational capacity of the model. In many cases, finding the best function
within this family is a very difficult optimization problem. In practice, the learning
algorithm does not actually find the best function, but merely one that significantly
reduces the training error. These additional limitations, such as the imperfection

113

CHAPTER 5. MACHINE LEARNING BASICS

of the optimization algorithm, mean that the learning algorithm’s effective capacity
may be less than the representational capacity of the model family.

Our modern ideas about improving the generalization of machine learning
models are refinements of thought dating back to philosophers at least as early
as Ptolemy. Many early scholars invoke a principle of parsimony that is now
most widely known as Occam’s razor (c. 1287-1347). This principle states that
among competing hypotheses that explain known observations equally well, one
should choose the “simplest” one. This idea was formalized and made more precise
in the 20th century by the founders of statistical learning theory (

)) Y Y Y Y))

Statistical learning theory provides various means of quantifying model capacity.
Among these, the most well-known is the Vapnik-Chervonenkis dimension, or VC
dimension. The VC dimension measures the capacity of a binary classifier. The
VC dimension is defined as being the largest possible value of m for which there
exists a training set of m different points that the classifier can label arbitrarily.

Quantifying the capacity of the model allows statistical learning theory to
make quantitative predictions. The most important results in statistical learning
theory show that the discrepancy between training error and generalization error
is bounded from above by a quantity that grows as the model capacity grows but
shrinks as the number of training examples increases (:

: , : , : ,). These bounds provide
intellectual justification that machine learning algorithms can work, but they are
rarely used in practice when working with deep learning algorithms. This is in
part because the bounds are often quite loose and in part because it can be quite
difficult to determine the capacity of deep learning algorithms. The problem of
determining the capacity of a deep learning model is especially difficult because the
effective capacity is limited by the capabilities of the optimization algorithm, and
we have little theoretical understanding of the very general non-convex optimization
problems involved in deep learning.

We must remember that while simpler functions are more likely to generalize
(to have a small gap between training and test error) we must still choose a
sufficiently complex hypothesis to achieve low training error. Typically, training
error decreases until it asymptotes to the minimum possible error value as model
capacity increases (assuming the error measure has a minimum value). Typically,
generalization error has a U-shaped curve as a function of model capacity. This is
illustrated in Fig. 5.3.

To reach the most extreme case of arbitrarily high capacity, we introduce
the concept of non-parametric models. So far, we have seen only parametric

114

CHAPTER 5. MACHINE LEARNING BASICS

e T e —

models, such as linear regression. Parametric models learn a function described
by a parameter vector whose size is finite and fixed before any data is observed.
Non-parametric models have no such limitation.

Sometimes, non-parametric models are just theoretical abstractions (such as
an algorithm that searches over all possible probability distributions) that cannot
be implemented in practice. However, we can also design practical non-parametric
models by making their complexity a function of the training set size. One example
of such an algorithm is nearest neighbor regression. Unlike linear regression, which
has a fixed-length vector of weights, the nearest neighbor regression model simply
stores the X and y from the training set. When asked to classify a test point ,
the model looks up the nearest entry in the training set and returns the associated

regression target. In other words, § = y; where i = argmin||X; — «||. The
algorithm can also be generalized to distance metrics other than the L norm, such
as learned distance metrics (:). If the algorithm is allowed

to break ties by averaging the y; values for all X; that are tied for nearest, then
this algorithm is able to achieve the minimum possible training error (which might
be greater than zero, if two identical inputs are associated with different outputs)
on any regression dataset.

Finally, we can also create a non-parametric learning algorithm by wrapping a
parametric learning algorithm inside another algorithm that increases the number

115

CHAPTER 5. MACHINE LEARNING BASICS

of parameters as needed. For example, we could imagine an outer loop of learning
that changes the degree of the polynomial learned by linear regression on top of a
polynomial expansion of the input.

