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Chapter 1

Introduction

Inventors have long dreamed of creating machines that think. This desire dates
back to at least the time of ancient Greece. The mythical figures Pygmalion,
Daedalus, and Hephaestus may all be interpreted as legendary inventors, and
Galatea, Talos, and Pandora may all be regarded as artificial life ( ,Ovid and Martin

2004 Sparkes 1996 Tandy 1997; , ; , ).

When programmable computers were first conceived, people wondered whether
they might become intelligent, over a hundred years before one was built (Lovelace,
1842). Today, artificial intelligence (AI) is a thriving field with many practical
applications and active research topics. We look to intelligent software to automate
routine labor, understand speech or images, make diagnoses in medicine and
support basic scientific research.

In the early days of artificial intelligence, the field rapidly tackled and solved
problems that are intellectually difficult for human beings but relatively straight-
forward for computers—problems that can be described by a list of formal, math-
ematical rules. The true challenge to artificial intelligence proved to be solving

the tasks that are easy for people to perform but hard for people to describe
formally—problems that we solve intuitively, that feel automatic, like recognizing
spoken words or faces in images.

This book is about a solution to these more intuitive problems. This solution is
to allow computers to learn from experience and understand the world in terms of a
hierarchy of concepts, with each concept defined in terms of its relation to simpler
concepts. By gathering knowledge from experience, this approach avoids the need
for human operators to formally specify all of the knowledge that the computer
needs. The hierarchy of concepts allows the computer to learn complicated concepts
by building them out of simpler ones. If we draw a graph showing how these
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concepts are built on top of each other, the graph is deep, with many layers. For
this reason, we call this approach to AI deep learning.

Many of the early successes of AI took place in relatively sterile and formal
environments and did not require computers to have much knowledge about
the world. For example, IBM’s Deep Blue chess-playing system defeated world
champion Garry Kasparov in 1997 ( , ). Chess is of course a very simpleHsu 2002
world, containing only sixty-four locations and thirty-two pieces that can move
in only rigidly circumscribed ways. Devising a successful chess strategy is a
tremendous accomplishment, but the challenge is not due to the difficulty of

describing the set of chess pieces and allowable moves to the computer. Chess
can be completely described by a very brief list of completely formal rules, easily
provided ahead of time by the programmer.

Ironically, abstract and formal tasks that are among the most difficult mental
undertakings for a human being are among the easiest for a computer. Computers
have long been able to defeat even the best human chess player, but are only
recently matching some of the abilities of average human beings to recognize objects
or speech. A person’s everyday life requires an immense amount of knowledge
about the world. Much of this knowledge is subjective and intuitive, and therefore
difficult to articulate in a formal way. Computers need to capture this same
knowledge in order to behave in an intelligent way. One of the key challenges in

artificial intelligence is how to get this informal knowledge into a computer.

Several artificial intelligence projects have sought to hard-code knowledge about
the world in formal languages. A computer can reason about statements in these
formal languages automatically using logical inference rules. This is known as the
knowledge base approach to artificial intelligence. None of these projects has led to
a major success. One of the most famous such projects is Cyc ( ,Lenat and Guha
1989). Cyc is an inference engine and a database of statements in a language
called CycL. These statements are entered by a staff of human supervisors. It is an
unwieldy process. People struggle to devise formal rules with enough complexity
to accurately describe the world. For example, Cyc failed to understand a story
about a person named Fred shaving in the morning ( , ). Its inferenceLinde 1992

engine detected an inconsistency in the story: it knew that people do not have
electrical parts, but because Fred was holding an electric razor, it believed the
entity “FredWhileShaving” contained electrical parts. It therefore asked whether
Fred was still a person while he was shaving.

The difficulties faced by systems relying on hard-coded knowledge suggest that
AI systems need the ability to acquire their own knowledge, by extracting patterns
from raw data. This capability is known as machine learning. The introduction
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of machine learning allowed computers to tackle problems involving knowledge
of the real world and make decisions that appear subjective. A simple machine
learning algorithm called logistic regression can determine whether to recommend
cesarean delivery (Mor-Yosef 1990et al., ). A simple machine learning algorithm
called can separate legitimate e-mail from spam e-mail.naive Bayes

The performance of these simple machine learning algorithms depends heavily
on the representation of the data they are given. For example, when logistic
regression is used to recommend cesarean delivery, the AI system does not examine
the patient directly. Instead, the doctor tells the system several pieces of relevant

information, such as the presence or absence of a uterine scar. Each piece of
information included in the representation of the patient is known as a feature.
Logistic regression learns how each of these features of the patient correlates with
various outcomes. However, it cannot influence the way that the features are
defined in any way. If logistic regression was given an MRI scan of the patient,
rather than the doctor’s formalized report, it would not be able to make useful
predictions. Individual pixels in an MRI scan have negligible correlation with any
complications that might occur during delivery.

This dependence on representations is a general phenomenon that appears
throughout computer science and even daily life. In computer science, opera-
tions such as searching a collection of data can proceed exponentially faster if

the collection is structured and indexed intelligently. People can easily perform
arithmetic on Arabic numerals, but find arithmetic on Roman numerals much
more time-consuming. It is not surprising that the choice of representation has an
enormous effect on the performance of machine learning algorithms. For a simple
visual example, see Fig. .1.1

Many artificial intelligence tasks can be solved by designing the right set of
features to extract for that task, then providing these features to a simple machine
learning algorithm. For example, a useful feature for speaker identification from
sound is an estimate of the size of speaker’s vocal tract. It therefore gives a strong
clue as to whether the speaker is a man, woman, or child.

However, for many tasks, it is difficult to know what features should be extracted.

For example, suppose that we would like to write a program to detect cars in
photographs. We know that cars have wheels, so we might like to use the presence
of a wheel as a feature. Unfortunately, it is difficult to describe exactly what a
wheel looks like in terms of pixel values. A wheel has a simple geometric shape but
its image may be complicated by shadows falling on the wheel, the sun glaring off
the metal parts of the wheel, the fender of the car or an object in the foreground
obscuring part of the wheel, and so on.
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Figure 1.1: Example of different representations: suppose we want to separate two
categories of data by drawing a line between them in a scatterplot. In the plot on the left,
we represent some data using Cartesian coordinates, and the task is impossible. In the plot
on the right, we represent the data with polar coordinates and the task becomes simple to
solve with a vertical line. (Figure produced in collaboration with David Warde-Farley)

One solution to this problem is to use machine learning to discover not only
the mapping from representation to output but also the representation itself.
This approach is known as representation learning. Learned representations often
result in much better performance than can be obtained with hand-designed
representations. They also allow AI systems to rapidly adapt to new tasks, with
minimal human intervention. A representation learning algorithm can discover a
good set of features for a simple task in minutes, or a complex task in hours to
months. Manually designing features for a complex task requires a great deal of
human time and effort; it can take decades for an entire community of researchers.

The quintessential example of a representation learning algorithm is the au-
toencoder. An autoencoder is the combination of an encoder function that converts
the input data into a different representation, and a decoder function that converts

the new representation back into the original format. Autoencoders are trained to
preserve as much information as possible when an input is run through the encoder
and then the decoder, but are also trained to make the new representation have
various nice properties. Different kinds of autoencoders aim to achieve different
kinds of properties.

When designing features or algorithms for learning features, our goal is usually
to separate the that explain the observed data. In this context,factors of variation
we use the word “factors” simply to refer to separate sources of influence; the factors
are usually not combined by multiplication. Such factors are often not quantities
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that are directly observed. Instead, they may exist either as unobserved objects
or unobserved forces in the physical world that affect observable quantities. They
may also exist as constructs in the human mind that provide useful simplifying
explanations or inferred causes of the observed data. They can be thought of as
concepts or abstractions that help us make sense of the rich variability in the data.
When analyzing a speech recording, the factors of variation include the speaker’s
age, their sex, their accent and the words that they are speaking. When analyzing
an image of a car, the factors of variation include the position of the car, its color,
and the angle and brightness of the sun.

A major source of difficulty in many real-world artificial intelligence applications
is that many of the factors of variation influence every single piece of data we are
able to observe. The individual pixels in an image of a red car might be very close
to black at night. The shape of the car’s silhouette depends on the viewing angle.
Most applications require us to the factors of variation and discard thedisentangle
ones that we do not care about.

Of course, it can be very difficult to extract such high-level, abstract features
from raw data. Many of these factors of variation, such as a speaker’s accent,
can be identified only using sophisticated, nearly human-level understanding of
the data. When it is nearly as difficult to obtain a representation as to solve the
original problem, representation learning does not, at first glance, seem to help us.

Deep learning solves this central problem in representation learning by introduc-
ing representations that are expressed in terms of other, simpler representations.
Deep learning allows the computer to build complex concepts out of simpler con-
cepts. Fig. shows how a deep learning system can represent the concept of an1.2
image of a person by combining simpler concepts, such as corners and contours,
which are in turn defined in terms of edges.

The quintessential example of a deep learning model is the feedforward deep
network or multilayer perceptron (MLP). A multilayer perceptron is just a mathe-
matical function mapping some set of input values to output values. The function
is formed by composing many simpler functions. We can think of each application
of a different mathematical function as providing a new representation of the input.

The idea of learning the right representation for the data provides one perspec-
tive on deep learning. Another perspective on deep learning is that depth allows the
computer to learn a multi-step computer program. Each layer of the representation
can be thought of as the state of the computer’s memory after executing another
set of instructions in parallel. Networks with greater depth can execute more
instructions in sequence. Sequential instructions offer great power because later
instructions can refer back to the results of earlier instructions. According to this
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Figure 1.2: Illustration of a deep learning model. It is difficult for a computer to understand
the meaning of raw sensory input data, such as this image represented as a collection
of pixel values. The function mapping from a set of pixels to an object identity is very
complicated. Learning or evaluating this mapping seems insurmountable if tackled directly.
Deep learning resolves this difficulty by breaking the desired complicated mapping into a
series of nested simple mappings, each described by a different layer of the model. The
input is presented at the , so named because it contains the variables that we
are able to observe. Then a series of extracts increasingly abstract features
from the image. These layers are called “hidden” because their values are not given in
the data; instead the model must determine which concepts are useful for explaining
the relationships in the observed data. The images here are visualizations of the kind
of feature represented by each hidden unit. Given the pixels, the first layer can easily
identify edges, by comparing the brightness of neighboring pixels. Given the first hidden
layer’s description of the edges, the second hidden layer can easily search for corners and
extended contours, which are recognizable as collections of edges. Given the second hidden
layer’s description of the image in terms of corners and contours, the third hidden layer
can detect entire parts of specific objects, by finding specific collections of contours and
corners. Finally, this description of the image in terms of the object parts it contains can
be used to recognize the objects present in the image. Images reproduced with permission
from Zeiler and Fergus 2014( ).
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Figure 1.3: Illustration of computational graphs mapping an input to an output where
each node performs an operation. Depth is the length of the longest path from input to
output but depends on the definition of what constitutes a possible computational step.
The computation depicted in these graphs is the output of a logistic regression model,

, where is the logistic sigmoid function. If we use addition, multiplication and
logistic sigmoids as the elements of our computer language, then this model has depth
three. If we view logistic regression as an element itself, then this model has depth one.

view of deep learning, not all of the information in a layer’s activations necessarily
encodes factors of variation that explain the input. The representation also stores
state information that helps to execute a program that can make sense of the input.
This state information could be analogous to a counter or pointer in a traditional
computer program. It has nothing to do with the content of the input specifically,
but it helps the model to organize its processing.

There are two main ways of measuring the depth of a model. The first view is
based on the number of sequential instructions that must be executed to evaluate
the architecture. We can think of this as the length of the longest path through
a flow chart that describes how to compute each of the model’s outputs given
its inputs. Just as two equivalent computer programs will have different lengths

depending on which language the program is written in, the same function may be
drawn as a flowchart with different depths depending on which functions we allow
to be used as individual steps in the flowchart. Fig. illustrates how this choice1.3
of language can give two different measurements for the same architecture.

Another approach, used by deep probabilistic models, regards the depth of a
model as being not the depth of the computational graph but the depth of the
graph describing how concepts are related to each other. In this case, the depth
of the flowchart of the computations needed to compute the representation of
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each concept may be much deeper than the graph of the concepts themselves.
This is because the system’s understanding of the simpler concepts can be refined
given information about the more complex concepts. For example, an AI system
observing an image of a face with one eye in shadow may initially only see one eye.
After detecting that a face is present, it can then infer that a second eye is probably
present as well. In this case, the graph of concepts only includes two layers—a

layer for eyes and a layer for faces—but the graph of computations includes
layers if we refine our estimate of each concept given the other times.

Because it is not always clear which of these two views—the depth of the

computational graph, or the depth of the probabilistic modeling graph—is most
relevant, and because different people choose different sets of smallest elements
from which to construct their graphs, there is no single correct value for the
depth of an architecture, just as there is no single correct value for the length of
a computer program. Nor is there a consensus about how much depth a model
requires to qualify as “deep.” However, deep learning can safely be regarded as the
study of models that either involve a greater amount of composition of learned
functions or learned concepts than traditional machine learning does.

To summarize, deep learning, the subject of this book, is an approach to AI.
Specifically, it is a type of machine learning, a technique that allows computer
systems to improve with experience and data. According to the authors of this

book, machine learning is the only viable approach to building AI systems that
can operate in complicated, real-world environments. Deep learning is a particular
kind of machine learning that achieves great power and flexibility by learning to
represent the world as a nested hierarchy of concepts, with each concept defined in
relation to simpler concepts, and more abstract representations computed in terms
of less abstract ones. Fig. illustrates the relationship between these different1.4
AI disciplines. Fig. gives a high-level schematic of how each works.1.5

This book can be useful for a variety of readers, but we wrote it with two main
target audiences in mind. One of these target audiences is university students
(undergraduate or graduate) learning about machine learning, including those who
are beginning a career in deep learning and artificial intelligence research. The
other target audience is software engineers who do not have a machine learning
or statistics background, but want to rapidly acquire one and begin using deep
learning in their product or platform. Deep learning has already proven useful in
many software disciplines including computer vision, speech and audio processing,
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Figure 1.4: A Venn diagram showing how deep learning is a kind of representation learning,
which is in turn a kind of machine learning, which is used for many but not all approaches
to AI. Each section of the Venn diagram includes an example of an AI technology.
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Figure 1.5: Flowcharts showing how the different parts of an AI system relate to each
other within different AI disciplines. Shaded boxes indicate components that are able to
learn from data.
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natural language processing, robotics, bioinformatics and chemistry, video games,
search engines, online advertising and finance.

This book has been organized into three parts in order to best accommodate a
variety of readers. Part introduces basic mathematical tools and machine learningI
concepts. Part describes the most established deep learning algorithms that areII
essentially solved technologies. Part describes more speculative ideas that areIII
widely believed to be important for future research in deep learning.

Readers should feel free to skip parts that are not relevant given their interests

or background. Readers familiar with linear algebra, probability, and fundamental
machine learning concepts can skip Part , for example, while readers who just wantI
to implement a working system need not read beyond Part . To help choose whichII
chapters to read, Fig. provides a flowchart showing the high-level organization1.6
of the book.

We do assume that all readers come from a computer science background. We
assume familiarity with programming, a basic understanding of computational
performance issues, complexity theory, introductory level calculus and some of the
terminology of graph theory.

It is easiest to understand deep learning with some historical context. Rather than
providing a detailed history of deep learning, we identify a few key trends:

Deep learning has had a long and rich history, but has gone by many names
reflecting different philosophical viewpoints, and has waxed and waned in
popularity.

Deep learning has become more useful as the amount of available training
data has increased.

Deep learning models have grown in size over time as computer hardware
and software infrastructure for deep learning has improved.

Deep learning has solved increasingly complicated applications with increasing
accuracy over time.
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Figure 1.6: The high-level organization of the book. An arrow from one chapter to another
indicates that the former chapter is prerequisite material for understanding the latter.
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We expect that many readers of this book have heard of deep learning as an
exciting new technology, and are surprised to see a mention of “history” in a book
about an emerging field. In fact, deep learning dates back to the 1940s. Deep
learning only appears to be new, because it was relatively unpopular for several

years preceding its current popularity, and because it has gone through many
different names, and has only recently become called “deep learning.” The field
has been rebranded many times, reflecting the influence of different researchers
and different perspectives.

A comprehensive history of deep learning is beyond the scope of this textbook.
However, some basic context is useful for understanding deep learning. Broadly
speaking, there have been three waves of development of deep learning: deep learn-
ing known as cybernetics connectionismin the 1940s–1960s, deep learning known as
in the 1980s–1990s, and the current resurgence under the name deep learning
beginning in 2006. This is quantitatively illustrated in Fig. .1.7

Some of the earliest learning algorithms we recognize today were intended

to be computational models of biological learning, i.e. models of how learning
happens or could happen in the brain. As a result, one of the names that deep
learning has gone by is artificial neural networks (ANNs). The corresponding
perspective on deep learning models is that they are engineered systems inspired
by the biological brain (whether the human brain or the brain of another animal).
While the kinds of neural networks used for machine learning have sometimes
been used to understand brain function ( , ), they areHinton and Shallice 1991
generally not designed to be realistic models of biological function. The neural
perspective on deep learning is motivated by two main ideas. One idea is that
the brain provides a proof by example that intelligent behavior is possible, and a
conceptually straightforward path to building intelligence is to reverse engineer the

computational principles behind the brain and duplicate its functionality. Another
perspective is that it would be deeply interesting to understand the brain and the
principles that underlie human intelligence, so machine learning models that shed
light on these basic scientific questions are useful apart from their ability to solve
engineering applications.

The modern term “deep learning” goes beyond the neuroscientific perspective
on the current breed of machine learning models. It appeals to a more general
principle of learning multiple levels of composition, which can be applied in machine
learning frameworks that are not necessarily neurally inspired.

13



CHAPTER 1. INTRODUCTION

Figure 1.7: The figure shows two of the three historical waves of artificial neural nets
research, as measured by the frequency of the phrases “cybernetics” and “connectionism” or
“neural networks” according to Google Books (the third wave is too recent to appear). The
first wave started with cybernetics in the 1940s–1960s, with the development of theories
of biological learning ( , ; , ) and implementations ofMcCulloch and Pitts 1943 Hebb 1949
the first models such as the perceptron (Rosenblatt 1958, ) allowing the training of a single
neuron. The second wave started with the connectionist approach of the 1980–1995 period,
with back-propagation ( , ) to train a neural network with one or twoRumelhart 1986a
hidden layers. The current and third wave, deep learning, started around 2006 (Hinton

, ;2006 Bengio , ;2007 Ranzato , ), and is just now appearing in book2007a
form as of 2016. The other two waves similarly appeared in book form much later than
the corresponding scientific activity occurred.
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The earliest predecessors of modern deep learning were simple linear models
motivated from a neuroscientific perspective. These models were designed to
take a set of input values and associate them with an output .
These models would learn a set of weights and compute their output

. This first wave of neural networks research was
known as cybernetics, as illustrated in Fig. .1.7

The McCulloch-Pitts Neuron ( , ) was an early modelMcCulloch and Pitts 1943
of brain function. This linear model could recognize two different categories of
inputs by testing whether is positive or negative. Of course, for the model
to correspond to the desired definition of the categories, the weights needed to be
set correctly. These weights could be set by the human operator. In the 1950s,
the perceptron (Rosenblatt 1958 1962, , ) became the first model that could learn
the weights defining the categories given examples of inputs from each category.
The adaptive linear element (ADALINE), which dates from about the same time,
simply returned the value of itself to predict a real number (Widrow and
Hoff 1960, ), and could also learn to predict these numbers from data.

These simple learning algorithms greatly affected the modern landscape of
machine learning. The training algorithm used to adapt the weights of the ADA-
LINE was a special case of an algorithm called stochastic gradient descent. Slightly
modified versions of the stochastic gradient descent algorithm remain the dominant

training algorithms for deep learning models today.

Models based on the used by the perceptron and ADALINE are called
linear models. These models remain some of the most widely used machine learning
models, though in many cases they are in different ways than the original
models were trained.

Linear models have many limitations. Most famously, they cannot learn the
XOR function, where and but
and . Critics who observed these flaws in linear models caused
a backlash against biologically inspired learning in general (Minsky and Papert,
1969). This was the first major dip in the popularity of neural networks.

Today, neuroscience is regarded as an important source of inspiration for deep

learning researchers, but it is no longer the predominant guide for the field.

The main reason for the diminished role of neuroscience in deep learning
research today is that we simply do not have enough information about the brain
to use it as a guide. To obtain a deep understanding of the actual algorithms used
by the brain, we would need to be able to monitor the activity of (at the very
least) thousands of interconnected neurons simultaneously. Because we are not
able to do this, we are far from understanding even some of the most simple and
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well-studied parts of the brain ( , ).Olshausen and Field 2005

Neuroscience has given us a reason to hope that a single deep learning algorithm
can solve many different tasks. Neuroscientists have found that ferrets can learn to
“see” with the auditory processing region of their brain if their brains are rewired
to send visual signals to that area (Von Melchner 2000et al., ). This suggests that
much of the mammalian brain might use a single algorithm to solve most of the
different tasks that the brain solves. Before this hypothesis, machine learning
research was more fragmented, with different communities of researchers studying
natural language processing, vision, motion planning and speech recognition. Today,

these application communities are still separate, but it is common for deep learning
research groups to study many or even all of these application areas simultaneously.

We are able to draw some rough guidelines from neuroscience. The basic idea of
having many computational units that become intelligent only via their interactions
with each other is inspired by the brain. The Neocognitron (Fukushima 1980, )
introduced a powerful model architecture for processing images that was inspired
by the structure of the mammalian visual system and later became the basis for
the modern convolutional network ( , ), as we will see in Sec. .LeCun et al. 1998b 9.10
Most neural networks today are based on a model neuron called the rectified linear
unit. The original Cognitron (Fukushima 1975, ) introduced a more complicated
version that was highly inspired by our knowledge of brain function. The simplified

modern version was developed incorporating ideas from many viewpoints, with Nair
and Hinton 2010 Glorot 2011a( ) and et al. ( ) citing neuroscience as an influence, and
Jarrett 2009et al. ( ) citing more engineering-oriented influences. While neuroscience
is an important source of inspiration, it need not be taken as a rigid guide. We
know that actual neurons compute very different functions than modern rectified
linear units, but greater neural realism has not yet led to an improvement in
machine learning performance. Also, while neuroscience has successfully inspired
several neural network , we do not yet know enough about biological
learning for neuroscience to offer much guidance for the we
use to train these architectures.

Media accounts often emphasize the similarity of deep learning to the brain.

While it is true that deep learning researchers are more likely to cite the brain as an
influence than researchers working in other machine learning fields such as kernel
machines or Bayesian statistics, one should not view deep learning as an attempt
to simulate the brain. Modern deep learning draws inspiration from many fields,
especially applied math fundamentals like linear algebra, probability, information
theory, and numerical optimization. While some deep learning researchers cite
neuroscience as an important source of inspiration, others are not concerned with
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neuroscience at all.

It is worth noting that the effort to understand how the brain works on
an algorithmic level is alive and well. This endeavor is primarily known as
“computational neuroscience” and is a separate field of study from deep learning.
It is common for researchers to move back and forth between both fields. The
field of deep learning is primarily concerned with how to build computer systems
that are able to successfully solve tasks requiring intelligence, while the field of
computational neuroscience is primarily concerned with building more accurate
models of how the brain actually works.

In the 1980s, the second wave of neural network research emerged in great part
via a movement called connectionism parallel distributed processingor (Rumelhart
et al. et al., ;1986c McClelland , ). Connectionism arose in the context of1995
cognitive science. Cognitive science is an interdisciplinary approach to understand-
ing the mind, combining multiple different levels of analysis. During the early
1980s, most cognitive scientists studied models of symbolic reasoning. Despite their
popularity, symbolic models were difficult to explain in terms of how the brain
could actually implement them using neurons. The connectionists began to study
models of cognition that could actually be grounded in neural implementations
(Touretzky and Minton 1985, ), reviving many ideas dating back to the work of
psychologist Donald Hebb in the 1940s ( , ).Hebb 1949

The central idea in connectionism is that a large number of simple computational
units can achieve intelligent behavior when networked together. This insight
applies equally to neurons in biological nervous systems and to hidden units in
computational models.

Several key concepts arose during the connectionism movement of the 1980s
that remain central to today’s deep learning.

One of these concepts is that of distributed representation ( , ).Hinton et al. 1986
This is the idea that each input to a system should be represented by many features,
and each feature should be involved in the representation of many possible inputs.
For example, suppose we have a vision system that can recognize cars, trucks, and
birds and these objects can each be red, green, or blue. One way of representing

these inputs would be to have a separate neuron or hidden unit that activates for
each of the nine possible combinations: red truck, red car, red bird, green truck, and
so on. This requires nine different neurons, and each neuron must independently
learn the concept of color and object identity. One way to improve on this situation
is to use a distributed representation, with three neurons describing the color and
three neurons describing the object identity. This requires only six neurons total
instead of nine, and the neuron describing redness is able to learn about redness
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from images of cars, trucks and birds, not only from images of one specific category
of objects. The concept of distributed representation is central to this book, and
will be described in greater detail in Chapter .15

Another major accomplishment of the connectionist movement was the suc-
cessful use of back-propagation to train deep neural networks with internal repre-
sentations and the popularization of the back-propagation algorithm (Rumelhart
et al., ; , ). This algorithm has waxed and waned in popularity1986a LeCun 1987
but as of this writing is currently the dominant approach to training deep models.

During the 1990s, researchers made important advances in modeling sequences
with neural networks. ( ) and ( ) identified someHochreiter 1991 Bengio et al. 1994
of the fundamental mathematical difficulties in modeling long sequences, described
in Sec. .10.7 Hochreiter and Schmidhuber 1997( ) introduced the long short-term
memory or LSTM network to resolve some of these difficulties. Today, the LSTM
is widely used for many sequence modeling tasks, including many natural language
processing tasks at Google.

The second wave of neural networks research lasted until the mid-1990s. Ven-
tures based on neural networks and other AI technologies began to make unrealisti-
cally ambitious claims while seeking investments. When AI research did not fulfill
these unreasonable expectations, investors were disappointed. Simultaneously,
other fields of machine learning made advances. Kernel machines ( ,Boser et al.

1992 Cortes and Vapnik 1995 Schölkopf 1999 Jor-; , ; et al., ) and graphical models (
dan 1998, ) both achieved good results on many important tasks. These two factors
led to a decline in the popularity of neural networks that lasted until 2007.

During this time, neural networks continued to obtain impressive performance
on some tasks ( , ; , ). The Canadian InstituteLeCun et al. 1998b Bengio et al. 2001
for Advanced Research (CIFAR) helped to keep neural networks research alive
via its Neural Computation and Adaptive Perception (NCAP) research initiative.
This program united machine learning research groups led by Geoffrey Hinton
at University of Toronto, Yoshua Bengio at University of Montreal, and Yann
LeCun at New York University. The CIFAR NCAP research initiative had a
multi-disciplinary nature that also included neuroscientists and experts in human

and computer vision.

At this point in time, deep networks were generally believed to be very difficult
to train. We now know that algorithms that have existed since the 1980s work
quite well, but this was not apparent circa 2006. The issue is perhaps simply that
these algorithms were too computationally costly to allow much experimentation
with the hardware available at the time.

The third wave of neural networks research began with a breakthrough in
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2006. Geoffrey Hinton showed that a kind of neural network called a deep belief
network could be efficiently trained using a strategy called greedy layer-wise
pretraining (Hinton 2006et al., ), which will be described in more detail in Sec.
15.1. The other CIFAR-affiliated research groups quickly showed that the same
strategy could be used to train many other kinds of deep networks ( ,Bengio et al.
2007 Ranzato 2007a; et al., ) and systematically helped to improve generalization
on test examples. This wave of neural networks research popularized the use of the
term deep learning to emphasize that researchers were now able to train deeper
neural networks than had been possible before, and to focus attention on the

theoretical importance of depth ( , ; ,Bengio and LeCun 2007 Delalleau and Bengio
2011 Pascanu 2014a Montufar 2014; et al., ; et al., ). At this time, deep neural
networks outperformed competing AI systems based on other machine learning
technologies as well as hand-designed functionality. This third wave of popularity
of neural networks continues to the time of this writing, though the focus of deep
learning research has changed dramatically within the time of this wave. The
third wave began with a focus on new unsupervised learning techniques and the
ability of deep models to generalize well from small datasets, but today there is
more interest in much older supervised learning algorithms and the ability of deep
models to leverage large labeled datasets.

One may wonder why deep learning has only recently become recognized as a
crucial technology though the first experiments with artificial neural networks were
conducted in the 1950s. Deep learning has been successfully used in commercial
applications since the 1990s, but was often regarded as being more of an art than
a technology and something that only an expert could use, until recently. It is true
that some skill is required to get good performance from a deep learning algorithm.
Fortunately, the amount of skill required reduces as the amount of training data

increases. The learning algorithms reaching human performance on complex tasks
today are nearly identical to the learning algorithms that struggled to solve toy
problems in the 1980s, though the models we train with these algorithms have
undergone changes that simplify the training of very deep architectures. The most
important new development is that today we can provide these algorithms with
the resources they need to succeed. Fig. shows how the size of benchmark1.8
datasets has increased remarkably over time. This trend is driven by the increasing
digitization of society. As more and more of our activities take place on computers,
more and more of what we do is recorded. As our computers are increasingly
networked together, it becomes easier to centralize these records and curate them
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into a dataset appropriate for machine learning applications. The age of “Big
Data” has made machine learning much easier because the key burden of statistical
estimation—generalizing well to new data after observing only a small amount
of data—has been considerably lightened. As of 2016, a rough rule of thumb
is that a supervised deep learning algorithm will generally achieve acceptable
performance with around 5,000 labeled examples per category, and will match or
exceed human performance when trained with a dataset containing at least 10
million labeled examples. Working successfully with datasets smaller than this is
an important research area, focusing in particular on how we can take advantage

of large quantities of unlabeled examples, with unsupervised or semi-supervised
learning.

Another key reason that neural networks are wildly successful today after enjoying
comparatively little success since the 1980s is that we have the computational
resources to run much larger models today. One of the main insights of connection-
ism is that animals become intelligent when many of their neurons work together.

An individual neuron or small collection of neurons is not particularly useful.

Biological neurons are not especially densely connected. As seen in Fig. ,1.10
our machine learning models have had a number of connections per neuron that
was within an order of magnitude of even mammalian brains for decades.

In terms of the total number of neurons, neural networks have been astonishingly
small until quite recently, as shown in Fig. . Since the introduction of hidden1.11
units, artificial neural networks have doubled in size roughly every 2.4 years. This
growth is driven by faster computers with larger memory and by the availability
of larger datasets. Larger networks are able to achieve higher accuracy on more
complex tasks. This trend looks set to continue for decades. Unless new technologies
allow faster scaling, artificial neural networks will not have the same number of

neurons as the human brain until at least the 2050s. Biological neurons may
represent more complicated functions than current artificial neurons, so biological
neural networks may be even larger than this plot portrays.

In retrospect, it is not particularly surprising that neural networks with fewer
neurons than a leech were unable to solve sophisticated artificial intelligence prob-
lems. Even today’s networks, which we consider quite large from a computational
systems point of view, are smaller than the nervous system of even relatively
primitive vertebrate animals like frogs.

The increase in model size over time, due to the availability of faster CPUs,
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Figure 1.8: Dataset sizes have increased greatly over time. In the early 1900s, statisticians
studied datasets using hundreds or thousands of manually compiled measurements ( ,Garson
1900 Gosset 1908 Anderson 1935 Fisher 1936; , ; , ; , ). In the 1950s through 1980s, the pioneers
of biologically inspired machine learning often worked with small, synthetic datasets, such
as low-resolution bitmaps of letters, that were designed to incur low computational cost and
demonstrate that neural networks were able to learn specific kinds of functions (Widrow
and Hoff 1960 Rumelhart 1986b, ; , ). In the 1980s and 1990s, machine learning
became more statistical in nature and began to leverage larger datasets containing tens
of thousands of examples such as the MNIST dataset (shown in Fig. ) of scans of1.9
handwritten numbers ( , ). In the first decade of the 2000s, moreLeCun 1998b
sophisticated datasets of this same size, such as the CIFAR-10 dataset (Krizhevsky and
Hinton 2009, ) continued to be produced. Toward the end of that decade and throughout
the first half of the 2010s, significantly larger datasets, containing hundreds of thousands
to tens of millions of examples, completely changed what was possible with deep learning.
These datasets included the public Street View House Numbers dataset ( ,Netzer
2011), various versions of the ImageNet dataset ( , , ;Deng 2009 2010a Russakovsky

, ), and the Sports-1M dataset (2014a Karpathy , ). At the top of the2014
graph, we see that datasets of translated sentences, such as IBM’s dataset constructed
from the Canadian Hansard ( , ) and the WMT 2014 English to FrenchBrown 1990
dataset (Schwenk 2014, ) are typically far ahead of other dataset sizes.
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Figure 1.9: Example inputs from the MNIST dataset. The “NIST” stands for National
Institute of Standards and Technology, the agency that originally collected this data.
The “M” stands for “modified,” since the data has been preprocessed for easier use with
machine learning algorithms. The MNIST dataset consists of scans of handwritten digits
and associated labels describing which digit 0-9 is contained in each image. This simple
classification problem is one of the simplest and most widely used tests in deep learning
research. It remains popular despite being quite easy for modern techniques to solve.
Geoffrey Hinton has described it as “the of machine learning,” meaning that
it allows machine learning researchers to study their algorithms in controlled laboratory
conditions, much as biologists often study fruit flies.
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the advent of general purpose GPUs (described in Sec. ), faster network12.1.2
connectivity and better software infrastructure for distributed computing, is one of
the most important trends in the history of deep learning. This trend is generally
expected to continue well into the future.

Since the 1980s, deep learning has consistently improved in its ability to provide
accurate recognition or prediction. Moreover, deep learning has consistently been
applied with success to broader and broader sets of applications.

The earliest deep models were used to recognize individual objects in tightly
cropped, extremely small images ( , ). Since then there hasRumelhart et al. 1986a
been a gradual increase in the size of images neural networks could process. Modern
object recognition networks process rich high-resolution photographs and do not
have a requirement that the photo be cropped near the object to be recognized
( , ). Similarly, the earliest networks could only recognizeKrizhevsky et al. 2012
two kinds of objects (or in some cases, the absence or presence of a single kind of

object), while these modern networks typically recognize at least 1,000 different
categories of objects. The largest contest in object recognition is the ImageNet
Large-Scale Visual Recognition Challenge (ILSVRC) held each year. A dramatic
moment in the meteoric rise of deep learning came when a convolutional network
won this challenge for the first time and by a wide margin, bringing down the
state-of-the-art top-5 error rate from 26.1% to 15.3% ( , ),Krizhevsky et al. 2012
meaning that the convolutional network produces a ranked list of possible categories
for each image and the correct category appeared in the first five entries of this
list for all but 15.3% of the test examples. Since then, these competitions are
consistently won by deep convolutional nets, and as of this writing, advances in
deep learning have brought the latest top-5 error rate in this contest down to 3.6%,
as shown in Fig. .1.12

Deep learning has also had a dramatic impact on speech recognition. After
improving throughout the 1990s, the error rates for speech recognition stagnated
starting in about 2000. The introduction of deep learning ( , ;Dahl et al. 2010 Deng
et al. et al. et al., ;2010b Seide , ;2011 Hinton , ) to speech recognition resulted2012a
in a sudden drop of error rates, with some error rates cut in half. We will explore
this history in more detail in Sec. .12.3

Deep networks have also had spectacular successes for pedestrian detection and
image segmentation ( , ;Sermanet et al. 2013 Farabet 2013 Couprieet al., ; et al.,
2013) and yielded superhuman performance in traffic sign classification (Ciresan
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Figure 1.10: Initially, the number of connections between neurons in artificial neural
networks was limited by hardware capabilities. Today, the number of connections between
neurons is mostly a design consideration. Some artificial neural networks have nearly as
many connections per neuron as a cat, and it is quite common for other neural networks
to have as many connections per neuron as smaller mammals like mice. Even the human
brain does not have an exorbitant amount of connections per neuron. Biological neural
network sizes from ( ).Wikipedia 2015
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et al., ).2012

At the same time that the scale and accuracy of deep networks has increased,
so has the complexity of the tasks that they can solve. ( )Goodfellow et al. 2014d
showed that neural networks could learn to output an entire sequence of characters
transcribed from an image, rather than just identifying a single object. Previously,
it was widely believed that this kind of learning required labeling of the individual
elements of the sequence ( , ). Recurrent neural networks,Gülçehre and Bengio 2013
such as the LSTM sequence model mentioned above, are now used to model
relationships between sequences sequencesand other rather than just fixed inputs.

This sequence-to-sequence learning seems to be on the cusp of revolutionizing
another application: machine translation (Sutskever 2014 Bahdanauet al., ; et al.,
2015).

This trend of increasing complexity has been pushed to its logical conclusion
with the introduction of neural Turing machines (Graves 2014aet al., ) that learn
to read from memory cells and write arbitrary content to memory cells. Such
neural networks can learn simple programs from examples of desired behavior. For
example, they can learn to sort lists of numbers given examples of scrambled and
sorted sequences. This self-programming technology is in its infancy, but in the
future could in principle be applied to nearly any task.

Another crowning achievement of deep learning is its extension to the domain

of reinforcement learning. In the context of reinforcement learning, an autonomous
agent must learn to perform a task by trial and error, without any guidance from
the human operator. DeepMind demonstrated that a reinforcement learning system
based on deep learning is capable of learning to play Atari video games, reaching
human-level performance on many tasks ( , ). Deep learning hasMnih et al. 2015
also significantly improved the performance of reinforcement learning for robotics
( , ).Finn et al. 2015

Many of these applications of deep learning are highly profitable. Deep learning
is now used by many top technology companies including Google, Microsoft,
Facebook, IBM, Baidu, Apple, Adobe, Netflix, NVIDIA and NEC.