The ideal model is an oracle that simply knows the true probability distribution
that generates the data. Even such a model will still incur some error on many
problems, because there may still be some noise in the distribution. In the case
of supervised learning, the mapping from « to y may be inherently stochastic,
or y may be a deterministic function that involves other variables besides those
included in x. The error incurred by an oracle making predictions from the true
distribution p(x,y) is called the Bayes error.

Training and generalization error vary as the size of the training set varies.
Expected generalization error can never increase as the number of training examples
increases. For non-parametric models, more data yields better generalization until
the best possible error is achieved. Any fixed parametric model with less than
optimal capacity will asymptote to an error value that exceeds the Bayes error. See
Fig. 5.4 for an illustration. Note that it is possible for the model to have optimal
capacity and yet still have a large gap between training and generalization error.
In this situation, we may be able to reduce this gap by gathering more training
examples.

5.2.1 The No Free Lunch Theorem

Learning theory claims that a machine learning algorithm can generalize well from
a finite training set of examples. This seems to contradict some basic principles of
logic. Inductive reasoning, or inferring general rules from a limited set of examples,
is not logically valid. To logically infer a rule describing every member of a set,
one must have information about every member of that set.

In part, machine learning avoids this problem by offering only probabilistic rules,
rather than the entirely certain rules used in purely logical reasoning. Machine
learning promises to find rules that are probably correct about most members of
the set they concern.

Unfortunately, even this does not resolve the entire problem. The no free lunch
theorem for machine learning (,) states that, averaged over all possible
data generating distributions, every classification algorithm has the same error
rate when classifying previously unobserved points. In other words, in some sense,
no machine learning algorithm is universally any better than any other. The most
sophisticated algorithm we can conceive of has the same average performance (over
all possible tasks) as merely predicting that every point belongs to the same class.

116

CHAPTER 5. MACHINE LEARNING BASICS

117

CHAPTER 5. MACHINE LEARNING BASICS

Fortunately, these results hold only when we average over all possible data
generating distributions. If we make assumptions about the kinds of probability
distributions we encounter in real-world applications, then we can design learning
algorithms that perform well on these distributions.

This means that the goal of machine learning research is not to seek a universal
learning algorithm or the absolute best learning algorithm. Instead, our goal is to
understand what kinds of distributions are relevant to the “real world” that an Al
agent experiences, and what kinds of machine learning algorithms perform well on
data drawn from the kinds of data generating distributions we care about.

5.2.2 Regularization

The no free lunch theorem implies that we must design our machine learning
algorithms to perform well on a specific task. We do so by building a set of
preferences into the learning algorithm. When these preferences are aligned with
the learning problems we ask the algorithm to solve, it performs better.

So far, the only method of modifying a learning algorithm we have discussed is
to increase or decrease the model’s capacity by adding or removing functions from
the hypothesis space of solutions the learning algorithm is able to choose. We gave
the specific example of increasing or decreasing the degree of a polynomial for a
regression problem. The view we have described so far is oversimplified.

The behavior of our algorithm is strongly affected not just by how large we
make the set of functions allowed in its hypothesis space, but by the specific identity
of those functions. The learning algorithm we have studied so far, linear regression,
has a hypothesis space consisting of the set of linear functions of its input. These
linear functions can be very useful for problems where the relationship between
inputs and outputs truly is close to linear. They are less useful for problems
that behave in a very nonlinear fashion. For example, linear regression would
not perform very well if we tried to use it to predict sin(z) from z. We can thus
control the performance of our algorithms by choosing what kind of functions we
allow them to draw solutions from, as well as by controlling the amount of these
functions.

We can also give a learning algorithm a preference for one solution in its
hypothesis space to another. This means that both functions are eligible, but one
is preferred. The unpreferred solution be chosen only if it fits the training data
significantly better than the preferred solution.