Advances in deep learning have also depended heavily on advances in software

infrastructure. Software libraries such as Theano ( , ;Bergstra et al. 2010 Bastien
et al. et al., ), PyLearn2 (2012 Goodfellow , ), Torch ( , ),2013c Collobert et al. 2011b
DistBelief ( , ), Caffe ( , ), MXNet ( , ), andDean et al. 2012 Jia 2013 Chen et al. 2015
TensorFlow ( , ) have all supported important research projects orAbadi et al. 2015
commercial products.

Deep learning has also made contributions back to other sciences. Modern
convolutional networks for object recognition provide a model of visual processing

25



CHAPTER 1. INTRODUCTION

that neuroscientists can study ( , ). Deep learning also provides usefulDiCarlo 2013
tools for processing massive amounts of data and making useful predictions in
scientific fields. It has been successfully used to predict how molecules will interact
in order to help pharmaceutical companies design new drugs ( , ),Dahl et al. 2014
to search for subatomic particles ( , ), and to automatically parseBaldi et al. 2014
microscope images used to construct a 3-D map of the human brain (Knowles-
Barley 2014et al., ). We expect deep learning to appear in more and more scientific
fields in the future.

In summary, deep learning is an approach to machine learning that has drawn

heavily on our knowledge of the human brain, statistics and applied math as it
developed over the past several decades. In recent years, it has seen tremendous
growth in its popularity and usefulness, due in large part to more powerful com-
puters, larger datasets and techniques to train deeper networks. The years ahead
are full of challenges and opportunities to improve deep learning even further and
bring it to new frontiers.
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Figure 1.11: Since the introduction of hidden units, artificial neural networks have doubled
in size roughly every 2.4 years. Biological neural network sizes from ( ).Wikipedia 2015
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Figure 1.12: Since deep networks reached the scale necessary to compete in the ImageNet
Large Scale Visual Recognition Challenge, they have consistently won the competition
every year, and yielded lower and lower error rates each time. Data from Russakovsky

( ) and2014b He ( ).2015
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Part I

Applied Math and Machine

Learning Basics
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This part of the book introduces the basic mathematical concepts needed to
understand deep learning. We begin with general ideas from applied math that
allow us to define functions of many variables, find the highest and lowest points
on these functions and quantify degrees of belief.

Next, we describe the fundamental goals of machine learning. We describe how
to accomplish these goals by specifying a model that represents certain beliefs,
designing a cost function that measures how well those beliefs correspond with
reality and using a training algorithm to minimize that cost function.

This elementary framework is the basis for a broad variety of machine learning
algorithms, including approaches to machine learning that are not deep. In the
subsequent parts of the book, we develop deep learning algorithms within this
framework.
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Chapter 2

Linear Algebra

Linear algebra is a branch of mathematics that is widely used throughout science
and engineering. However, because linear algebra is a form of continuous rather
than discrete mathematics, many computer scientists have little experience with it.
A good understanding of linear algebra is essential for understanding and working

with many machine learning algorithms, especially deep learning algorithms. We
therefore precede our introduction to deep learning with a focused presentation of
the key linear algebra prerequisites.

If you are already familiar with linear algebra, feel free to skip this chapter. If
you have previous experience with these concepts but need a detailed reference
sheet to review key formulas, we recommend The Matrix Cookbook (Petersen and
Pedersen 2006, ). If you have no exposure at all to linear algebra, this chapter
will teach you enough to read this book, but we highly recommend that you also
consult another resource focused exclusively on teaching linear algebra, such as
Shilov 1977( ). This chapter will completely omit many important linear algebra
topics that are not essential for understanding deep learning.

2.1 Scalars, Vectors, Matrices and Tensors

The study of linear algebra involves several types of mathematical objects:

• Scalars: A scalar is just a single number, in contrast to most of the other
objects studied in linear algebra, which are usually arrays of multiple numbers.
We write scalars in italics. We usually give scalars lower-case variable names.
When we introduce them, we specify what kind of number they are. For
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example, we might say “Let s ∈ R be the slope of the line,” while defining a
real-valued scalar, or “Let n ∈ N be the number of units,” while defining a
natural number scalar.

• Vectors: A vector is an array of numbers. The numbers are arranged in
order. We can identify each individual number by its index in that ordering.
Typically we give vectors lower case names written in bold typeface, such
as x. The elements of the vector are identified by writing its name in italic
typeface, with a subscript. The first element of x is x1, the second element
is x2 and so on. We also need to say what kind of numbers are stored in
the vector. If each element is in R, and the vector has n elements, then the

vector lies in the set formed by taking the Cartesian product of R n times,
denoted as Rn. When we need to explicitly identify the elements of a vector,
we write them as a column enclosed in square brackets:

x =



x1
x2
...
xn


 . (2.1)

We can think of vectors as identifying points in space, with each element
giving the coordinate along a different axis.

Sometimes we need to index a set of elements of a vector. In this case, we
define a set containing the indices and write the set as a subscript. For
example, to access x1, x3 and x6, we define the set S = {1,3, 6} and write
xS. We use the − sign to index the complement of a set. For example x−1 is
the vector containing all elements of x except for x1, and x−S is the vector
containing all of the elements of except forx x1, x3 and x6 .

• Matrices: A matrix is a 2-D array of numbers, so each element is identified by
two indices instead of just one. We usually give matrices upper-case variable
names with bold typeface, such as A. If a real-valued matrix A has a height
of m and a width of n, then we say that A ∈ Rm n× . We usually identify

the elements of a matrix using its name in italic but not bold font, and the
indices are listed with separating commas. For example, A1 1, is the upper
left entry of A and Am,n is the bottom right entry. We can identify all of
the numbers with vertical coordinate i by writing a “ ” for the horizontal:
coordinate. For example, Ai,: denotes the horizontal cross section of A with
vertical coordinate i. This is known as the i-th row of A. Likewise, A:,i is
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A =

2
4
A1 1, A1 2,
A2 1, A2 2,
A3 1, A3 2,

3
5 ) A> =


A1 1, A2 1, A3 1,
A1 2, A2 2, A3 2,



Figure 2.1: The transpose of the matrix can be thought of as a mirror image across the
main diagonal.

the i-th column of A. When we need to explicitly identify the elements of a
matrix, we write them as an array enclosed in square brackets:

A1 1, A1 2,
A2 1, A2 2,


. (2.2)

Sometimes we may need to index matrix-valued expressions that are not just
a single letter. In this case, we use subscripts after the expression, but do
not convert anything to lower case. For example, f (A )i,j gives element (i, j)
of the matrix computed by applying the function to .f A

• Tensors: In some cases we will need an array with more than two axes. In
the general case, an array of numbers arranged on a regular grid with a
variable number of axes is known as a We denote a tensor named “A”tensor.
with this typeface: A. We identify the element of A at coordinates (i, j, k)
by writing Ai,j,k.

One important operation on matrices is the transpose. The transpose of a
matrix is the mirror image of the matrix across a diagonal line, called the main
diagonal, running down and to the right, starting from its upper left corner. See
Fig. for a graphical depiction of this operation. We denote the transpose of a2.1
matrix asA A> , and it is defined such that

(A>)i,j = Aj,i. (2.3)

Vectors can be thought of as matrices that contain only one column. The
transpose of a vector is therefore a matrix with only one row. Sometimes we
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define a vector by writing out its elements in the text inline as a row matrix,
then using the transpose operator to turn it into a standard column vector, e.g.,
x = [x1, x2, x3]

>.

A scalar can be thought of as a matrix with only a single entry. From this, we
can see that a scalar is its own transpose: a a= > .

We can add matrices to each other, as long as they have the same shape, just
by adding their corresponding elements: whereC A B= + Ci,j = Ai,j +Bi,j .

We can also add a scalar to a matrix or multiply a matrix by a scalar, just

by performing that operation on each element of a matrix: D = a ·B + c where
Di,j = a B· i,j + c.

In the context of deep learning, we also use some less conventional notation.
We allow the addition of matrix and a vector, yielding another matrix: C =A +b,
where Ci,j = Ai,j + bj . In other words, the vector b is added to each row of the
matrix. This shorthand eliminates the need to define a matrix with b copied into
each row before doing the addition. This implicit copying of b to many locations
is called broadcasting.

2.2 Multiplying Matrices and Vectors

One of the most important operations involving matrices is multiplication of two
matrices. The matrix product of matrices A and B is a third matrix C . In order
for this product to be defined, Amust have the same number of columns as B has
rows. If A is of shape m n× and B is of shape n p× , then C is of shape m p× .
We can write the matrix product just by placing two or more matrices together,
e.g.

C AB= . (2.4)

The product operation is defined by

Ci,j =
X
k

Ai,kBk,j. (2.5)

Note that the standard product of two matrices is just a matrix containingnot

the product of the individual elements. Such an operation exists and is called the
element-wise product Hadamard productor , and is denoted as .A B

The dot product between two vectors x and y of the same dimensionality is the
matrix product x>y. We can think of the matrix product C = AB as computing
Ci,j as the dot product between row of and column of .i A j B
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Matrix product operations have many useful properties that make mathematical
analysis of matrices more convenient. For example, matrix multiplication is
distributive:

A B C AB AC( + ) = + . (2.6)

It is also associative:
A BC AB C( ) = ( ) . (2.7)

Matrix multiplication is commutative (the conditionnot AB = BA does not
always hold), unlike scalar multiplication. However, the dot product between two
vectors is commutative:

x>y y= >x. (2.8)

The transpose of a matrix product has a simple form:

( )AB > = B>A>. (2.9)

This allows us to demonstrate Eq. , by exploiting the fact that the value of2.8

such a product is a scalar and therefore equal to its own transpose:

x>y =

x>y

>
= y>x. (2.10)

Since the focus of this textbook is not linear algebra, we do not attempt to
develop a comprehensive list of useful properties of the matrix product here, but
the reader should be aware that many more exist.

We now know enough linear algebra notation to write down a system of linear
equations:

Ax b= (2.11)

whereA ∈ Rm n× is a known matrix, b ∈ Rm is a known vector, and x ∈ Rn is a
vector of unknown variables we would like to solve for. Each element xi of x is one
of these unknown variables. Each row of A and each element of b provide another
constraint. We can rewrite Eq. as:2.11

A1 :, x = b1 (2.12)

A2 :, x = b2 (2.13)

. . . (2.14)

Am,:x = bm (2.15)

or, even more explicitly, as:

A1 1, x1 +A1 2, x2+ +· · · A1,nxn= b1 (2.16)
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
 1 0 0

0 1 0

0 0 1




Figure 2.2: : This is I .

A2 1, x1 +A2 2, x2+ +· · · A2,nxn= b2 (2.17)

. . . (2.18)

Am,1x1 +Am,2x2 + +· · · Am,nxn = bm . (2.19)

Matrix-vector product notations provides a more compact representation for
equations of this form.

2.3 Identity and Inverse Matrices

Linear algebra offers a powerful tool called that allows us tomatrix inversion

analytically solve Eq. for many values of .2.11 A

To describe matrix inversion, we first need to define the concept of an identity
matrix. An identity matrix is a matrix that does not change any vector when we
multiply that vector by that matrix. We denote the identity matrix that preserves
n-dimensional vectors as In. Formally, In ∈ Rn n× , and

∀ ∈x R
n, Inx x= . (2.20)

The structure of the identity matrix is simple: all of the entries along the main
diagonal are 1, while all of the other entries are zero. See Fig. for an example.2.2

The ofmatrix inverse A is denoted as A−1, and it is defined as the matrix
such that

A−1A I= n . (2.21)

We can now solve Eq. by the following steps:2.11

Ax b= (2.22)

A−1Ax A= −1b (2.23)

Inx A= −1b (2.24)
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x A= −1b. (2.25)

Of course, this depends on it being possible to find A−1. We discuss the
conditions for the existence of A−1 in the following section.

When A−1 exists, several different algorithms exist for finding it in closed form.
In theory, the same inverse matrix can then be used to solve the equation many
times for different values of b . However, A−1 is primarily useful as a theoretical
tool, and should not actually be used in practice for most software applications.
Because A−1 can be represented with only limited precision on a digital computer,
algorithms that make use of the value of b can usually obtain more accurate
estimates of .x

2.4 Linear Dependence and Span

In order for A−1 to exist, Eq. must have exactly one solution for every value2.11
of b. However, it is also possible for the system of equations to have no solutions
or infinitely many solutions for some values of b. It is not possible to have more
than one but less than infinitely many solutions for a particular b ; if both x and y
are solutions then

z x y= α + (1 )− α (2.26)

is also a solution for any real .α

To analyze how many solutions the equation has, we can think of the columns
of A as specifying different directions we can travel from the (the pointorigin
specified by the vector of all zeros), and determine how many ways there are of
reaching b. In this view, each element of x specifies how far we should travel in
each of these directions, with xi specifying how far to move in the direction of
column :i

Ax =
X
i

xiA :,i. (2.27)

In general, this kind of operation is called a linear combination. Formally, a linear
combination of some set of vectors {v (1) , . . . ,v( )n } is given by multiplying each
vector v( )i by a corresponding scalar coefficient and adding the results:

X
i

civ
( )i . (2.28)

The span of a set of vectors is the set of all points obtainable by linear combination

of the original vectors.
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Determining whether Ax= b has a solution thus amounts to testing whether
b is in the span of the columns of A. This particular span is known as the column
space rangeor the of .A

In order for the system Ax = b to have a solution for all values of b ∈ Rm,
we therefore require that the column space of A be all of Rm. If any point inRm

is excluded from the column space, that point is a potential value of b that has
no solution. The requirement that the column space of A be all of R

m implies
immediately that A must have at least m columns, i.e., n m≥ . Otherwise, the
dimensionality of the column space would be less than m. For example, consider a

3 × 2 matrix. The target b is 3-D, but x is only 2-D, so modifying the value of x
at best allows us to trace out a 2-D plane within R

3. The equation has a solution
if and only if lies on that plane.b

Having n m≥ is only a necessary condition for every point to have a solution.
It is not a sufficient condition, because it is possible for some of the columns to be
redundant. Consider a 2 × 2 matrix where both of the columns are equal to each
other. This has the same column space as a 2 × 1 matrix containing only one copy
of the replicated column. In other words, the column space is still just a line, and
fails to encompass all of R 2, even though there are two columns.

Formally, this kind of redundancy is known as linear dependence. A set of
vectors is linearly independent if no vector in the set is a linear combination of the
other vectors. If we add a vector to a set that is a linear combination of the other
vectors in the set, the new vector does not add any points to the set’s span. This

means that for the column space of the matrix to encompass all of Rm, the matrix
must contain at least one set ofm linearly independent columns. This condition
is both necessary and sufficient for Eq. to have a solution for every value of2.11
b. Note that the requirement is for a set to have exactly m linear independent
columns, not at least m . No set of m-dimensional vectors can have more than m
mutually linearly independent columns, but a matrix with more than columnsm
may have more than one such set.

In order for the matrix to have an inverse, we additionally need to ensure that
Eq. has one solution for each value of2.11 at most b. To do so, we need to ensure
that the matrix has at most m columns. Otherwise there is more than one way of
parametrizing each solution.

Together, this means that the matrix must be square, that is, we require that
m = n and that all of the columns must be linearly independent. A square matrix

with linearly dependent columns is known as .singular

If A is not square or is square but singular, it can still be possible to solve the

38



CHAPTER 2. LINEAR ALGEBRA

equation. However, we can not use the method of matrix inversion to find the
solution.

So far we have discussed matrix inverses as being multiplied on the left. It is
also possible to define an inverse that is multiplied on the right:

AA−1 = I . (2.29)

For square matrices, the left inverse and right inverse are equal.

2.5 Norms

Sometimes we need to measure the size of a vector. In machine learning, we usually
measure the size of vectors using a function called a . Formally, thenorm Lp norm
is given by

|| ||x p =

 X
i

|xi |p
!

(2.30)

for p , p .∈ R ≥ 1

Norms, including the Lp norm, are functions mapping vectors to non-negative
values. On an intuitive level, the norm of a vector x measures the distance from
the origin to the point x. More rigorously, a norm is any function f that satisfies

the following properties:

• ⇒f ( ) = 0 x x = 

• ≤f ( + ) x y f f( ) +x ( )y (the triangle inequality)

• ∀ ∈ | |α R, f α( x) = α f( )x

The L2 norm, with p = 2, is known as the Euclidean norm. It is simply the
Euclidean distance from the origin to the point identified by x. The L2 norm is
used so frequently in machine learning that it is often denoted simply as || ||x , with
the subscript omitted. It is also common to measure the size of a vector using2
the squared L2 norm, which can be calculated simply as x>x.

The squared L2 norm is more convenient to work with mathematically and
computationally than the L2 norm itself. For example, the derivatives of the
squared L2 norm with respect to each element of x each depend only on the
corresponding element of x, while all of the derivatives of the L2 norm depend
on the entire vector. In many contexts, the squared L2 norm may be undesirable
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because it increases very slowly near the origin. In several machine learning
applications, it is important to discriminate between elements that are exactly
zero and elements that are small but nonzero. In these cases, we turn to a function
that grows at the same rate in all locations, but retains mathematical simplicity:
the L1 norm. The L1 norm may be simplified to

|| ||x 1 =
X
i

|xi |. (2.31)

The L1 norm is commonly used in machine learning when the difference between
zero and nonzero elements is very important. Every time an element of x moves
away from 0 by , the L1 norm increases by .

We sometimes measure the size of the vector by counting its number of nonzero

elements. Some authors refer to this function as the “L0 norm,” but this is incorrect
terminology. The number of non-zero entries in a vector is not a norm, because
scaling the vector by α does not change the number of nonzero entries. The L1

norm is often used as a substitute for the number of nonzero entries.

One other norm that commonly arises in machine learning is the L∞ norm,
also known as the . This norm simplifies to the absolute value of themax norm
element with the largest magnitude in the vector,

|| ||x ∞ = max
i

|xi |. (2.32)

Sometimes we may also wish to measure the size of a matrix. In the context
of deep learning, the most common way to do this is with the otherwise obscure
Frobenius norm

|| ||A F =

sX
i,j

A2i,j, (2.33)

which is analogous to the L2 norm of a vector.

The dot product of two vectors can be rewritten in terms of norms. Specifically,

x>y x= || || 2|| ||y 2 cos θ (2.34)

where is the angle between and .θ x y

2.6 Special Kinds of Matrices and Vectors

Some special kinds of matrices and vectors are particularly useful.
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Diagonal matrices consist mostly of zeros and have non-zero entries only along
the main diagonal. Formally, a matrix D is diagonal if and only if Di,j = 0 for
all i 6= j . We have already seen one example of a diagonal matrix: the identity
matrix, where all of the diagonal entries are 1. We write diag(v) to denote a square
diagonal matrix whose diagonal entries are given by the entries of the vector v.
Diagonal matrices are of interest in part because multiplying by a diagonal matrix
is very computationally efficient. To compute diag(v)x, we only need to scale each
element xi by vi. In other words, diag(v)x = v x . Inverting a square diagonal
matrix is also efficient. The inverse exists only if every diagonal entry is nonzero,

and in that case, diag(v)−1 = diag([1/v1, . . . , 1/vn]>). In many cases, we may
derive some very general machine learning algorithm in terms of arbitrary matrices,
but obtain a less expensive (and less descriptive) algorithm by restricting some
matrices to be diagonal.