For example, we can modify the training criterion for linear regression to
include weight decay. To perform linear regression with weight decay, we minimize

118

CHAPTER 5. MACHINE LEARNING BASICS

a sum comprising both the mean squared error on the training and a criterion
J(w) that expresses a preference for the weights to have smaller squared L norm.
Specifically,

J(w)=MSE +\w w, (5.18)

where) is a value chosen ahead of time that controls the strength of our preference
for smaller weights. When \ = 0, we impose no preference, and larger A forces the
weights to become smaller. Minimizing J(w) results in a choice of weights that
make a tradeoff between fitting the training data and being small. This gives us
solutions that have a smaller slope, or put weight on fewer of the features. As an
example of how we can control a model’s tendency to overfit or underfit via weight
decay, we can train a high-degree polynomial regression model with different values
of A. See Fig. 5.5 for the results.

More generally, we can regularize a model that learns a function f(x;8) by
adding a penalty called a reqularizer to the cost function. In the case of weight
decay, the regularizer is Q(w) = w w. In Chapter 7, we will see that many other

119

CHAPTER 5. MACHINE LEARNING BASICS

regularizers are possible.

Expressing preferences for one function over another is a more general way
of controlling a model’s capacity than including or excluding members from the
hypothesis space. We can think of excluding a function from a hypothesis space as
expressing an infinitely strong preference against that function.

In our weight decay example, we expressed our preference for linear functions
defined with smaller weights explicitly, via an extra term in the criterion we
minimize. There are many other ways of expressing preferences for different
solutions, both implicitly and explicitly. Together, these different approaches are
known as reqularization.

Regularization is one of the central concerns of the
field of machine learning, rivaled in its importance only by optimization.

The no free lunch theorem has made it clear that there is no best machine
learning algorithm, and, in particular, no best form of regularization. Instead
we must choose a form of regularization that is well-suited to the particular task
we want to solve. The philosophy of deep learning in general and this book in
particular is that a very wide range of tasks (such as all of the intellectual tasks
that people can do) may all be solved effectively using very general-purpose forms
of regularization.

5.3 Hyperparameters and Validation Sets

Most machine learning algorithms have several settings that we can use to control
the behavior of the learning algorithm. These settings are called hyperparameters.
The values of hyperparameters are not adapted by the learning algorithm itself
(though we can design a nested learning procedure where one learning algorithm
learns the best hyperparameters for another learning algorithm).

In the polynomial regression example we saw in Fig. 5.2, there is a single hyper-
parameter: the degree of the polynomial, which acts as a capacity hyperparameter.
The A\ value used to control the strength of weight decay is another example of a
hyperparameter.

Sometimes a setting is chosen to be a hyperparameter that the learning algo-
rithm does not learn because it is difficult to optimize. More frequently, we do
not learn the hyperparameter because it is not appropriate to learn that hyper-
parameter on the training set. This applies to all hyperparameters that control
model capacity. If learned on the training set, such hyperparameters would always

120

CHAPTER 5. MACHINE LEARNING BASICS

choose the maximum possible model capacity, resulting in overfitting (refer to
Fig. 5.3). For example, we can always fit the training set better with a higher
degree polynomial and a weight decay setting of A = 0 than we could with a lower
degree polynomial and a positive weight decay setting.

To solve this problem, we need a validation set of examples that the training
algorithm does not observe.

Earlier we discussed how a held-out test set, composed of examples coming from
the same distribution as the training set, can be used to estimate the generalization
error of a learner, after the learning process has completed. It is important that the
test examples are not used in any way to make choices about the model, including
its hyperparameters. For this reason, no example from the test set can be used
in the validation set. Therefore, we always construct the validation set from the
training data. Specifically, we split the training data into two disjoint subsets. One
of these subsets is used to learn the parameters. The other subset is our validation
set, used to estimate the generalization error during or after training, allowing
for the hyperparameters to be updated accordingly. The subset of data used to
learn the parameters is still typically called the training set, even though this
may be confused with the larger pool of data used for the entire training process.
The subset of data used to guide the selection of hyperparameters is called the
validation set. Typically, one uses about 80% of the training data for training and
20% for validation. Since the validation set is used to “train” the hyperparameters,
the validation set error will underestimate the generalization error, though typically
by a smaller amount than the training error. After all hyperparameter optimization
is complete, the generalization error may be estimated using the test set.

In practice, when the same test set has been used repeatedly to evaluate
performance of different algorithms over many years, and especially if we consider
all the attempts from the scientific community at beating the reported state-of-
the-art performance on that test set, we end up having optimistic evaluations with
the test set as well. Benchmarks can thus become stale and then do not reflect the
true field performance of a trained system. Thankfully, the community tends to
move on to new (and usually more ambitious and larger) benchmark datasets.

5.3.1 Cross-Validation

Dividing the dataset into a fixed training set and a fixed test set can be problematic
if it results in the test set being small. A small test set implies statistical uncertainty
around the estimated average test error, making it difficult to claim that algorithm
A works better than algorithm B on the given task.

121

CHAPTER 5. MACHINE LEARNING BASICS

When the dataset has hundreds of thousands of examples or more, this is not
a serious issue. When the dataset is too small, there are alternative procedures,
which allow one to use all of the examples in the estimation of the mean test
error, at the price of increased computational cost. These procedures are based on
the idea of repeating the training and testing computation on different randomly
chosen subsets or splits of the original dataset. The most common of these is the
k-fold cross-validation procedure, shown in Algorithm 5.1, in which a partition
of the dataset is formed by splitting it into £ non-overlapping subsets. The test
error may then be estimated by taking the average test error across k trials. On
trial ¢, the i-th subset of the data is used as the test set and the rest of the data is
used as the training set. One problem is that there exist no unbiased estimators of
the variance of such average error estimators (,), but
approximations are typically used.

5.4 Estimators, Bias and Variance

The field of statistics gives us many tools that can be used to achieve the machine
learning goal of solving a task not only on the training set but also to generalize.
Foundational concepts such as parameter estimation, bias and variance are useful
to formally characterize notions of generalization, underfitting and overfitting.

5.4.1 Point Estimation

Point estimation is the attempt to provide the single “best” prediction of some
quantity of interest. In general the quantity of interest can be a single parameter
or a vector of parameters in some parametric model, such as the weights in our
linear regression example in Sec. 5.1.4, but it can also be a whole function.

In order to distinguish estimates of parameters from their true value, our

A~

convention will be to denote a point estimate of a parameter @ by 6.

Let {x ,...,x ™ } be a set of m independent and identically distributed
(i.i.d.) data points. A point estimator or statistic is any function of the data:

0, =glx ,...,z™). (5.19)

The definition does not require that g return a value that is close to the true
0 or even that the range of g is the same as the set of allowable values of 6.
This definition of a point estimator is very general and allows the designer of an
estimator great flexibility. While almost any function thus qualifies as an estimator,

122

CHAPTER 5. MACHINE LEARNING BASICS

The k-fold cross-validation algorithm. It can be used to estimate
generalization error of a learning algorithm A when the given dataset D is too
small for a simple train/test or train/valid split to yield accurate estimation of
generalization error, because the mean of a loss L on a small test set may have too
high variance. The dataset D contains as elements the abstract examples z* (for
the i-th example), which could stand for an (input,target) pair z? = (x* ,y*)
in the case of supervised learning, or for just an input z! = x ¢ in the case
of unsupervised learning. The algorithm returns the vector of errors e for each
example in), whose mean is the estimated generalization error. The errors on
individual examples can be used to compute a confidence interval around the mean
(Eq. 5.47). While these confidence intervals are not well-justified after the use of
cross-validation, it is still common practice to use them to declare that algorithm A
is better than algorithm B only if the confidence interval of the error of algorithm
A lies below and does not intersect the confidence interval of algorithm B.

(D, A, L, k):

D, the given dataset, with elements z

A , the learning algorithm, seen as a function that takes a dataset as
input and outputs a learned function

L , the loss function, seen as a function from a learned function f and
an example z ¢ €D to a scalar € R

k, the number of folds
Split D into £ mutually exclusive subsets ID;, whose union is D.