Not all diagonal matrices need be square. It is possible to construct a rectangular
diagonal matrix. Non-square diagonal matrices do not have inverses but it is still
possible to multiply by them cheaply. For a non-square diagonal matrix D, the
product Dx will involve scaling each element of x, and either concatenating some
zeros to the result if D is taller than it is wide, or discarding some of the last
elements of the vector if is wider than it is tall.D

A matrix is any matrix that is equal to its own transpose:symmetric

A A= >. (2.35)

Symmetric matrices often arise when the entries are generated by some function of
two arguments that does not depend on the order of the arguments. For example,
ifA is a matrix of distance measurements, with Ai,j giving the distance from point
i to point , thenj Ai,j = Aj,i because distance functions are symmetric.

A unit vector unit normis a vector with :

|| ||x 2 = 1. (2.36)

A vector x and a vector y are orthogonal to each other if x>y = 0. If both
vectors have nonzero norm, this means that they are at a 90 degree angle to each
other. In R

n , at most nvectors may be mutually orthogonal with nonzero norm.

If the vectors are not only orthogonal but also have unit norm, we call them
orthonormal.

An orthogonal matrix is a square matrix whose rows are mutually orthonormal
and whose columns are mutually orthonormal:

A>A AA= > = I . (2.37)
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This implies that
A−1 = A>, (2.38)

so orthogonal matrices are of interest because their inverse is very cheap to compute.

Pay careful attention to the definition of orthogonal matrices. Counterintuitively,
their rows are not merely orthogonal but fully orthonormal. There is no special
term for a matrix whose rows or columns are orthogonal but not orthonormal.

2.7 Eigendecomposition

Many mathematical objects can be understood better by breaking them into
constituent parts, or finding some properties of them that are universal, not caused
by the way we choose to represent them.

For example, integers can be decomposed into prime factors. The way we

represent the number will change depending on whether we write it in base ten12
or in binary, but it will always be true that 12 = 2×2× 3. From this representation
we can conclude useful properties, such as that is not divisible by , or that any12 5

integer multiple of will be divisible by .12 3

Much as we can discover something about the true nature of an integer by
decomposing it into prime factors, we can also decompose matrices in ways that
show us information about their functional properties that is not obvious from the
representation of the matrix as an array of elements.

One of the most widely used kinds of matrix decomposition is called eigen-
decomposition, in which we decompose a matrix into a set of eigenvectors and
eigenvalues.

An eigenvector of a square matrix A is a non-zero vector v such that multipli-
cation by alters only the scale of :A v

Av v= λ . (2.39)

The scalar λ is known as the corresponding to this eigenvector. (Oneeigenvalue
can also find a left eigenvector such that v>A= λv >, but we are usually concerned
with right eigenvectors).

If v is an eigenvector of A, then so is any rescaled vector sv for s , s∈ R 6= 0.
Moreover, sv still has the same eigenvalue. For this reason, we usually only look
for unit eigenvectors.

Suppose that a matrix A has n linearly independent eigenvectors, {v(1) , . . . ,
v( )n }, with corresponding eigenvalues {λ1, . . . , λn}. We may concatenate all of the
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Figure 2.3: An example of the effect of eigenvectors and eigenvalues. Here, we have
a matrix A with two orthonormal eigenvectors, v with eigenvalue λ and v with
eigenvalue λ . We plot the set of all unit vectors u ∈ R as a unit circle.
We plot the set of all pointsAu. By observing the way that A distorts the unit circle, we
can see that it scales space in direction v by λ .

eigenvectors to form a matrix V with one eigenvector per column: V = [v(1) , . . . ,

v( )n ]. Likewise, we can concatenate the eigenvalues to form a vector λ= [λ1 , . . . ,
λn ]>. The eigendecomposition of is then given byA

A V λ V= diag( ) −1. (2.40)

We have seen that constructing matrices with specific eigenvalues and eigenvec-
tors allows us to stretch space in desired directions. However, we often want to
decompose matrices into their eigenvalues and eigenvectors. Doing so can help us
to analyze certain properties of the matrix, much as decomposing an integer into
its prime factors can help us understand the behavior of that integer.

Not every matrix can be decomposed into eigenvalues and eigenvectors. In some

43



CHAPTER 2. LINEAR ALGEBRA

cases, the decomposition exists, but may involve complex rather than real numbers.
Fortunately, in this book, we usually need to decompose only a specific class of
matrices that have a simple decomposition. Specifically, every real symmetric
matrix can be decomposed into an expression using only real-valued eigenvectors
and eigenvalues:

A Q Q= >, (2.41)

where Q is an orthogonal matrix composed of eigenvectors of A, and is a
diagonal matrix. The eigenvalue Λi,i is associated with the eigenvector in column i
of Q, denoted as Q:,i. Because Q is an orthogonal matrix, we can think of A as
scaling space by λi in direction v( )i . See Fig. for an example.2.3

While any real symmetric matrix A is guaranteed to have an eigendecomposi-
tion, the eigendecomposition may not be unique. If any two or more eigenvectors
share the same eigenvalue, then any set of orthogonal vectors lying in their span
are also eigenvectors with that eigenvalue, and we could equivalently choose a Q

using those eigenvectors instead. By convention, we usually sort the entries of
in descending order. Under this convention, the eigendecomposition is unique only
if all of the eigenvalues are unique.

The eigendecomposition of a matrix tells us many useful facts about the
matrix. The matrix is singular if and only if any of the eigenvalues are 0. The
eigendecomposition of a real symmetric matrix can also be used to optimize
quadratic expressions of the form f (x) = x>Ax subject to || ||x 2 = 1. Whenever x
is equal to an eigenvector ofA, f takes on the value of the corresponding eigenvalue.
The maximum value of f within the constraint region is the maximum eigenvalue
and its minimum value within the constraint region is the minimum eigenvalue.

A matrix whose eigenvalues are all positive is called positive definite. A matrix

whose eigenvalues are all positive or zero-valued is called positive semidefinite.
Likewise, if all eigenvalues are negative, the matrix is negative definite, and if
all eigenvalues are negative or zero-valued, it is negative semidefinite. Positive
semidefinite matrices are interesting because they guarantee that ∀x x, >Ax ≥ 0.
Positive definite matrices additionally guarantee that x>Ax x= 0 ⇒ = .

2.8 Singular Value Decomposition

In Sec. , we saw how to decompose a matrix into eigenvectors and eigenvalues.2.7
The singular value decomposition (SVD) provides another way to factorize a matrix,
into singular vectors singular valuesand . The SVD allows us to discover some of

the same kind of information as the eigendecomposition. However, the SVD is
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more generally applicable. Every real matrix has a singular value decomposition,
but the same is not true of the eigenvalue decomposition. For example, if a matrix
is not square, the eigendecomposition is not defined, and we must use a singular
value decomposition instead.

Recall that the eigendecomposition involves analyzing a matrix A to discover
a matrix V of eigenvectors and a vector of eigenvalues λ such that we can rewrite
A as

A V λ V= diag( ) −1. (2.42)

The singular value decomposition is similar, except this time we will write A
as a product of three matrices:

A UDV= >. (2.43)

Suppose that A is an m n× matrix. Then U is defined to be an m m× matrix,
D Vto be an matrix, andm n× to be an matrix.n n×

Each of these matrices is defined to have a special structure. The matrices U

and V are both defined to be orthogonal matrices. The matrix D is defined to be
a diagonal matrix. Note that is not necessarily square.D

The elements along the diagonal of D are known as the of thesingular values
matrix A. The columns of U are known as the left-singular vectors. The columns
of are known as as theV right-singular vectors.

We can actually interpret the singular value decomposition of A in terms of
the eigendecomposition of functions of A . The left-singular vectors ofA are the
eigenvectors of AA>. The right-singular vectors ofA are the eigenvectors of A>A.
The non-zero singular values of A are the square roots of the eigenvalues of A>A.
The same is true for AA>.

Perhaps the most useful feature of the SVD is that we can use it to partially

generalize matrix inversion to non-square matrices, as we will see in the next
section.

2.9 The Moore-Penrose Pseudoinverse

Matrix inversion is not defined for matrices that are not square. Suppose we want
to make a left-inverse of a matrix , so that we can solve a linear equationB A

Ax y= (2.44)
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by left-multiplying each side to obtain

x By= . (2.45)

Depending on the structure of the problem, it may not be possible to design a
unique mapping from to .A B

If A is taller than it is wide, then it is possible for this equation to have
no solution. If A is wider than it is tall, then there could be multiple possible
solutions.

The Moore-Penrose pseudoinverse allows us to make some headway in these
cases. The pseudoinverse of is defined as a matrixA

A+ = lim
α&0

(A>A I+ α )−1A>. (2.46)

Practical algorithms for computing the pseudoinverse are not based on this defini-
tion, but rather the formula

A+ = VD+U>, (2.47)

whereU,D and V are the singular value decomposition ofA , and the pseudoinverse
D+ of a diagonal matrix D is obtained by taking the reciprocal of its non-zero
elements then taking the transpose of the resulting matrix.

When A has more columns than rows, then solving a linear equation using the
pseudoinverse provides one of the many possible solutions. Specifically, it provides
the solution x = A+y with minimal Euclidean norm || ||x 2 among all possible

solutions.

When A has more rows than columns, it is possible for there to be no solution.
In this case, using the pseudoinverse gives us the x for which Ax is as close as
possible to in terms of Euclidean normy || − ||Ax y 2.

2.10 The Trace Operator

The trace operator gives the sum of all of the diagonal entries of a matrix:

Tr( ) =A

Xi
Ai,i. (2.48)

The trace operator is useful for a variety of reasons. Some operations that are
difficult to specify without resorting to summation notation can be specified using
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matrix products and the trace operator. For example, the trace operator provides
an alternative way of writing the Frobenius norm of a matrix:

|| ||A F =
q

Tr(AA>). (2.49)

Writing an expression in terms of the trace operator opens up opportunities to
manipulate the expression using many useful identities. For example, the trace
operator is invariant to the transpose operator:

Tr( ) = Tr(A A> ). (2.50)

The trace of a square matrix composed of many factors is also invariant to
moving the last factor into the first position, if the shapes of the corresponding
matrices allow the resulting product to be defined:

Tr( ) = Tr( ) = Tr( )ABC CAB BCA (2.51)

or more generally,

Tr(
nY
i=1

F ( )i ) = Tr(F ( )n
n−1Y
i=1

F( )i ). (2.52)

This invariance to cyclic permutation holds even if the resulting product has a
different shape. For example, for A ∈ Rm n× and B ∈ Rn m× , we have

Tr( ) = Tr( )AB BA (2.53)

even though AB ∈ Rm m× and BA ∈ Rn n× .

Another useful fact to keep in mind is that a scalar is its own trace: a= Tr(a).

2.11 The Determinant

The determinant of a square matrix, denoted det(A), is a function mapping
matrices to real scalars. The determinant is equal to the product of all the
eigenvalues of the matrix. The absolute value of the determinant can be thought
of as a measure of how much multiplication by the matrix expands or contracts
space. If the determinant is 0, then space is contracted completely along at least
one dimension, causing it to lose all of its volume. If the determinant is 1, then
the transformation is volume-preserving.
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2.12 Example: Principal Components Analysis

One simple machine learning algorithm, principal components analysis PCAor can
be derived using only knowledge of basic linear algebra.

Suppose we have a collection of m points {x(1) , . . . ,x( )m } in R
n. Suppose we

would like to apply lossy compression to these points. Lossy compression means
storing the points in a way that requires less memory but may lose some precision.

We would like to lose as little precision as possible.

One way we can encode these points is to represent a lower-dimensional version
of them. For each point x( )i ∈ R

n we will find a corresponding code vector c( )i ∈ R
l.

If l is smaller than n, it will take less memory to store the code points than the
original data. We will want to find some encoding function that produces the code
for an input, f (x) = c, and a decoding function that produces the reconstructed
input given its code, .x x≈ g f( ( ))

PCA is defined by our choice of the decoding function. Specifically, to make the
decoder very simple, we choose to use matrix multiplication to map the code back
into Rn . Let , whereg( ) = c Dc D ∈ Rn l× is the matrix defining the decoding.

Computing the optimal code for this decoder could be a difficult problem. To

keep the encoding problem easy, PCA constrains the columns ofD to be orthogonal
to each other. (Note that D is still not technically “an orthogonal matrix” unless
l n= )

With the problem as described so far, many solutions are possible, because we
can increase the scale ofD:,i if we decrease ci proportionally for all points. To give
the problem a unique solution, we constrain all of the columns of to have unitD
norm.

In order to turn this basic idea into an algorithm we can implement, the first
thing we need to do is figure out how to generate the optimal code point c∗ for
each input point x. One way to do this is to minimize the distance between the
input point x and its reconstruction, g(c∗). We can measure this distance using a

norm. In the principal components algorithm, we use the L2 norm:

c∗ = arg min || − ||x g( )c 2 . (2.54)

We can switch to the squared L2 norm instead of the L2 norm itself, because
both are minimized by the same value of c . This is because the L2 norm is non-
negative and the squaring operation is monotonically increasing for non-negative
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arguments.
c∗ = arg min || − ||x g( )c 2

2 . (2.55)

The function being minimized simplifies to

( ( ))x− g c >( ( ))x− g c (2.56)

(by the definition of the L2 norm, Eq. )2.30

= x>x x− >g g( )c − ( )c >x c+ (g )>g( )c (2.57)

(by the distributive property)

= x>x x− 2 >g g( ) +c ( )c >g( )c (2.58)

(because the scalar g( )x >x is equal to the transpose of itself).

We can now change the function being minimized again, to omit the first term,

since this term does not depend on :c

c∗ = arg min −2x>g g( ) +c ( )c >g .( )c (2.59)

To make further progress, we must substitute in the definition of :g( )c

c∗ = arg min −2x>Dc c+ >D>Dc (2.60)

= arg min−2x>Dc c+ >Ilc (2.61)

(by the orthogonality and unit norm constraints on )D

= arg min −2x>Dc c+ >c (2.62)

We can solve this optimization problem using vector calculus (see Sec. if4.3
you do not know how to do this):

∇ ( 2− x>Dc c+ >c) = (2.63)

− 2D>x c+ 2 = (2.64)

c D= >x. (2.65)

This makes the algorithm efficient: we can optimally encode x just using a
matrix-vector operation. To encode a vector, we apply the encoder function

f( ) = x D>x. (2.66)
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Using a further matrix multiplication, we can also define the PCA reconstruction
operation:

r g f( ) = x ( ( )) = x DD>x. (2.67)

Next, we need to choose the encoding matrix D . To do so, we revisit the
idea of minimizing the L2 distance between inputs and reconstructions. However,

since we will use the same matrix D to decode all of the points, we can no longer
consider the points in isolation. Instead, we must minimize the Frobenius norm of
the matrix of errors computed over all dimensions and all points:

D∗ = arg min

sX
i,j


x
( )i
j − r(x( )i )j

2
subject to D>D I= l (2.68)

To derive the algorithm for finding D∗, we will start by considering the case
where l = 1. In this case, D is just a single vector, d. Substituting Eq. into2.67
Eq. and simplifying into , the problem reduces to2.68 D d

d∗ = arg min
X
i

||x( )i − dd>x( )i ||22 subject to || ||d 2 = 1. (2.69)

The above formulation is the most direct way of performing the substitution,
but is not the most stylistically pleasing way to write the equation. It places the
scalar value d>x ( )i on the right of the vector d. It is more conventional to write

scalar coefficients on the left of vector they operate on. We therefore usually write
such a formula as

d∗ = arg min
X
i

||x( )i − d>x( )i d||22 subject to || ||d 2 = 1, (2.70)

or, exploiting the fact that a scalar is its own transpose, as

d∗ = arg min
X
i

||x( )i − x ( )i >dd||22 subject to || ||d 2 = 1. (2.71)

The reader should aim to become familiar with such cosmetic rearrangements.

At this point, it can be helpful to rewrite the problem in terms of a single
design matrix of examples, rather than as a sum over separate example vectors.
This will allow us to use more compact notation. Let X ∈ Rm n× be the matrix
defined by stacking all of the vectors describing the points, such that Xi,: = x ( )i .
We can now rewrite the problem as

d∗ = arg min || −X Xdd>||2F subject to d>d = 1. (2.72)
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Disregarding the constraint for the moment, we can simplify the Frobenius norm
portion as follows:

arg min || −X Xdd> ||2F (2.73)

= arg min Tr


X Xdd− >

> 
X Xdd− >


(2.74)

(by Eq. )2.49

= arg min Tr(X>X X− >Xdd>− dd>X>X dd+ >X>Xdd>) (2.75)

= arg min Tr(X>X) Tr(− X>Xdd>) Tr(− dd>X>X) + Tr(dd>X>Xdd> )

(2.76)
= arg min −Tr(X>Xdd>) Tr(− dd>X >X) + Tr(dd>X>Xdd> ) (2.77)

(because terms not involving do not affect the )d arg min

= arg min −2 Tr(X>Xdd>) + Tr(dd>X>Xdd>) (2.78)

(because we can cycle the order of the matrices inside a trace, Eq. )2.52

= arg min −2 Tr(X>Xdd>) + Tr(X>Xdd>dd>) (2.79)

(using the same property again)

At this point, we re-introduce the constraint:

arg min−2 Tr(X>Xdd>) + Tr(X>Xdd>dd>) subject to d>d = 1 (2.80)

= arg min−2 Tr(X>Xdd>) + Tr(X>Xdd>) subject to d>d = 1 (2.81)

(due to the constraint)

= arg min −Tr(X>Xdd>) subject to d>d = 1 (2.82)

= arg maxTr(X>Xdd>) subject to d>d = 1 (2.83)

= arg maxTr(d>X>Xd d) subject to >d = 1 (2.84)
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This optimization problem may be solved using eigendecomposition. Specifically,
the optimal d is given by the eigenvector ofX>X corresponding to the largest
eigenvalue.

In the general case, where l > 1, the matrix D is given by the l eigenvectors
corresponding to the largest eigenvalues. This may be shown using proof by
induction. We recommend writing this proof as an exercise.

Linear algebra is one of the fundamental mathematical disciplines that is
necessary to understand deep learning. Another key area of mathematics that is

ubiquitous in machine learning is probability theory, presented next.
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Chapter 3

Probability and Information

Theory

In this chapter, we describe probability theory and information theory.

Probability theory is a mathematical framework for representing uncertain
statements. It provides a means of quantifying uncertainty and axioms for deriving

new uncertain statements. In artificial intelligence applications, we use probability
theory in two major ways. First, the laws of probability tell us how AI systems
should reason, so we design our algorithms to compute or approximate various
expressions derived using probability theory. Second, we can use probability and
statistics to theoretically analyze the behavior of proposed AI systems.

Probability theory is a fundamental tool of many disciplines of science and
engineering. We provide this chapter to ensure that readers whose background is
primarily in software engineering with limited exposure to probability theory can
understand the material in this book.

While probability theory allows us to make uncertain statements and reason
in the presence of uncertainty, information allows us to quantify the amount of

uncertainty in a probability distribution.