1

1 from 1 to k

fi= A(D\D,)

z J iIl]Dz
€j = L(fh zJ)

123

CHAPTER 5. MACHINE LEARNING BASICS

a good estimator is a function whose output is close to the true underlying 6 that
generated the training data.

For now, we take the frequentist perspective on statistics. That is, we assume
that the true parameter value 0 is fixed but unknown, while the point estimate
0 is a function of the data. Since the data is drawn from a random process, any
function of the data is random. Therefore 6 is a random variable.

Point estimation can also refer to the estimation of the relationship between
input and target variables. We refer to these types of point estimates as function
estimators.

As we mentioned above, sometimes we are interested in
performing function estimation (or function approximation). Here we are trying to
predict a variable y given an input vector &. We assume that there is a function
f(x) that describes the approximate relationship between y and x. For example,
we may assume that y = f(x) + €, where € stands for the part of y that is not
predictable from . In function estimation, we are interested in approximating
f with a model or estimate f Function estimation is really just the same as
estimating a parameter 0; the function estimator f is simply a point estimator in
function space. The linear regression example (discussed above in Sec. 5.1.4) and
the polynomial regression example (discussed in Sec. 5.2) are both examples of
scenarios that may be interpreted either as estimating a parameter w or estimating
a function f mapping from x to y.

We now review the most commonly studied properties of point estimators and
discuss what they tell us about these estimators.

5.4.2 Bias

The bias of an estimator is defined as:

bias(Om) = E(6,,) — 0 (5.20)
where the expectation is over the data (seen as samples from a random variable) and
0 is the true underlying value of 8 used to define the data generating distribution.
An estimator 0,, is said to be unbiased if bias(@,,) = , which implies that E(6,,) =
6. An estimator 6y, is said to be asymptotically unbiased if lim bias(ém) =
which implies that lim E(6,,) = 6.

)

Consider a set of samples{z ,...,z™ }
that are independently and identically distributed according to a Bernoulli distri-

124

CHAPTER 5. MACHINE LEARNING BASICS

bution with mean 6:
Pzt ;0)=60" (1—-60) = . (5.21)

A common estimator for the 6 parameter of this distribution is the mean of the
training samples:

Op =— . (5.22)

To determine whether this estimator is biased, we can substitute Eq. 5.22 into Eq.
5.20:

bias(fy) = E[0,] — 0 (5.23)
R (5.24)
m

e (5.25)

= m x .
1" .

= i (1-6) « —0 (5.26)
m

LT o (5.27)

== _

=0—-0=0 (5.28)

Since bias(f) = 0, we say that our estimator § is unbiased.

Now, consider
a set of samples {x ,...,x™ } that are independently and identically distributed
according to a Gaussian distribution p(z *) =N (x * ; u,0), where i € {1,...,m}.
Recall that the Gaussian probability density function is given by

. 1 1(x* —
p(:c’;,u,a)zmexp _5(07“) . (5.29)

A common estimator of the Gaussian mean parameter is known as the sample
mean:

fimp=— x! (5.30)

CHAPTER 5. MACHINE LEARNING BASICS

To determine the bias of the sample mean, we are again interested in calculating
its expectation:

bias(fim) = Elfim] — p (5.31)
"
—F = LA .32
w7 [(5.32)
" :
= — Euz'* —pu (5.33)
m .
1 m
- — - 34
o (5.34)
=pu—pu=0 (5.35)

Thus we find that the sample mean is an unbiased estimator of Gaussian mean
parameter.

As an
example, we compare two different estimators of the variance parameter o of a
Gaussian distribution. We are interested in knowing if either estimator is biased.

The first estimator of ¢ we consider is known as the sample variance:

R 1 i -
Om = ' = [y (5.36)

where [i,, is the sample mean, defined above. More formally, we are interested in

computing
bias(é,) = E[6,,] — o (5.37)

We begin by evaluating the term E[,]:

m

1 .

El6. | =E — i 5.38
6] m " [(5.38)
1

m=—’, (5.39)

m

Returning to Eq. 5.37, we conclude that the bias of 4,, is —o /m. Therefore, the
sample variance is a biased estimator.

126

CHAPTER 5. MACHINE LEARNING BASICS

The unbiased sample variance estimator
a,, =-— A (5.40)

provides an alternative approach. As the name suggests this estimator is unbiased.
That is, we find that E[5,,] =0 :

"
m N
m m—1
=— ——0 (5.43)
=0 . (5.44)

We have two estimators: one is biased and the other is not. While unbiased
estimators are clearly desirable, they are not always the “best” estimators. As we
will see we often use biased estimators that possess other important properties.

5.4.3 Variance and Standard Error

Another property of the estimator that we might want to consider is how much
we expect it to vary as a function of the data sample. Just as we computed the
expectation of the estimator to determine its bias, we can compute its variance.
The variance of an estimator is simply the variance

Var(6) (5.45)

where the random variable is the training set. Alternately, the square root of the

A

variance is called the standard error, denoted SE(6).

The variance or the standard error of an estimator provides a measure of how
we would expect the estimate we compute from data to vary as we independently
resample the dataset from the underlying data generating process. Just as we
might like an estimator to exhibit low bias we would also like it to have relatively
low variance.

When we compute any statistic using a finite number of samples, our estimate
of the true underlying parameter is uncertain, in the sense that we could have
obtained other samples from the same distribution and their statistics would have

127

CHAPTER 5. MACHINE LEARNING BASICS

been different. The expected degree of variation in any estimator is a source of
error that we want to quantify.

The standard error of the mean is given by

SE(ji) = Var[n%' xi]:%l, (5.46)

(3

where ¢ is the true variance of the samples . The standard error is often
estimated by using an estimate of 0. Unfortunately, neither the square root of
the sample variance nor the square root of the unbiased estimator of the variance
provide an unbiased estimate of the standard deviation. Both approaches tend
to underestimate the true standard deviation, but are still used in practice. The
square root of the unbiased estimator of the variance is less of an underestimate.
For large m, the approximation is quite reasonable.

The standard error of the mean is very useful in machine learning experiments.
We often estimate the generalization error by computing the sample mean of the
error on the test set. The number of examples in the test set determines the
accuracy of this estimate. Taking advantage of the central limit theorem, which
tells us that the mean will be approximately distributed with a normal distribution,
we can use the standard error to compute the probability that the true expectation
falls in any chosen interval. For example, the 95% confidence interval centered on
the mean is fi,, is

(Fem — LIGSE(fim), fim + 1.965E(fim)), (5.47)

under the normal distribution with mean fi,,, and variance SE(i,) . In machine
learning experiments, it is common to say that algorithm A is better than algorithm
B if the upper bound of the 95% confidence interval for the error of algorithm A is
less than the lower bound of the 95% confidence interval for the error of algorithm
B.

We once again consider a set of samples
{z ,...,x™ }drawn independently and identically from a Bernoulli distribution

(recall P(x?;0) =60 (1 —6) «). This time we are interested in computing

A

the variance of the estimator 6, = — Zn T .
1 m
Var 6, =Var — z2° (5.48)
m

1

128

CHAPTER 5. MACHINE LEARNING BASICS

= mi : Var x ! (5.49)
1 m

= 609 (5.50)

_ mimeu —9) (5.51)

_ %9(1 —9) (5.52)

The variance of the estimator decreases as a function of m, the number of examples
in the dataset. This is a common property of popular estimators that we will
return to when we discuss consistency (see Sec. 5.4.5).

5.4.4 Trading off Bias and Variance to Minimize Mean Squared
Error

Bias and variance measure two different sources of error in an estimator. Bias
measures the expected deviation from the true value of the function or parameter.
Variance on the other hand, provides a measure of the deviation from the expected
estimator value that any particular sampling of the data is likely to cause.