If you are already familiar with probability theory and information theory,
you may wish to skip all of this chapter except for Sec. , which describes the3.14
graphs we use to describe structured probabilistic models for machine learning. If
you have absolutely no prior experience with these subjects, this chapter should
be sufficient to successfully carry out deep learning research projects, but we do
suggest that you consult an additional resource, such as Jaynes 2003( ).

53



CHAPTER 3. PROBABILITY AND INFORMATION THEORY

3.1 Why Probability?

Many branches of computer science deal mostly with entities that are entirely
deterministic and certain. A programmer can usually safely assume that a CPU will
execute each machine instruction flawlessly. Errors in hardware do occur, but are
rare enough that most software applications do not need to be designed to account
for them. Given that many computer scientists and software engineers work in a

relatively clean and certain environment, it can be surprising that machine learning
makes heavy use of probability theory.

This is because machine learning must always deal with uncertain quantities,
and sometimes may also need to deal with stochastic (non-deterministic) quantities.
Uncertainty and stochasticity can arise from many sources. Researchers have made
compelling arguments for quantifying uncertainty using probability since at least
the 1980s. Many of the arguments presented here are summarized from or inspired
by Pearl 1988( ).

Nearly all activities require some ability to reason in the presence of uncertainty.
In fact, beyond mathematical statements that are true by definition, it is difficult
to think of any proposition that is absolutely true or any event that is absolutely

guaranteed to occur.

There are three possible sources of uncertainty:

1. Inherent stochasticity in the system being modeled. For example, most
interpretations of quantum mechanics describe the dynamics of subatomic
particles as being probabilistic. We can also create theoretical scenarios that
we postulate to have random dynamics, such as a hypothetical card game
where we assume that the cards are truly shuffled into a random order.

2. Incomplete observability. Even deterministic systems can appear stochastic
when we cannot observe all of the variables that drive the behavior of the

system. For example, in the Monty Hall problem, a game show contestant is
asked to choose between three doors and wins a prize held behind the chosen
door. Two doors lead to a goat while a third leads to a car. The outcome
given the contestant’s choice is deterministic, but from the contestant’s point
of view, the outcome is uncertain.

3. Incomplete modeling. When we use a model that must discard some of
the information we have observed, the discarded information results in
uncertainty in the model’s predictions. For example, suppose we build a
robot that can exactly observe the location of every object around it. If the
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robot discretizes space when predicting the future location of these objects,
then the discretization makes the robot immediately become uncertain about
the precise position of objects: each object could be anywhere within the
discrete cell that it was observed to occupy.

In many cases, it is more practical to use a simple but uncertain rule rather
than a complex but certain one, even if the true rule is deterministic and our

modeling system has the fidelity to accommodate a complex rule. For example, the
simple rule “Most birds fly” is cheap to develop and is broadly useful, while a rule
of the form, “Birds fly, except for very young birds that have not yet learned to
fly, sick or injured birds that have lost the ability to fly, flightless species of birds
including the cassowary, ostrich and kiwi. . . ” is expensive to develop, maintain and
communicate, and after all of this effort is still very brittle and prone to failure.

Given that we need a means of representing and reasoning about uncertainty,
it is not immediately obvious that probability theory can provide all of the tools
we want for artificial intelligence applications. Probability theory was originally
developed to analyze the frequencies of events. It is easy to see how probability
theory can be used to study events like drawing a certain hand of cards in a

game of poker. These kinds of events are often repeatable. When we say that
an outcome has a probability p of occurring, it means that if we repeated the
experiment (e.g., draw a hand of cards) infinitely many times, then proportion p
of the repetitions would result in that outcome. This kind of reasoning does not
seem immediately applicable to propositions that are not repeatable. If a doctor
analyzes a patient and says that the patient has a 40% chance of having the flu,
this means something very different—we can not make infinitely many replicas of
the patient, nor is there any reason to believe that different replicas of the patient
would present with the same symptoms yet have varying underlying conditions. In
the case of the doctor diagnosing the patient, we use probability to represent a
degree of belief, with 1 indicating absolute certainty that the patient has the flu

and 0 indicating absolute certainty that the patient does not have the flu. The
former kind of probability, related directly to the rates at which events occur, is
known as frequentist probability, while the latter, related to qualitative levels of
certainty, is known as Bayesian probability.

If we list several properties that we expect common sense reasoning about
uncertainty to have, then the only way to satisfy those properties is to treat
Bayesian probabilities as behaving exactly the same as frequentist probabilities.
For example, if we want to compute the probability that a player will win a poker
game given that she has a certain set of cards, we use exactly the same formulas
as when we compute the probability that a patient has a disease given that she
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has certain symptoms. For more details about why a small set of common sense
assumptions implies that the same axioms must control both kinds of probability,
see ( ).Ramsey 1926

Probability can be seen as the extension of logic to deal with uncertainty. Logic
provides a set of formal rules for determining what propositions are implied to
be true or false given the assumption that some other set of propositions is true
or false. Probability theory provides a set of formal rules for determining the
likelihood of a proposition being true given the likelihood of other propositions.

3.2 Random Variables

A random variable is a variable that can take on different values randomly. We
typically denote the random variable itself with a lower case letter in plain typeface,
and the values it can take on with lower case script letters. For example, x1 and x2
are both possible values that the random variable x can take on. For vector-valued
variables, we would write the random variable as x and one of its values as x. On
its own, a random variable is just a description of the states that are possible; it
must be coupled with a probability distribution that specifies how likely each of
these states are.

Random variables may be discrete or continuous. A discrete random variable
is one that has a finite or countably infinite number of states. Note that these
states are not necessarily the integers; they can also just be named states that
are not considered to have any numerical value. A continuous random variable is
associated with a real value.

3.3 Probability Distributions

A probability distribution is a description of how likely a random variable or
set of random variables is to take on each of its possible states. The way we

describe probability distributions depends on whether the variables are discrete or
continuous.

3.3.1 Discrete Variables and Probability Mass Functions

A probability distribution over discrete variables may be described using a proba-
bility mass function (PMF). We typically denote probability mass functions with a
capital P . Often we associate each random variable with a different probability
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mass function and the reader must infer which probability mass function to use
based on the identity of the random variable, rather than the name of the function;

P Px is usually not the same as y .

The probability mass function maps from a state of a random variable to
the probability of that random variable taking on that state. The probability
that x x is denoted as P x , with a probability of 1 indicating that x x is
certain and a probability of 0 indicating that x x is impossible. Sometimes
to disambiguate which PMF to use, we write the name of the random variable
explicitly: P x x . Sometimes we define a variable first, then use notation to

specify which distribution it follows later: x x .P
Probability mass functions can act on many variables at the same time. Such

a probability distribution over many variables is known as a joint probability
distribution. P x x,y y denotes the probability that x x and y y

simultaneously. We may also write for brevity.P x, y

To be a probability mass function on a random variable x, a function P must
satisfy the following properties:

The domain of must be the set of all possible states of x.P

x x, P x . An impossible event has probability and no state can
be less probable than that. Likewise, an event that is guaranteed to happen

has probability , and no state can have a greater chance of occurring.

P x . We refer to this property as being normalized. Without this
property, we could obtain probabilities greater than one by computing the
probability of one of many events occurring.

For example, consider a single discrete random variable x with k different states.
We can place a onuniform distribution x—that is, make each of its states equally
likely—by setting its probability mass function to

P xx
k

(3.1)

for all i. We can see that this fits the requirements for a probability mass function.
The value 1 is positive because is a positive integer. We also see thatk

P xx
k

k

k
, (3.2)

so the distribution is properly normalized.
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3.3.2 Continuous Variables and Probability Density Functions

When working with continuous random variables, we describe probability dis-
tributions using a probability density function (PDF) rather than a probability

mass function. To be a probability density function, a function p must satisfy the
following properties:

The domain of must be the set of all possible states of x.p

x x, p x . pNote that we do not require x .

p x dx .

A probability density function p x does not give the probability of a specific
state directly, instead the probability of landing inside an infinitesimal region with

volume is given by .δx p x δx

We can integrate the density function to find the actual probability mass of a
set of points. Specifically, the probability that x lies in some set is given by the
integral of p x over that set. In the univariate example, the probability that x

lies in the interval is given bya, b [ ] p x dx.

For an example of a probability density function corresponding to a specific
probability density over a continuous random variable, consider a uniform distribu-
tion on an interval of the real numbers. We can do this with a function u x a, b ,
where a and b are the endpoints of the interval, with b > a. The “;” notation means
“parametrized by”; we consider x to be the argument of the function, while a and

b are parameters that define the function. To ensure that there is no probability
mass outside the interval, we say u x a, b for all x a, b . Within a, b ,
u x a, b 1 . We can see that this is nonnegative everywhere. Additionally, it
integrates to 1. We often denote that x follows the uniform distribution on a, b

by writing x .U a, b

3.4 Marginal Probability

Sometimes we know the probability distribution over a set of variables and we want
to know the probability distribution over just a subset of them. The probability
distribution over the subset is known as the marginal probability distribution.

For example, suppose we have discrete random variables x and y, and we know

P ,x y . We can find x with the :P sum rule

x x x, P x P x, y .x y (3.3)
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The name “marginal probability” comes from the process of computing marginal
probabilities on paper. When the values of P x y, are written in a grid with
different values of x in rows and different values of y in columns, it is natural to
sum across a row of the grid, then write P x in the margin of the paper just to
the right of the row.

For continuous variables, we need to use integration instead of summation:

p x p x, y dy. (3.4)

3.5 Conditional Probability

In many cases, we are interested in the probability of some event, given that some
other event has happened. This is called a conditional probability. We denote
the conditional probability that y y given x x as P y y x x . This
conditional probability can be computed with the formula

P y xy x
P y, xy x

P xx
. (3.5)

The conditional probability is only defined when P x x > .We cannot compute
the conditional probability conditioned on an event that never happens.

It is important not to confuse conditional probability with computing what

would happen if some action were undertaken. The conditional probability that
a person is from Germany given that they speak German is quite high, but if
a randomly selected person is taught to speak German, their country of origin
does not change. Computing the consequences of an action is called making an
intervention query. Intervention queries are the domain of causal modeling, which
we do not explore in this book.

3.6 The Chain Rule of Conditional Probabilities

Any joint probability distribution over many random variables may be decomposed
into conditional distributions over only one variable:

P x(1), . . . ,x( ) P x (1) =2P x( ) x
(1), . . . ,x( 1) . (3.6)

This observation is known as the orchain rule product rule of probability. It
follows immediately from the definition of conditional probability in Eq. . For3.5
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example, applying the definition twice, we get

P , , P , P ,a b c a b c b c

P , P Pb c b c c

P , , P , P P .a b c a b c b c c

3.7 Independence and Conditional Independence

Two random variables x and y are independent if their probability distribution can
be expressed as a product of two factors, one involving only x and one involving
only y:

x x, y y x y x y (3.7), p x, y p x p y .

Two random variables x and y are conditionally independent given a random
variable z if the conditional probability distribution over x and y factorizes in this
way for every value of z:

x x, y y, z z x y, p x, y z xz p x z yz p y z z .
(3.8)

We can denote independence and conditional independence with compact
notation: x y means that x and y are independent, while x y z means that x
and y are conditionally independent given z.

3.8 Expectation, Variance and Covariance

The expectation expected valueor of some function f x with respect to a probability
distribution P x is the average or mean value that f takes on when x is drawn
from . For discrete variables this can be computed with a summation:P

f x P x f x , (3.9)

while for continuous variables, it is computed with an integral:

f x p x f x dx. (3.10)
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When the identity of the distribution is clear from the context, we may simply
write the name of the random variable that the expectation is over, as in f x .
If it is clear which random variable the expectation is over, we may omit the
subscript entirely, as in f x . By default, we can assume that averages over
the values of all the random variables inside the brackets. Likewise, when there is
no ambiguity, we may omit the square brackets.

Expectations are linear, for example,

αf x βg x α f x β g x , (3.11)

when and are not dependent on .α β x

The variance gives a measure of how much the values of a function of a random
variable x vary as we sample different values of x from its probability distribution:

f x f x f x
2 . (3.12)

When the variance is low, the values of f x cluster near their expected value. The
square root of the variance is known as the standard deviation.

The covariance gives some sense of how much two values are linearly related to
each other, as well as the scale of these variables:

f x , g y f x f x g y g y . (3.13)

High absolute values of the covariance mean that the values change very much
and are both far from their respective means at the same time. If the sign of the
covariance is positive, then both variables tend to take on relatively high values
simultaneously. If the sign of the covariance is negative, then one variable tends to
take on a relatively high value at the times that the other takes on a relatively low
value and vice versa. Other measures such as correlation normalize the contribution
of each variable in order to measure only how much the variables are related, rather

than also being affected by the scale of the separate variables.

The notions of covariance and dependence are related, but are in fact distinct
concepts. They are related because two variables that are independent have zero
covariance, and two variables that have non-zero covariance are dependent. How-
ever, independence is a distinct property from covariance. For two variables to have
zero covariance, there must be no linear dependence between them. Independence
is a stronger requirement than zero covariance, because independence also excludes
nonlinear relationships. It is possible for two variables to be dependent but have
zero covariance. For example, suppose we first sample a real number x from a

uniform distribution over the interval , . We next sample a random variable
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s. With probability 1
2, we choose the value of s to be . Otherwise, we choose

the value of s to be . We can then generate a random variable y by assigning
y sx. Clearly, x and y are not independent, because x completely determines

the magnitude of . However,y x, y .

The covariance matrix of a random vector x is an n n matrix, such that

x x ,x . (3.14)

The diagonal elements of the covariance give the variance:

x ,x x . (3.15)

3.9 Common Probability Distributions

Several simple probability distributions are useful in many contexts in machine
learning.

3.9.1 Bernoulli Distribution

The distribution is a distribution over a single binary random variable.Bernoulli

It is controlled by a single parameter φ , , which gives the probability of the
random variable being equal to 1. It has the following properties:

P φx (3.16)

P φx (3.17)

P x φx φ
1 (3.18)

x φ (3.19)

x φ φ (3.20)

3.9.2 Multinoulli Distribution

The ormultinoulli categorical distribution is a distribution over a single discrete
variable with k different states, where k is finite. The multinoulli distribution is

“Multinoulli” is a term that was recently coined by Gustavo Lacerdo and popularized by

Murphy 2012( ). The multinoulli distribution is a special case of the distribution. A
multinomial distribution is the distribution over vectors in representing how many
times each of the categories is visited when samples are drawn from a multinoulli distribution.
Many texts use the term “multinomial” to refer to multinoulli distributions without clarifying

that they refer only to the case.

62



CHAPTER 3. PROBABILITY AND INFORMATION THEORY

parametrized by a vector p , 1 , where p gives the probability of the i-th
state. The final, k-th state’s probability is given by 1 p. Note that we must
constrain 1 p . Multinoulli distributions are often used to refer to distributions
over categories of objects, so we do not usually assume that state 1 has numerical
value 1, etc. For this reason, we do not usually need to compute the expectation
or variance of multinoulli-distributed random variables.

The Bernoulli and multinoulli distributions are sufficient to describe any distri-
bution over their domain. This is because they model discrete variables for which
it is feasible to simply enumerate all of the states. When dealing with continuous

variables, there are uncountably many states, so any distribution described by a
small number of parameters must impose strict limits on the distribution.

3.9.3 Gaussian Distribution

The most commonly used distribution over real numbers is the ,normal distribution
also known as the :Gaussian distribution

x µ, σ
2

πσ2 σ2 x µ
2 . (3.21)

See Fig. for a plot of the density function.3.1

The two parameters µ and σ , control the normal distribution.
The parameter µ gives the coordinate of the central peak. This is also the mean of
the distribution: x µ. The standard deviation of the distribution is given by
σ, and the variance by σ2.

When we evaluate the PDF, we need to square and invert σ. When we need to
frequently evaluate the PDF with different parameter values, a more efficient way
of parametrizing the distribution is to use a parameter β , to control the
precision or inverse variance of the distribution:

x µ, β
1

β

π β x µ
2 . (3.22)

Normal distributions are a sensible choice for many applications. In the absence
of prior knowledge about what form a distribution over the real numbers should
take, the normal distribution is a good default choice for two major reasons.

First, many distributions we wish to model are truly close to being normal
distributions. The central limit theorem shows that the sum of many independent
random variables is approximately normally distributed. This means that in
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x µ, σ
x µ

σ
µ σ

practice, many complicated systems can be modeled successfully as normally
distributed noise, even if the system can be decomposed into parts with more
structured behavior.

Second, out of all possible probability distributions with the same variance,
the normal distribution encodes the maximum amount of uncertainty over the
real numbers. We can thus think of the normal distribution as being the one that
inserts the least amount of prior knowledge into a model. Fully developing and
justifying this idea requires more mathematical tools, and is postponed to Sec.
19.4.2.

The normal distribution generalizes to , in which case it is known as the

multivariate normal distribution. It may be parametrized with a positive definite
symmetric matrix :Σ

x µ,Σ π Σ x µ Σ 1
x µ . (3.23)

The parameter µ still gives the mean of the distribution, though now it is
vector-valued. The parameter Σ gives the covariance matrix of the distribution.
As in the univariate case, when we wish to evaluate the PDF several times for
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many different values of the parameters, the covariance is not a computationally
efficient way to parametrize the distribution, since we need to invert Σ to evaluate
the PDF. We can instead use a precision matrix β:

x µ β,
1

β

π x µ β x µ . (3.24)

We often fix the covariance matrix to be a diagonal matrix. An even simpler
version is the isotropic Gaussian distribution, whose covariance matrix is a scalar
times the identity matrix.

3.9.4 Exponential and Laplace Distributions

In the context of deep learning, we often want to have a probability distribution
with a sharp point at x . To accomplish this, we can use the exponential
distribution:

p x λ λ1
0 λx . (3.25)

The exponential distribution uses the indicator function 1
0

to assign probability
zero to all negative values of .x

A closely related probability distribution that allows us to place a sharp peak
of probability mass at an arbitrary point is theµ Laplace distribution

x µ, γ
γ

x µ
γ

. (3.26)

3.9.5 The Dirac Distribution and Empirical Distribution

In some cases, we wish to specify that all of the mass in a probability distribution
clusters around a single point. This can be accomplished by defining a PDF using

the Dirac delta function, :δ x

p x δ x µ . (3.27)

The Dirac delta function is defined such that it is zero-valued everywhere except
0, yet integrates to 1. The Dirac delta function is not an ordinary function that
associates each value x with a real-valued output, instead it is a different kind of
mathematical object called a generalized function that is defined in terms of its
properties when integrated. We can think of the Dirac delta function as being the
limit point of a series of functions that put less and less mass on all points other
than .µ
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By defining p x to be δ shifted by µ we obtain an infinitely narrow and

infinitely high peak of probability mass where .x µ

A common use of the Dirac delta distribution is as a component of an empirical
distribution,

p x
m

=1
δ x x

( ) (3.28)

which puts probability mass 1 on each of the m points x(1), . . . ,x( ) forming
a given data set or collection of samples. The Dirac delta distribution is only
necessary to define the empirical distribution over continuous variables. For discrete
variables, the situation is simpler: an empirical distribution can be conceptualized
as a multinoulli distribution, with a probability associated to each possible input
value that is simply equal to the empirical frequency of that value in the training

set.

We can view the empirical distribution formed from a dataset of training
examples as specifying the distribution that we sample from when we train a model
on this dataset. Another important perspective on the empirical distribution is
that it is the probability density that maximizes the likelihood of the training data
(see Sec. ).5.5

3.9.6 Mixtures of Distributions

It is also common to define probability distributions by combining other simpler
probability distributions. One common way of combining distributions is to
construct a mixture distribution. A mixture distribution is made up of several
component distributions. On each trial, the choice of which component distribution
generates the sample is determined by sampling a component identity from a
multinoulli distribution:

P x P i P ic x c (3.29)

where c is the multinoulli distribution over component identities.P

We have already seen one example of a mixture distribution: the empirical
distribution over real-valued variables is a mixture distribution with one Dirac
component for each training example.

The mixture model is one simple strategy for combining probability distributions
to create a richer distribution. In Chapter , we explore the art of building complex16
probability distributions from simple ones in more detail.
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The mixture model allows us to briefly glimpse a concept that will be of
paramount importance later—the . A latent variable is a randomlatent variable
variable that we cannot observe directly. The component identity variable c of the
mixture model provides an example. Latent variables may be related to x through
the joint distribution, in this case, P x c, P x c P c . The distribution P c
over the latent variable and the distribution P x c relating the latent variables
to the visible variables determines the shape of the distribution P x even though
it is possible to describe P x without reference to the latent variable. Latent
variables are discussed further in Sec. .16.5

A very powerful and common type of mixture model is the Gaussian mixture
model, in which the components p x c i are Gaussians. Each component has
a separately parametrized mean µ( ) and covariance Σ( ). Some mixtures can have
more constraints. For example, the covariances could be shared across components
via the constraint Σ( ) Σ i. As with a single Gaussian distribution, the mixture
of Gaussians might constrain the covariance matrix for each component to be
diagonal or isotropic.

In addition to the means and covariances, the parameters of a Gaussian mixture
specify the prior probability α P c i given to each component i. The word
“prior” indicates that it expresses the model’s beliefs about c it has observed
x. By comparison, P c x is a posterior probability, because it is computed
observation of x. A Gaussian mixture model is a universal approximator of
densities, in the sense that any smooth density can be approximated with any
specific, non-zero amount of error by a Gaussian mixture model with enough
components.

Fig. shows samples from a Gaussian mixture model.3.2

3.10 Useful Properties of Common Functions

Certain functions arise often while working with probability distributions, especially
the probability distributions used in deep learning models.

One of these functions is the logistic sigmoid:

σ x
x
. (3.30)

The logistic sigmoid is commonly used to produce the φ parameter of a Bernoulli

distribution because its range is , , which lies within the valid range of values
for the φ parameter. See Fig. for a graph of the sigmoid function. The sigmoid3.3
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x x

function saturates when its argument is very positive or very negative, meaning
that the function becomes very flat and insensitive to small changes in its input.

Another commonly encountered function is the function ( ,softplus Dugas et al.
2001):

ζ x x . (3.31)

The softplus function can be useful for producing the β or σ parameter of a normal

distribution because its range is , . It also arises commonly when manipulating
expressions involving sigmoids. The name of the softplus function comes from the
fact that it is a smoothed or “softened” version of

x+ , x . (3.32)

See Fig. for a graph of the softplus function.3.4

The following properties are all useful enough that you may wish to memorize
them:

σ x
x

x
(3.33)

d

dxσ x σ x σ x (3.34)
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σ x σ x (3.35)

σ x ζ x (3.36)
d

dx
ζ x σ x (3.37)

x , , σ
1 x

x

x
(3.38)

x > , ζ
1
x x (3.39)

ζ x σ y dy (3.40)

ζ x ζ x x (3.41)

The function σ 1 x is called the logit in statistics, but this term is more rarely
used in machine learning.

Eq. provides extra justification for the name “softplus.” The softplus3.41
function is intended as a smoothed version of the positive part function, x+

, x . The positive part function is the counterpart of the negative part
function, x , x . To obtain a smooth function that is analogous to the
negative part, one can use ζ x . Just as x can be recovered from its positive part
and negative part via the identity x+ x x, it is also possible to recover x

using the same relationship between and , as shown in Eq. .ζ x ζ x 3.41

3.11 Bayes’ Rule

We often find ourselves in a situation where we know P y x and need to know
P x y . Fortunately, if we also know P x , we can compute the desired quantity
using :Bayes’ rule

P x y
P Px y x

P y
. (3.42)

Note that while P y appears in the formula, it is usually feasible to compute
P y P x P x Py , so we do not need to begin with knowledge of y .

Bayes’ rule is straightforward to derive from the definition of conditional
probability, but it is useful to know the name of this formula since many texts
refer to it by name. It is named after the Reverend Thomas Bayes, who first
discovered a special case of the formula. The general version presented here was
independently discovered by Pierre-Simon Laplace.
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3.12 Technical Details of Continuous Variables

A proper formal understanding of continuous random variables and probability
density functions requires developing probability theory in terms of a branch of
mathematics known as measure theory. Measure theory is beyond the scope of
this textbook, but we can briefly sketch some of the issues that measure theory is
employed to resolve.

In Sec. , we saw that the probability of a continuous vector-valued3.3.2 x lying
in some set is given by the integral of p x over the set . Some choices of set
can produce paradoxes. For example, it is possible to construct two sets 1 and

2 such that p x 1 p x 2 > but 1 2 . These sets are generally
constructed making very heavy use of the infinite precision of real numbers, for
example by making fractal-shaped sets or sets that are defined by transforming
the set of rational numbers. One of the key contributions of measure theory is to
provide a characterization of the set of sets that we can compute the probability
of without encountering paradoxes. In this book, we only integrate over sets with
relatively simple descriptions, so this aspect of measure theory never becomes a
relevant concern.

For our purposes, measure theory is more useful for describing theorems that
apply to most points in but do not apply to some corner cases. Measure theory
provides a rigorous way of describing that a set of points is negligibly small. Such
a set is said to have “measure zero.” We do not formally define this concept in this
textbook. However, it is useful to understand the intuition that a set of measure
zero occupies no volume in the space we are measuring. For example, within 2, a
line has measure zero, while a filled polygon has positive measure. Likewise, an
individual point has measure zero. Any union of countably many sets that each
have measure zero also has measure zero (so the set of all the rational numbers
has measure zero, for instance).

Another useful term from measure theory is “almost everywhere.” A property

that holds almost everywhere holds throughout all of space except for on a set of
measure zero. Because the exceptions occupy a negligible amount of space, they
can be safely ignored for many applications. Some important results in probability
theory hold for all discrete values but only hold “almost everywhere” for continuous
values.

Another technical detail of continuous variables relates to handling continuous
random variables that are deterministic functions of one another. Suppose we have
two random variables, x and y, such that y g x , where g is an invertible, con-

The Banach-Tarski theorem provides a fun example of such sets.
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tinuous, differentiable transformation. One might expect that p y p g 1 y .
This is actually not the case.

As a simple example, suppose we have scalar random variables x and y. Suppose
y 2 and x U , . If we use the rule p y p y then p will be 0

everywhere except the interval , 12 , and it will be on this interval. This means

p y dy , (3.43)

which violates the definition of a probability distribution.

This common mistake is wrong because it fails to account for the distortion
of space introduced by the function g . Recall that the probability ofx lying in
an infinitesimally small region with volume δx is given by p x δx. Since g can
expand or contract space, the infinitesimal volume surrounding x in x space may
have different volume in space.y

To see how to correct the problem, we return to the scalar case. We need to

preserve the property

p g x dy p x dx . (3.44)

Solving from this, we obtain

p y p g 1 y
∂x

∂y
(3.45)

or equivalently

p x p g x
∂g x

∂x
. (3.46)

In higher dimensions, the derivative generalizes to the determinant of the Jacobian
matrix—the matrix with J . Thus, for real-valued vectors and ,x y

p x p g x
∂g x

∂x
. (3.47)

3.13 Information Theory

Information theory is a branch of applied mathematics that revolves around
quantifying how much information is present in a signal. It was originally invented
to study sending messages from discrete alphabets over a noisy channel, such as
communication via radio transmission. In this context, information theory tells how
to design optimal codes and calculate the expected length of messages sampled from
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specific probability distributions using various encoding schemes. In the context of
machine learning, we can also apply information theory to continuous variables
where some of these message length interpretations do not apply. This field is
fundamental to many areas of electrical engineering and computer science. In this
textbook, we mostly use a few key ideas from information theory to characterize
probability distributions or quantify similarity between probability distributions.
For more detail on information theory, see Cover and Thomas 2006 MacKay( ) or
( ).2003

The basic intuition behind information theory is that learning that an unlikely

event has occurred is more informative than learning that a likely event has
occurred. A message saying “the sun rose this morning” is so uninformative as
to be unnecessary to send, but a message saying “there was a solar eclipse this
morning” is very informative.

We would like to quantify information in a way that formalizes this intuition.
Specifically,

Likely events should have low information content, and in the extreme case,
events that are guaranteed to happen should have no information content
whatsoever.

Less likely events should have higher information content.

Independent events should have additive information. For example, finding
out that a tossed coin has come up as heads twice should convey twice as
much information as finding out that a tossed coin has come up as heads

once.

In order to satisfy all three of these properties, we define the self-information

of an event x to bex

I x P x . (3.48)

In this book, we always use to mean the natural logarithm, with base e. Our
definition of I x is therefore written in units of . One nat is the amount ofnats
information gained by observing an event of probability 1 . Other texts use base-2
logarithms and units called or ; information measured in bits is justbits shannons
a rescaling of information measured in nats.

When x is continuous, we use the same definition of information by analogy,
but some of the properties from the discrete case are lost. For example, an event
with unit density still has zero information, despite not being an event that is
guaranteed to occur.
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Self-information deals only with a single outcome. We can quantify the amount
of uncertainty in an entire probability distribution using the Shannon entropy:

H x I x P x . (3.49)

also denoted H P . In other words, the Shannon entropy of a distribution is the
expected amount of information in an event drawn from that distribution. It gives
a lower bound on the number of bits (if the logarithm is base 2, otherwise the units
are different) needed on average to encode symbols drawn from a distribution P.
Distributions that are nearly deterministic (where the outcome is nearly certain)
have low entropy; distributions that are closer to uniform have high entropy. See
Fig. for a demonstration. When3.5 x is continuous, the Shannon entropy is known
as the differential entropy.

If we have two separate probability distributions P x and Q x over the same
random variable x, we can measure how different these two distributions are using
the Kullback-Leibler (KL) divergence:

DKL P Q
P x

Q x P x Q x . (3.50)
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In the case of discrete variables, it is the extra amount of information (measured

in bits if we use the base logarithm, but in machine learning we usually use nats
and the natural logarithm) needed to send a message containing symbols drawn
from probability distribution P, when we use a code that was designed to minimize
the length of messages drawn from probability distribution .Q

The KL divergence has many useful properties, most notably that it is non-
negative. The KL divergence is 0 if and only if P and Q are the same distribution in
the case of discrete variables, or equal “almost everywhere” in the case of continuous
variables. Because the KL divergence is non-negative and measures the difference

between two distributions, it is often conceptualized as measuring some sort of
distance between these distributions. However, it is not a true distance measure
because it is not symmetric: DKL P Q DKL Q P for some P and Q. This
asymmetry means that there are important consequences to the choice of whether
to use DKL P Q or DKL Q P . See Fig. for more detail.3.6

A quantity that is closely related to the KL divergence is the cross-entropy
H P,Q H P DKL P Q , which is similar to the KL divergence but lacking
the term on the left:

H P,Q Q x . (3.51)

Minimizing the cross-entropy with respect to Q is equivalent to minimizing the
KL divergence, because does not participate in the omitted term.Q

When computing many of these quantities, it is common to encounter expres-

sions of the form . By convention, in the context of information theory, we
treat these expressions as

0
x x .

3.14 Structured Probabilistic Models

Machine learning algorithms often involve probability distributions over a very
large number of random variables. Often, these probability distributions involve
direct interactions between relatively few variables. Using a single function to
describe the entire joint probability distribution can be very inefficient (both
computationally and statistically).

Instead of using a single function to represent a probability distribution, we
can split a probability distribution into many factors that we multiply together.
For example, suppose we have three random variables: a, b and c. Suppose that
a influences the value of b and b influences the value of c, but that a and c are

independent given b. We can represent the probability distribution over all three
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variables as a product of probability distributions over two variables:

p , , p p p .a b c a b a c b (3.52)

These factorizations can greatly reduce the number of parameters needed
to describe the distribution. Each factor uses a number of parameters that is
exponential in the number of variables in the factor. This means that we can greatly
reduce the cost of representing a distribution if we are able to find a factorization
into distributions over fewer variables.

We can describe these kinds of factorizations using graphs. Here we use the
word “graph” in the sense of graph theory: a set of vertices that may be connected

to each other with edges. When we represent the factorization of a probability
distribution with a graph, we call it a structured probabilistic model graphicalor
model.

There are two main kinds of structured probabilistic models: directed and
undirected. Both kinds of graphical models use a graph in which each node
in the graph corresponds to a random variable, and an edge connecting two
random variables means that the probability distribution is able to represent direct
interactions between those two random variables.

Directed models use graphs with directed edges, and they represent factoriza-
tions into conditional probability distributions, as in the example above. Specifically,
a directed model contains one factor for every random variable x in the distribution,

and that factor consists of the conditional distribution over x given the parents of
x , denoted Pa x :

p x p x Pa x . (3.53)

See Fig. for an example of a directed graph and the factorization of probability3.7

distributions it represents.

Undirected models use graphs with undirected edges, and they represent fac-
torizations into a set of functions; unlike in the directed case, these functions are
usually not probability distributions of any kind. Any set of nodes that are all
connected to each other in is called a clique. Each clique ( ) in an undirected
model is associated with a factor φ( ) ( ) . These factors are just functions, not
probability distributions. The output of each factor must be non-negative, but
there is no constraint that the factor must sum or integrate to 1 like a probability
distribution.

The probability of a configuration of random variables is proportional to the
product of all of these factors—assignments that result in larger factor values are
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p , , , , p p p , p p .

more likely. Of course, there is no guarantee that this product will sum to 1. We
therefore divide by a normalizing constant Z, defined to be the sum or integral
over all states of the product of the φ functions, in order to obtain a normalized
probability distribution:

p x
Z

φ( ) ( ) . (3.55)

See Fig. for an example of an undirected graph and the factorization of3.8 
probability distributions it represents.

Keep in mind that these graphical representations of factorizations are a
language for describing probability distributions. They are not mutually exclusive

families of probability distributions. Being directed or undirected is not a property
of a probability distribution; it is a property of a particular of adescription
probability distribution, but any probability distribution may be described in both
ways.

Throughout Part and Part of this book, we will use structured probabilisticI II
models merely as a language to describe which direct probabilistic relationships
different machine learning algorithms choose to represent. No further understanding
of structured probabilistic models is needed until the discussion of research topics,
in Part , where we will explore structured probabilistic models in much greaterIII
detail.
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p , , , ,
Z
φ , , φ , φ , .

This chapter has reviewed the basic concepts of probability theory that are
most relevant to deep learning. One more set of fundamental mathematical tools
remains: numerical methods.
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Chapter 4

Numerical Computation

Machine learning algorithms usually require a high amount of numerical compu-
tation. This typically refers to algorithms that solve mathematical problems by
methods that update estimates of the solution via an iterative process, rather than
analytically deriving a formula providing a symbolic expression for the correct so-

lution. Common operations include optimization (finding the value of an argument
that minimizes or maximizes a function) and solving systems of linear equations.
Even just evaluating a mathematical function on a digital computer can be difficult
when the function involves real numbers, which cannot be represented precisely
using a finite amount of memory.

4.1 Overflow and Underflow

The fundamental difficulty in performing continuous math on a digital computer
is that we need to represent infinitely many real numbers with a finite number
of bit patterns. This means that for almost all real numbers, we incur some

approximation error when we represent the number in the computer. In many
cases, this is just rounding error. Rounding error is problematic, especially when
it compounds across many operations, and can cause algorithms that work in
theory to fail in practice if they are not designed to minimize the accumulation of
rounding error.

One form of rounding error that is particularly devastating is . Under-underflow
flow occurs when numbers near zero are rounded to zero. Many functions behave
qualitatively differently when their argument is zero rather than a small positive
number. For example, we usually want to avoid division by zero (some software
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environments will raise exceptions when this occurs, others will return a result
with a placeholder not-a-number value) or taking the logarithm of zero (this is
usually treated as −∞, which then becomes not-a-number if it is used for many
further arithmetic operations).

Another highly damaging form of numerical error is . Overflow occursoverflow
when numbers with large magnitude are approximated as ∞ or −∞. Further
arithmetic will usually change these infinite values into not-a-number values.

One example of a function that must be stabilized against underflow and

overflow is the softmax function. The softmax function is often used to predict the
probabilities associated with a multinoulli distribution. The softmax function is
defined to be

softmax( )x i =
exp(xi)Pn
j=1 exp(xj)

. (4.1)

Consider what happens when all of the xi are equal to some constant c. Analytically,
we can see that all of the outputs should be equal to 1

n . Numerically, this may
not occur when c has large magnitude. If c is very negative, then exp(c) will
underflow. This means the denominator of the softmax will become 0, so the final
result is undefined. When c is very large and positive, exp(c) will overflow, again
resulting in the expression as a whole being undefined. Both of these difficulties
can be resolved by instead evaluating softmax(z) where z= x− maxi xi. Simple
algebra shows that the value of the softmax function is not changed analytically by
adding or subtracting a scalar from the input vector. Subtracting maxi xi results
in the largest argument to exp being 0, which rules out the possibility of overflow.
Likewise, at least one term in the denominator has a value of 1, which rules out

the possibility of underflow in the denominator leading to a division by zero.

There is still one small problem. Underflow in the numerator can still cause
the expression as a whole to evaluate to zero. This means that if we implement
log softmax(x) by first running the softmax subroutine then passing the result to
the log function, we could erroneously obtain −∞. Instead, we must implement
a separate function that calculates log softmax in a numerically stable way. The
log softmax function can be stabilized using the same trick as we used to stabilize
the function.softmax

For the most part, we do not explicitly detail all of the numerical considerations
involved in implementing the various algorithms described in this book. Developers
of low-level libraries should keep numerical issues in mind when implementing

deep learning algorithms. Most readers of this book can simply rely on low-
level libraries that provide stable implementations. In some cases, it is possible
to implement a new algorithm and have the new implementation automatically
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stabilized. Theano ( , ; , ) is an exampleBergstra et al. 2010 Bastien et al. 2012
of a software package that automatically detects and stabilizes many common
numerically unstable expressions that arise in the context of deep learning.

4.2 Poor Conditioning

Conditioning refers to how rapidly a function changes with respect to small changes
in its inputs. Functions that change rapidly when their inputs are perturbed slightly

can be problematic for scientific computation because rounding errors in the inputs
can result in large changes in the output.

Consider the function f(x) = A−1x. When A ∈ R n n× has an eigenvalue
decomposition, its condition number is

max
i,j

 λiλj
 . (4.2)

This is the ratio of the magnitude of the largest and smallest eigenvalue. When
this number is large, matrix inversion is particularly sensitive to error in the input.