What happens when we are given a choice between two estimators, one with
more bias and one with more variance?” How do we choose between them? For
example, imagine that we are interested in approximating the function shown in
Fig. 5.2 and we are only offered the choice between a model with large bias and
one that suffers from large variance. How do we choose between them?

The most common way to negotiate this trade-off is to use cross-validation.
Empirically, cross-validation is highly successful on many real-world tasks. Alter-
natively, we can also compare the mean squared error (MSE) of the estimates:

MSE = E[(6,, — 6)] (5.53)

~ A

= Bias(6,,) + Var(6m) (5.54)
The MSE measures the overall expected deviation—in a squared error sense—
between the estimator and the true value of the parameter 6. As is clear from
Eq. 5.54, evaluating the MSE incorporates both the bias and the variance. Desirable

estimators are those with small MSE and these are estimators that manage to keep
both their bias and variance somewhat in check.

The relationship between bias and variance is tightly linked to the machine
learning concepts of capacity, underfitting and overfitting. In the case where gen-

129

CHAPTER 5. MACHINE LEARNING BASICS

eralization error is measured by the MSE (where bias and variance are meaningful
components of generalization error), increasing capacity tends to increase variance
and decrease bias. This is illustrated in Fig. 5.6, where we see again the U-shaped
curve of generalization error as a function of capacity.

5.4.5 Consistency

So far we have discussed the properties of various estimators for a training set of
fixed size. Usually, we are also concerned with the behavior of an estimator as the
amount of training data grows. In particular, we usually wish that, as the number
of data points m in our dataset increases, our point estimates converge to the true
value of the corresponding parameters. More formally, we would like that

lim 6, > 6. (5.55)

m

The symbol P. means that the convergence is in probability, i.e. for any € > 0,
P60, — 0] > ¢) — 0 as m — oo. The condition described by Eq. 5.55 is
known as consistency. It is sometimes referred to as weak consistency, with
strong consistency referring to the almost sure convergence of 6 to 0. Almost sure

130

CHAPTER 5. MACHINE LEARNING BASICS

convergence of a sequence of random variables , ,... to a value x occurs
when p(lim m o =g)=1.

Consistency ensures that the bias induced by the estimator is assured to
diminish as the number of data examples grows. However, the reverse is not
true—asymptotic unbiasedness does not imply consistency. For example, consider
estimating the mean parameter p of a normal distribution M(z;u,o), with a
dataset consisting of m samples: {z ...,z ™ }. We could use the first sample
z of the dataset as an unbiased estimator: § = 2 . In that case, E(@m) =10
so the estimator is unbiased no matter how many data points are seen. This, of
course, implies that the estimate is asymptotically unbiased. However, this is not
a consistent estimator as it is not the case that @m — 0 as m — 0.

5.5 Maximum Likelihood Estimation

Previously, we have seen some definitions of common estimators and analyzed
their properties. But where did these estimators come from? Rather than guessing
that some function might make a good estimator and then analyzing its bias and
variance, we would like to have some principle from which we can derive specific
functions that are good estimators for different models.

The most common such principle is the maximum likelihood principle.

Consider a set of m examples X ={x ,...,x™ } drawn independently from
the true but unknown data generating distribution p ().

Let p (;0) be a parametric family of probability distributions over the
same space indexed by 6. In other words, p (x; 6) maps any configuration x
to a real number estimating the true probability p (x).