This sensitivity is an intrinsic property of the matrix itself, not the result
of rounding error during matrix inversion. Poorly conditioned matrices amplify
pre-existing errors when we multiply by the true matrix inverse. In practice, the
error will be compounded further by numerical errors in the inversion process itself.

4.3 Gradient-Based Optimization

Most deep learning algorithms involve optimization of some sort. Optimization

refers to the task of either minimizing or maximizing some function f(x) by altering
x. We usually phrase most optimization problems in terms of minimizing f (x).
Maximization may be accomplished via a minimization algorithm by minimizing
−f( )x .

The function we want to minimize or maximize is called the objective function
or . When we are minimizing it, we may also call it thecriterion cost function,
loss function error function, or . In this book, we use these terms interchangeably,
though some machine learning publications assign special meaning to some of these
terms.

We often denote the value that minimizes or maximizes a function with a
superscript . For example, we might say∗ x∗ = arg min ( )f x .
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Global minimum at .x=0
Since f0( )=0x , gradient
descent halts here.

For , we have x<0 f0( ) 0x < ,
so we can decrease f by
moving rightward.

For , we have x>0 f 0( ) 0x > ,
so we can decrease f by
moving leftward.

Gradient descent

f x( )=1
2
x2

f
0
( )=x x

Figure 4.1: An illustration of how the derivatives of a function can be used to follow the
function downhill to a minimum. This technique is called gradient descent.

We assume the reader is already familiar with calculus, but provide a brief
review of how calculus concepts relate to optimization here.

Suppose we have a function y = f (x), where both x and y are real numbers.
The of this function is denoted asderivative f 0(x) or as dy

dx . The derivative f 0(x)
gives the slope of f(x) at the point x. In other words, it specifies how to scale
a small change in the input in order to obtain the corresponding change in the
output: f x  f x f( + ) ≈ ( ) + 0( )x .

The derivative is therefore useful for minimizing a function because it tells us
how to change x in order to make a small improvement in y. For example, we
know that f(x − sign(f 0(x))) is less than f (x) for small enough . We can thus
reduce f (x) by moving x in small steps with opposite sign of the derivative. This
technique is called gradient descent (Cauchy 1847, ). See Fig. for an example of4.1
this technique.

When f 0(x) = 0, the derivative provides no information about which direction
to move. Points where f 0(x) = 0 are known as critical points stationary pointsor .
A local minimum is a point where f (x) is lower than at all neighboring points,
so it is no longer possible to decrease f (x) by making infinitesimal steps. A local
maximum is a point where f(x) is higher than at all neighboring points, so it is
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Figure 4.2: Examples of each of the three types of critical points in 1-D. A critical point is
a point with zero slope. Such a point can either be a local minimum, which is lower than
the neighboring points, a local maximum, which is higher than the neighboring points, or
a saddle point, which has neighbors that are both higher and lower than the point itself.

not possible to increase f(x) by making infinitesimal steps. Some critical points
are neither maxima nor minima. These are known as saddle points. See Fig. 4.2
for examples of each type of critical point.

A point that obtains the absolute lowest value of f (x) is a global minimum. It
is possible for there to be only one global minimum or multiple global minima of
the function. It is also possible for there to be local minima that are not globally
optimal. In the context of deep learning, we optimize functions that may have
many local minima that are not optimal, and many saddle points surrounded by
very flat regions. All of this makes optimization very difficult, especially when the
input to the function is multidimensional. We therefore usually settle for finding a
value of f that is very low, but not necessarily minimal in any formal sense. See
Fig. for an example.4.3

We often minimize functions that have multiple inputs: f :Rn → R. For the
concept of “minimization” to make sense, there must still be only one (scalar)

output.

For functions with multiple inputs, we must make use of the concept of partial
derivatives. The partial derivative ∂

∂x f(x) measures how f changes as only the
variable xi increases at point x. The gradient generalizes the notion of derivative
to the case where the derivative is with respect to a vector: the gradient of f is the
vector containing all of the partial derivatives, denoted ∇ f (x). Element i of the
gradient is the partial derivative of f with respect to xi . In multiple dimensions,
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Figure 4.3: Optimization algorithms may fail to find a global minimum when there are
multiple local minima or plateaus present. In the context of deep learning, we generally
accept such solutions even though they are not truly minimal, so long as they correspond
to significantly low values of the cost function.

critical points are points where every element of the gradient is equal to zero.

The directional derivative in direction u (a unit vector) is the slope of the
function f in direction u. In other words, the directional derivative is the derivative

of the function f (x+ αu) with respect to α , evaluated at α= 0. Using the chain
rule, we can see that ∂

∂α f α( +x u u) = > ∇ f( )x .

To minimize f , we would like to find the direction in which f decreases the
fastest. We can do this using the directional derivative:

min
, =1

u>∇ f( )x (4.3)

= min
, =1

|| ||u 2||∇ f( )x ||2 cos θ (4.4)

where θ is the angle between u and the gradient. Substituting in || ||u 2 = 1 and
ignoring factors that do not depend on u, this simplifies to min cos θ. This is

minimized when u points in the opposite direction as the gradient. In other
words, the gradient points directly uphill, and the negative gradient points directly
downhill. We can decrease f by moving in the direction of the negative gradient.
This is known as the method of steepest descent gradient descentor .

Steepest descent proposes a new point

x0 = x− ∇ f( )x (4.5)

85



CHAPTER 4. NUMERICAL COMPUTATION

where  is the learning rate, a positive scalar determining the size of the step. We
can choose  in several different ways. A popular approach is to set  to a small
constant. Sometimes, we can solve for the step size that makes the directional
derivative vanish. Another approach is to evaluate f (x− ∇ f( ))x for several
values of  and choose the one that results in the smallest objective function value.
This last strategy is called a line search.

Steepest descent converges when every element of the gradient is zero (or, in
practice, very close to zero). In some cases, we may be able to avoid running this
iterative algorithm, and just jump directly to the critical point by solving the

equation ∇ f( ) = 0x for .x

Although gradient descent is limited to optimization in continuous spaces, the
general concept of making small moves (that are approximately the best small move)
towards better configurations can be generalized to discrete spaces. Ascending an
objective function of discrete parameters is called ( ,hill climbing Russel and Norvig
2003).

Sometimes we need to find all of the partial derivatives of a function whose input
and output are both vectors. The matrix containing all such partial derivatives is
known as a Jacobian matrix. Specifically, if we have a function f : Rm → R

n, then
the Jacobian matrix J ∈ Rn m× of is defined such thatf Ji,j = ∂

∂x f( )x i.

We are also sometimes interested in a derivative of a derivative. This is known
as a second derivative. For example, for a function f : Rn → R, the derivative
with respect to xi of the derivative of f with respect to xj is denoted as ∂

∂x ∂x f .

In a single dimension, we can denote d
dx f by f 00(x). The second derivative tells

us how the first derivative will change as we vary the input. This is important
because it tells us whether a gradient step will cause as much of an improvement

as we would expect based on the gradient alone. We can think of the second
derivative as measuring curvature. Suppose we have a quadratic function (many
functions that arise in practice are not quadratic but can be approximated well
as quadratic, at least locally). If such a function has a second derivative of zero,
then there is no curvature. It is a perfectly flat line, and its value can be predicted
using only the gradient. If the gradient is , then we can make a step of size1 
along the negative gradient, and the cost function will decrease by . If the second
derivative is negative, the function curves downward, so the cost function will
actually decrease by more than . Finally, if the second derivative is positive, the
function curves upward, so the cost function can decrease by less than . See Fig.
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Figure 4.4: The second derivative determines the curvature of a function. Here we show
quadratic functions with various curvature. The dashed line indicates the value of the cost
function we would expect based on the gradient information alone as we make a gradient
step downhill. In the case of negative curvature, the cost function actually decreases
faster than the gradient predicts. In the case of no curvature, the gradient predicts the
decrease correctly. In the case of positive curvature, the function decreases slower than
expected and eventually begins to increase, so too large of step sizes can actually increase
the function inadvertently.

4.4 to see how different forms of curvature affect the relationship between the value
of the cost function predicted by the gradient and the true value.

When our function has multiple input dimensions, there are many second
derivatives. These derivatives can be collected together into a matrix called the
Hessian matrix. The Hessian matrix is defined such thatH x( )(f )

H x( )(f )i,j =
∂2

∂xi∂xj
f .( )x (4.6)

Equivalently, the Hessian is the Jacobian of the gradient.

Anywhere that the second partial derivatives are continuous, the differential
operators are commutative, i.e. their order can be swapped:

∂2

∂xi∂xj
f( ) =x

∂2

∂xj∂xi
f .( )x (4.7)

This implies thatHi,j = H j,i, so the Hessian matrix is symmetric at such points.
Most of the functions we encounter in the context of deep learning have a symmetric
Hessian almost everywhere. Because the Hessian matrix is real and symmetric,
we can decompose it into a set of real eigenvalues and an orthogonal basis of
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eigenvectors. The second derivative in a specific direction represented by a unit
vector d is given by d>Hd. When d is an eigenvector of H , the second derivative
in that direction is given by the corresponding eigenvalue. For other directions of
d, the directional second derivative is a weighted average of all of the eigenvalues,
with weights between 0 and 1, and eigenvectors that have smaller angle with d
receiving more weight. The maximum eigenvalue determines the maximum second
derivative and the minimum eigenvalue determines the minimum second derivative.

The (directional) second derivative tells us how well we can expect a gradient
descent step to perform. We can make a second-order Taylor series approximation

to the function around the current pointf( )x x(0):

f f( ) x ≈ (x(0)) + (x x− (0))>g +
1

2
(x x− (0))>H x x( − (0)). (4.8)

where g is the gradient andH is the Hessian at x(0). If we use a learning rate

of , then the new point x will be given by x(0) − g. Substituting this into our
approximation, we obtain

f(x(0)− ≈g) f(x(0) ) − g>g +
1

2
2g>Hg. (4.9)

There are three terms here: the original value of the function, the expected
improvement due to the slope of the function, and the correction we must apply
to account for the curvature of the function. When this last term is too large, the
gradient descent step can actually move uphill. When g>Hg is zero or negative,

the Taylor series approximation predicts that increasing  forever will decrease f
forever. In practice, the Taylor series is unlikely to remain accurate for large , so
one must resort to more heuristic choices of  in this case. When g>Hg is positive,
solving for the optimal step size that decreases the Taylor series approximation of
the function the most yields

∗ =
g>g

g>Hg
. (4.10)

In the worst case, when g aligns with the eigenvector of H corresponding to the
maximal eigenvalue λmax , then this optimal step size is given by 1

λ . To the
extent that the function we minimize can be approximated well by a quadratic
function, the eigenvalues of the Hessian thus determine the scale of the learning
rate.

The second derivative can be used to determine whether a critical point is a
local maximum, a local minimum, or saddle point. Recall that on a critical point,
f 0(x) = 0. When f 00(x) > 0, this means that f 0(x) increases as we move to the
right, and f 0(x) decreases as we move to the left. This means f 0(x − ) < 0 and
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f 0(x+ )> 0 for small enough  . In other words, as we move right, the slope begins
to point uphill to the right, and as we move left, the slope begins to point uphill
to the left. Thus, when f 0(x) = 0 and f 00(x ) > 0, we can conclude that x is a local
minimum. Similarly, when f 0(x) = 0 and f 00 (x) < 0, we can conclude that x is a
local maximum. This is known as the second derivative test. Unfortunately, when
f 00(x) = 0, the test is inconclusive. In this case x may be a saddle point, or a part
of a flat region.

In multiple dimensions, we need to examine all of the second derivatives of the
function. Using the eigendecomposition of the Hessian matrix, we can generalize

the second derivative test to multiple dimensions. At a critical point, where
∇ f(x) = 0, we can examine the eigenvalues of the Hessian to determine whether
the critical point is a local maximum, local minimum, or saddle point. When the
Hessian is positive definite (all its eigenvalues are positive), the point is a local
minimum. This can be seen by observing that the directional second derivative
in any direction must be positive, and making reference to the univariate second
derivative test. Likewise, when the Hessian is negative definite (all its eigenvalues
are negative), the point is a local maximum. In multiple dimensions, it is actually
possible to find positive evidence of saddle points in some cases. When at least
one eigenvalue is positive and at least one eigenvalue is negative, we know that
x is a local maximum on one cross section of f but a local minimum on another

cross section. See Fig. for an example. Finally, the multidimensional second4.5
derivative test can be inconclusive, just like the univariate version. The test is
inconclusive whenever all of the non-zero eigenvalues have the same sign, but at
least one eigenvalue is zero. This is because the univariate second derivative test is
inconclusive in the cross section corresponding to the zero eigenvalue.

In multiple dimensions, there can be a wide variety of different second derivatives
at a single point, because there is a different second derivative for each direction.
The condition number of the Hessian measures how much the second derivatives
vary. When the Hessian has a poor condition number, gradient descent performs
poorly. This is because in one direction, the derivative increases rapidly, while in
another direction, it increases slowly. Gradient descent is unaware of this change

in the derivative so it does not know that it needs to explore preferentially in
the direction where the derivative remains negative for longer. It also makes it
difficult to choose a good step size. The step size must be small enough to avoid
overshooting the minimum and going uphill in directions with strong positive
curvature. This usually means that the step size is too small to make significant
progress in other directions with less curvature. See Fig. for an example.4.6

This issue can be resolved by using information from the Hessian matrix to
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Figure 4.5: A saddle point containing both positive and negative curvature. The function
in this example is f(x) = x − x . Along the axis corresponding to x , the function
curves upward. This axis is an eigenvector of the Hessian and has a positive eigenvalue.
Along the axis corresponding to x , the function curves downward. This direction is an
eigenvector of the Hessian with negative eigenvalue. The name “saddle point” derives from
the saddle-like shape of this function. This is the quintessential example of a function
with a saddle point. In more than one dimension, it is not necessary to have an eigenvalue
of 0 in order to get a saddle point: it is only necessary to have both positive and negative
eigenvalues. We can think of a saddle point with both signs of eigenvalues as being a local
maximum within one cross section and a local minimum within another cross section.
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Figure 4.6: Gradient descent fails to exploit the curvature information contained in the
Hessian matrix. Here we use gradient descent to minimize a quadratic function f (x) whose
Hessian matrix has condition number 5. This means that the direction of most curvature
has five times more curvature than the direction of least curvature. In this case, the most
curvature is in the direction [1 ,1] and the least curvature is in the direction [1,−1] . The
red lines indicate the path followed by gradient descent. This very elongated quadratic
function resembles a long canyon. Gradient descent wastes time repeatedly descending
canyon walls, because they are the steepest feature. Because the step size is somewhat
too large, it has a tendency to overshoot the bottom of the function and thus needs to
descend the opposite canyon wall on the next iteration. The large positive eigenvalue
of the Hessian corresponding to the eigenvector pointed in this direction indicates that
this directional derivative is rapidly increasing, so an optimization algorithm based on
the Hessian could predict that the steepest direction is not actually a promising search
direction in this context.
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guide the search. The simplest method for doing so is known as Newton’s method.
Newton’s method is based on using a second-order Taylor series expansion to
approximate near some pointf( )x x(0) :

f f( ) x ≈ (x(0) )+(x x− (0))>∇ f(x(0))+
1

2
(x x− (0))>H x( )(f (0) )(x x− (0)). (4.11)

If we then solve for the critical point of this function, we obtain:

x∗ = x(0) −H x( )(f (0) )−1∇ f(x(0)). (4.12)

When f is a positive definite quadratic function, Newton’s method consists of
applying Eq. once to jump to the minimum of the function directly. When4.12 f is
not truly quadratic but can be locally approximated as a positive definite quadratic,
Newton’s method consists of applying Eq. multiple times. Iteratively updating4.12
the approximation and jumping to the minimum of the approximation can reach
the critical point much faster than gradient descent would. This is a useful property
near a local minimum, but it can be a harmful property near a saddle point. As

discussed in Sec. , Newton’s method is only appropriate when the nearby8.2.3
critical point is a minimum (all the eigenvalues of the Hessian are positive), whereas
gradient descent is not attracted to saddle points unless the gradient points toward
them.

Optimization algorithms such as gradient descent that use only the gradient are
called first-order optimization algorithms. Optimization algorithms such as New-
ton’s method that also use the Hessian matrix are called second-order optimization
algorithms (Nocedal and Wright 2006, ).

The optimization algorithms employed in most contexts in this book are
applicable to a wide variety of functions, but come with almost no guarantees. This
is because the family of functions used in deep learning is quite complicated. In

many other fields, the dominant approach to optimization is to design optimization
algorithms for a limited family of functions.

In the context of deep learning, we sometimes gain some guarantees by restrict-
ing ourselves to functions that are either Lipschitz continuous or have Lipschitz
continuous derivatives. A Lipschitz continuous function is a function f whose rate
of change is bounded by a Lipschitz constant L:

∀ ∀ | − | ≤ L|| − ||x, y, f( )x f( )y x y 2 . (4.13)

This property is useful because it allows us to quantify our assumption that a
small change in the input made by an algorithm such as gradient descent will have
a small change in the output. Lipschitz continuity is also a fairly weak constraint,
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and many optimization problems in deep learning can be made Lipschitz continuous
with relatively minor modifications.

Perhaps the most successful field of specialized optimization is convex optimiza-
tion. Convex optimization algorithms are able to provide many more guarantees
by making stronger restrictions. Convex optimization algorithms are applicable
only to convex functions—functions for which the Hessian is positive semidefinite
everywhere. Such functions are well-behaved because they lack saddle points and
all of their local minima are necessarily global minima. However, most problems
in deep learning are difficult to express in terms of convex optimization. Convex

optimization is used only as a subroutine of some deep learning algorithms. Ideas
from the analysis of convex optimization algorithms can be useful for proving the
convergence of deep learning algorithms. However, in general, the importance of
convex optimization is greatly diminished in the context of deep learning. For
more information about convex optimization, see Boyd and Vandenberghe 2004( )
or Rockafellar 1997( ).

4.4 Constrained Optimization

Sometimes we wish not only to maximize or minimize a function f(x) over all

possible values of x. Instead we may wish to find the maximal or minimal value of
f (x) for values of x in some set S. This is known as constrained optimization. Points
x that lie within the set S are called feasible points in constrained optimization
terminology.

We often wish to find a solution that is small in some sense. A common
approach in such situations is to impose a norm constraint, such as .|| || ≤x 1

One simple approach to constrained optimization is simply to modify gradient
descent taking the constraint into account. If we use a small constant step size ,
we can make gradient descent steps, then project the result back into S. If we use
a line search, we can search only over step sizes  that yield new x points that are
feasible, or we can project each point on the line back into the constraint region.

When possible, this method can be made more efficient by projecting the gradient
into the tangent space of the feasible region before taking the step or beginning
the line search ( , ).Rosen 1960

A more sophisticated approach is to design a different, unconstrained opti-
mization problem whose solution can be converted into a solution to the original,
constrained optimization problem. For example, if we want to minimize f(x) for
x ∈ R2 with x constrained to have exactly unit L2 norm, we can instead minimize
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g(θ) = f ([cos sinθ, θ]>) with respect to θ, then return [ cos sinθ, θ] as the solution
to the original problem. This approach requires creativity; the transformation
between optimization problems must be designed specifically for each case we
encounter.