The maximum likelihood estimator for @ is then defined as

@ =argmaxp (X;0) (5.56)
= argmax p (x?;0) (5.57)

1

This product over many probabilities can be inconvenient for a variety of reasons.
For example, it is prone to numerical underflow. To obtain a more convenient
but equivalent optimization problem, we observe that taking the logarithm of the
likelihood does not change its argmax but does conveniently transform a product

131

CHAPTER 5. MACHINE LEARNING BASICS

into a sum:

0 =argmax logp (x?:0). (5.58)
i
Because the argmax does not change when we rescale the cost function, we can
divide by m to obtain a version of the criterion that is expressed as an expectation
with respect to the empirical distribution p defined by the training data:

60 = argmaxE) log p (z;0). (5.59)

One way to interpret maximum likelihood estimation is to view it as minimizing
the dissimilarity between the empirical distribution p defined by the training
set and the model distribution, with the degree of dissimilarity between the two
measured by the KL divergence. The KL divergence is given by

D lp)=E [flogp (z)-logp (z)]. (5.60)
The term on the left is a function only of the data generating process, not the
model. This means when we train the model to minimize the KL divergence, we
need only minimize
“E logp (2] (5.61)
which is of course the same as the maximization in Eq. 5.59.

Minimizing this KL divergence corresponds exactly to minimizing the cross-
entropy between the distributions. Many authors use the term “cross-entropy” to
identify specifically the negative log-likelihood of a Bernoulli or softmax distribution,
but that is a misnomer. Any loss consisting of a negative log-likelihood is a cross
entropy between the empirical distribution defined by the training set and the
model. For example, mean squared error is the cross-entropy between the empirical
distribution and a Gaussian model.

We can thus see maximum likelihood as an attempt to make the model dis-

tribution match the empirical distribution p . Ideally, we would like to match
the true data generating distribution p , but we have no direct access to this
distribution.

While the optimal 0 is the same regardless of whether we are maximizing the
likelihood or minimizing the KL divergence, the values of the objective functions
are different. In software, we often phrase both as minimizing a cost function.
Maximum likelihood thus becomes minimization of the negative log-likelihood
(NLL), or equivalently, minimization of the cross entropy. The perspective of
maximum likelihood as minimum KL divergence becomes helpful in this case
because the KL divergence has a known minimum value of zero. The negative
log-likelihood can actually become negative when « is real-valued.

132

CHAPTER 5. MACHINE LEARNING BASICS

5.5.1 Conditional Log-Likelihood and Mean Squared Error

The maximum likelihood estimator can readily be generalized to the case where
our goal is to estimate a conditional probability P(| ;@) in order to predict
given . This is actually the most common situation because it forms the basis for
most supervised learning. If X represents all our inputs and Y all our observed
targets, then the conditional maximum likelihood estimator is

0 =argmax P(Y | X;0). (5.62)

If the examples are assumed to be i.i.d., then this can be decomposed into

0 =argmax logP(y’ |x?!;0). (5.63)

1

Linear regression,
introduced earlier in Sec. 5.1.4, may be justified as a maximum likelihood procedure.
Previously, we motivated linear regression as an algorithm that learns to take an
input « and produce an output value y. The mapping from x to ¢ is chosen to
minimize mean squared error, a criterion that we introduced more or less arbitrarily.
We now revisit linear regression from the point of view of maximum likelihood
estimation. Instead of producing a single prediction ¢, we now think of the model
as producing a conditional distribution p(y |). We can imagine that with an
infinitely large training set, we might see several training examples with the same
input value x but different values of y. The goal of the learning algorithm is now to
fit the distribution p(y | «) to all of those different y values that are all compatible
with @. To derive the same linear regression algorithm we obtained before, we
define p(y | &) = N (y; §(x; w), o). The function §(x; w) gives the prediction of
the mean of the Gaussian. In this example, we assume that the variance is fixed to
some constant ¢ chosen by the user. We will see that this choice of the functional
form of p(y |) causes the maximum likelihood estimation procedure to yield the
same learning algorithm as we developed before. Since the examples are assumed
to be i.i.d., the conditional log-likelihood (Eq. 5.63) is given by

logp(y' [x';0) (5.64)
i
m Tl -yl
=—mlogo — D) log(27) — % (5.65)

1

133

CHAPTER 5. MACHINE LEARNING BASICS

where ¢ ¢ is the output of the linear regression on the i-th input & * and m is the
number of the training examples. Comparing the log-likelihood with the mean
squared error,

" :

MSE = gt~y (5.66)

m;
we imme