The Karush–Kuhn–Tucker (KKT) approach provides a very general solution
to constrained optimization. With the KKT approach, we introduce a new function
called the generalized Lagrangian generalized Lagrange functionor .

To define the Lagrangian, we first need to describe S in terms of equations

and inequalities. We want a description of S in terms of m functions g ( )i and n
functions h( )j so that S= { | ∀x i, g( )i (x) = 0 and ∀j, h( )j (x) ≤ 0}. The equations
involving g( )i are called the equality constraints and the inequalities involving h ( )j

are called inequality constraints.

We introduce new variables λi and αj for each constraint, these are called the
KKT multipliers. The generalized Lagrangian is then defined as

L , , f(x λ α) = ( ) +x
X
i

λ ig
( )i ( ) +x

X
j

αjh
( )j ( )x . (4.14)

We can now solve a constrained minimization problem using unconstrained
optimization of the generalized Lagrangian. Observe that, so long as at least one
feasible point exists and is not permitted to have value , thenf( )x ∞

min max max
, ≥0

L , , .(x λ α) (4.15)

has the same optimal objective function value and set of optimal points asx

min
∈S
f .( )x (4.16)

This follows because any time the constraints are satisfied,

max max
, ≥0

L , , f ,(x λ α) = ( )x (4.17)

while any time a constraint is violated,

max max
, ≥0

L , , .(x λ α) = ∞ (4.18)

These properties guarantee that no infeasible point will ever be optimal, and that
the optimum within the feasible points is unchanged.

The KKT approach generalizes the method of which allows equality
constraints but not inequality constraints.
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To perform constrained maximization, we can construct the generalized La-
grange function of , which leads to this optimization problem:−f( )x

minmax max
, ≥0

−f( ) +x
X
i

λig
( )i ( ) +x

X
j

αjh
( )j ( )x . (4.19)

We may also convert this to a problem with maximization in the outer loop:

maxmin min
, ≥0

f( ) +x
X
i

λ ig
( )i ( )x −

X
j

αjh
( )j ( )x . (4.20)

The sign of the term for the equality constraints does not matter; we may define it
with addition or subtraction as we wish, because the optimization is free to choose
any sign for each λi.

The inequality constraints are particularly interesting. We say that a constraint
h( )i (x) is ifactive h( )i (x∗) = 0. If a constraint is not active, then the solution to
the problem found using that constraint would remain at least a local solution if
that constraint were removed. It is possible that an inactive constraint excludes
other solutions. For example, a convex problem with an entire region of globally

optimal points (a wide, flat, region of equal cost) could have a subset of this
region eliminated by constraints, or a non-convex problem could have better local
stationary points excluded by a constraint that is inactive at convergence. However,
the point found at convergence remains a stationary point whether or not the
inactive constraints are included. Because an inactive h( )i has negative value, then
the solution to min max max , ≥0 L(x λ α, , ) will have αi = 0. We can thus
observe that at the solution, αh(x) = . In other words, for all i, we know that at
least one of the constraints αi ≥ 0 and h( )i (x) ≤ 0 must be active at the solution.
To gain some intuition for this idea, we can say that either the solution is on
the boundary imposed by the inequality and we must use its KKT multiplier to
influence the solution to x, or the inequality has no influence on the solution and

we represent this by zeroing out its KKT multiplier.

The properties that the gradient of the generalized Lagrangian is zero, all
constraints on both x and the KKT multipliers are satisfied, and α h (x) =
are called the Karush-Kuhn-Tucker (KKT) conditions ( , ;Karush 1939 Kuhn and
Tucker 1951, ). Together, these properties describe the optimal points of constrained
optimization problems.

For more information about the KKT approach, see Nocedal and Wright 2006( ).
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4.5 Example: Linear Least Squares

Suppose we want to find the value of that minimizesx

f( ) =x
1

2
|| − ||Ax b 2

2. (4.21)

There are specialized linear algebra algorithms that can solve this problem efficiently.
However, we can also explore how to solve it using gradient-based optimization as
a simple example of how these techniques work.

First, we need to obtain the gradient:

∇ f( ) = x A> ( ) = Ax b− A>Ax A− >b. (4.22)

We can then follow this gradient downhill, taking small steps. See Algorithm 4.1
for details.

An algorithm to minimize f(x) = 1
2 || − ||Ax b 2

2 with respect to x
using gradient descent.

Set the step size ( ) and tolerance ( ) to small, positive numbers. δ

||A >Ax A− > b||2> δ
x x← − 


A>Ax A− >b



One can also solve this problem using Newton’s method. In this case, because
the true function is quadratic, the quadratic approximation employed by Newton’s
method is exact, and the algorithm converges to the global minimum in a single

step.

Now suppose we wish to minimize the same function, but subject to the
constraint x>x ≤ 1. To do so, we introduce the Lagrangian

L , λ f λ(x ) = ( ) +x

x>x− 1


. (4.23)

We can now solve the problem

min max
λ,λ≥0

L , λ .(x ) (4.24)

The smallest-norm solution to the unconstrained least squares problem may be
found using the Moore-Penrose pseudoinverse: x =A+b. If this point is feasible,
then it is the solution to the constrained problem. Otherwise, we must find a
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solution where the constraint is active. By differentiating the Lagrangian with
respect to , we obtain the equationx

A>Ax A− >b x+ 2λ = 0. (4.25)

This tells us that the solution will take the form

x A= ( >A I+ 2λ )−1A>b. (4.26)

The magnitude of λ must be chosen such that the result obeys the constraint. We
can find this value by performing gradient ascent on . To do so, observeλ

∂

∂λ
L , λ(x ) = x>x− 1. (4.27)

When the norm of x exceeds 1, this derivative is positive, so to follow the derivative
uphill and increase the Lagrangian with respect to λ, we increase λ . Because the
coefficient on the x>x penalty has increased, solving the linear equation for x will
now yield a solution with smaller norm. The process of solving the linear equation
and adjusting λ continues until x has the correct norm and the derivative on λ is
0.

This concludes the mathematical preliminaries that we use to develop machine
learning algorithms. We are now ready to build and analyze some full-fledged
learning systems.
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Chapter 5

Machine Learning Basics

Deep learning is a specific kind of machine learning. In order to understand
deep learning well, one must have a solid understanding of the basic principles
of machine learning. This chapter provides a brief course in the most important
general principles that will be applied throughout the rest of the book. Novice

readers or those who want a wider perspective are encouraged to consider machine
learning textbooks with a more comprehensive coverage of the fundamentals, such
as Murphy 2012 Bishop 2006( ) or ( ). If you are already familiar with machine
learning basics, feel free to skip ahead to Sec. . That section covers some per-5.11
spectives on traditional machine learning techniques that have strongly influenced
the development of deep learning algorithms.

We begin with a definition of what a learning algorithm is, and present an
example: the linear regression algorithm. We then proceed to describe how the
challenge of fitting the training data differs from the challenge of finding patterns
that generalize to new data. Most machine learning algorithms have settings
called hyperparameters that must be determined external to the learning algorithm
itself; we discuss how to set these using additional data. Machine learning is

essentially a form of applied statistics with increased emphasis on the use of
computers to statistically estimate complicated functions and a decreased emphasis
on proving confidence intervals around these functions; we therefore present the
two central approaches to statistics: frequentist estimators and Bayesian inference.
Most machine learning algorithms can be divided into the categories of supervised
learning and unsupervised learning; we describe these categories and give some
examples of simple learning algorithms from each category. Most deep learning
algorithms are based on an optimization algorithm called stochastic gradient
descent. We describe how to combine various algorithm components such as an
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optimization algorithm, a cost function, a model, and a dataset to build a machine
learning algorithm. Finally, in Sec. , we describe some of the factors that have5.11
limited the ability of traditional machine learning to generalize. These challenges
have motivated the development of deep learning algorithms that overcome these
obstacles.

5.1 Learning Algorithms

A machine learning algorithm is an algorithm that is able to learn from data. But
what do we mean by learning? ( ) provides the definition “A computerMitchell 1997
program is said to learn from experience E with respect to some class of tasks T
and performance measure P , if its performance at tasks in T , as measured by P ,
improves with experience E.” One can imagine a very wide variety of experiences
E, tasks T , and performance measures P , and we do not make any attempt in this
book to provide a formal definition of what may be used for each of these entities.
Instead, the following sections provide intuitive descriptions and examples of the
different kinds of tasks, performance measures and experiences that can be used
to construct machine learning algorithms.

5.1.1 The Task, T

Machine learning allows us to tackle tasks that are too difficult to solve with
fixed programs written and designed by human beings. From a scientific and
philosophical point of view, machine learning is interesting because developing our
understanding of machine learning entails developing our understanding of the
principles that underlie intelligence.

In this relatively formal definition of the word “task,” the process of learning
itself is not the task. Learning is our means of attaining the ability to perform the

task. For example, if we want a robot to be able to walk, then walking is the task.
We could program the robot to learn to walk, or we could attempt to directly write
a program that specifies how to walk manually.

Machine learning tasks are usually described in terms of how the machine
learning system should process an . An example is a collection ofexample features
that have been quantitatively measured from some object or event that we want
the machine learning system to process. We typically represent an example as a
vector x ∈ Rn where each entry xi of the vector is another feature. For example,
the features of an image are usually the values of the pixels in the image.
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Many kinds of tasks can be solved with machine learning. Some of the most
common machine learning tasks include the following:

• Classification: In this type of task, the computer program is asked to specify
which of k categories some input belongs to. To solve this task, the learning

algorithm is usually asked to produce a function f : Rn → {1, . . . , k}. When
y = f (x), the model assigns an input described by vector x to a category
identified by numeric code y. There are other variants of the classification
task, for example, where f outputs a probability distribution over classes.
An example of a classification task is object recognition, where the input
is an image (usually described as a set of pixel brightness values), and the
output is a numeric code identifying the object in the image. For example,
the Willow Garage PR2 robot is able to act as a waiter that can recognize
different kinds of drinks and deliver them to people on command (Good-
fellow 2010et al., ). Modern object recognition is best accomplished with
deep learning ( , ; , ). ObjectKrizhevsky et al. 2012 Ioffe and Szegedy 2015
recognition is the same basic technology that allows computers to recognize

faces (Taigman 2014et al., ), which can be used to automatically tag people
in photo collections and allow computers to interact more naturally with
their users.

• Classification with missing inputs: Classification becomes more challenging if
the computer program is not guaranteed that every measurement in its input
vector will always be provided. In order to solve the classification task, the
learning algorithm only has to define a function mapping from a vectorsingle
input to a categorical output. When some of the inputs may be missing,
rather than providing a single classification function, the learning algorithm
must learn a of functions. Each function corresponds to classifyingset x with
a different subset of its inputs missing. This kind of situation arises frequently

in medical diagnosis, because many kinds of medical tests are expensive or
invasive. One way to efficiently define such a large set of functions is to learn
a probability distribution over all of the relevant variables, then solve the
classification task by marginalizing out the missing variables. With n input
variables, we can now obtain all 2n different classification functions needed
for each possible set of missing inputs, but we only need to learn a single
function describing the joint probability distribution. See Goodfellow et al.
( ) for an example of a deep probabilistic model applied to such a task2013b
in this way. Many of the other tasks described in this section can also be
generalized to work with missing inputs; classification with missing inputs is
just one example of what machine learning can do.
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• Regression: In this type of task, the computer program is asked to predict a
numerical value given some input. To solve this task, the learning algorithm
is asked to output a function f : Rn → R. This type of task is similar to
classification, except that the format of output is different. An example of
a regression task is the prediction of the expected claim amount that an
insured person will make (used to set insurance premiums), or the prediction
of future prices of securities. These kinds of predictions are also used for
algorithmic trading.

• Transcription: In this type of task, the machine learning system is asked to
observe a relatively unstructured representation of some kind of data and

transcribe it into discrete, textual form. For example, in optical character
recognition, the computer program is shown a photograph containing an
image of text and is asked to return this text in the form of a sequence
of characters (e.g., in ASCII or Unicode format). Google Street View uses
deep learning to process address numbers in this way (Goodfellow et al.,
2014d). Another example is speech recognition, where the computer program
is provided an audio waveform and emits a sequence of characters or word
ID codes describing the words that were spoken in the audio recording. Deep
learning is a crucial component of modern speech recognition systems used
at major companies including Microsoft, IBM and Google (Hinton et al.,
2012b).

• Machine translation: In a machine translation task, the input already consists

of a sequence of symbols in some language, and the computer program must
convert this into a sequence of symbols in another language. This is commonly
applied to natural languages, such as to translate from English to French.
Deep learning has recently begun to have an important impact on this kind
of task (Sutskever 2014 Bahdanau 2015et al., ; et al., ).

• Structured output: Structured output tasks involve any task where the output
is a vector (or other data structure containing multiple values) with important
relationships between the different elements. This is a broad category, and
subsumes the transcription and translation tasks described above, but also
many other tasks. One example is parsing—mapping a natural language
sentence into a tree that describes its grammatical structure and tagging nodes
of the trees as being verbs, nouns, or adverbs, and so on. See ( )Collobert 2011

for an example of deep learning applied to a parsing task. Another example
is pixel-wise segmentation of images, where the computer program assigns
every pixel in an image to a specific category. For example, deep learning can
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be used to annotate the locations of roads in aerial photographs (Mnih and
Hinton 2010, ). The output need not have its form mirror the structure of
the input as closely as in these annotation-style tasks. For example, in image
captioning, the computer program observes an image and outputs a natural
language sentence describing the image ( , , ; ,Kiros et al. 2014a b Mao et al.
2015 Vinyals 2015b Donahue 2014 Karpathy and Li 2015; et al., ; et al., ; , ;
Fang 2015 Xu 2015et al., ; et al., ). These tasks are called structured output
tasks because the program must output several values that are all tightly
inter-related. For example, the words produced by an image captioning

program must form a valid sentence.

• Anomaly detection: In this type of task, the computer program sifts through
a set of events or objects, and flags some of them as being unusual or atypical.
An example of an anomaly detection task is credit card fraud detection. By
modeling your purchasing habits, a credit card company can detect misuse
of your cards. If a thief steals your credit card or credit card information,
the thief’s purchases will often come from a different probability distribution
over purchase types than your own. The credit card company can prevent
fraud by placing a hold on an account as soon as that card has been used
for an uncharacteristic purchase. See ( ) for a survey ofChandola et al. 2009

anomaly detection methods.

• Synthesis and sampling: In this type of task, the machine learning algorithm
is asked to generate new examples that are similar to those in the training
data. Synthesis and sampling via machine learning can be useful for media
applications where it can be expensive or boring for an artist to generate large
volumes of content by hand. For example, video games can automatically
generate textures for large objects or landscapes, rather than requiring an
artist to manually label each pixel ( , ). In some cases, weLuo et al. 2013
want the sampling or synthesis procedure to generate some specific kind of
output given the input. For example, in a speech synthesis task, we provide a

written sentence and ask the program to emit an audio waveform containing
a spoken version of that sentence. This is a kind of structured output task,
but with the added qualification that there is no single correct output for
each input, and we explicitly desire a large amount of variation in the output,
in order for the output to seem more natural and realistic.

• Imputation of missing values: In this type of task, the machine learning
algorithm is given a new example x ∈ Rn, but with some entries xi of x
missing. The algorithm must provide a prediction of the values of the missing
entries.
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• Denoising: In this type of task, the machine learning algorithm is given in
input a corrupted example x̃ ∈ R

n obtained by an unknown corruption process
from a clean example x ∈ R

n. The learner must predict the clean example
x from its corrupted version x̃, or more generally predict the conditional
probability distribution p(x | x̃).

• Density estimation probability mass function estimationor : In the density
estimation problem, the machine learning algorithm is asked to learn a
function p : Rn → R, where p (x) can be interpreted as a probability
density function (if is continuous) or a probability mass function (if is
discrete) on the space that the examples were drawn from. To do such a task

well (we will specify exactly what that means when we discuss performance
measures P ), the algorithm needs to learn the structure of the data it
has seen. It must know where examples cluster tightly and where they
are unlikely to occur. Most of the tasks described above require that the
learning algorithm has at least implicitly captured the structure of the
probability distribution. Density estimation allows us to explicitly capture
that distribution. In principle, we can then perform computations on that
distribution in order to solve the other tasks as well. For example, if we
have performed density estimation to obtain a probability distribution p(x),
we can use that distribution to solve the missing value imputation task. If
a value x i is missing and all of the other values, denoted x

i
, are given,

then we know the distribution over it is given by p(xi | x i
). In practice,

density estimation does not always allow us to solve all of these related tasks,
because in many cases the required operations on p(x) are computationally
intractable.

Of course, many other tasks and types of tasks are possible. The types of tasks
we list here are intended only to provide examples of what machine learning can
do, not to define a rigid taxonomy of tasks.

5.1.2 The Performance Measure, P

In order to evaluate the abilities of a machine learning algorithm, we must design
a quantitative measure of its performance. Usually this performance measure P is
specific to the task being carried out by the system.T

For tasks such as classification, classification with missing inputs, and transcrip-
tion, we often measure the accuracy of the model. Accuracy is just the proportion
of examples for which the model produces the correct output. We can also obtain
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equivalent information by measuring the error rate, the proportion of examples for
which the model produces an incorrect output. We often refer to the error rate as
the expected 0-1 loss. The 0-1 loss on a particular example is 0 if it is correctly
classified and 1 if it is not. For tasks such as density estimation, it does not make
sense to measure accuracy, error rate, or any other kind of 0-1 loss. Instead, we
must use a different performance metric that gives the model a continuous-valued
score for each example. The most common approach is to report the average
log-probability the model assigns to some examples.

Usually we are interested in how well the machine learning algorithm performs

on data that it has not seen before, since this determines how well it will work when
deployed in the real world. We therefore evaluate these performance measures
using a of data that is separate from the data used for training the machinetest set
learning system.

The choice of performance measure may seem straightforward and objective,
but it is often difficult to choose a performance measure that corresponds well to
the desired behavior of the system.

In some cases, this is because it is difficult to decide what should be measured.
For example, when performing a transcription task, should we measure the accuracy
of the system at transcribing entire sequences, or should we use a more fine-grained
performance measure that gives partial credit for getting some elements of the

sequence correct? When performing a regression task, should we penalize the
system more if it frequently makes medium-sized mistakes or if it rarely makes
very large mistakes? These kinds of design choices depend on the application.

In other cases, we know what quantity we would ideally like to measure, but
measuring it is impractical. For example, this arises frequently in the context of
density estimation. Many of the best probabilistic models represent probability
distributions only implicitly. Computing the actual probability value assigned to
a specific point in space in many such models is intractable. In these cases, one
must design an alternative criterion that still corresponds to the design objectives,
or design a good approximation to the desired criterion.

5.1.3 The Experience, E

Machine learning algorithms can be broadly categorized as unsupervised su-or
pervised by what kind of experience they are allowed to have during the learning
process.

Most of the learning algorithms in this book can be understood as being allowed
to experience an entire . A dataset is a collection of many examples, asdataset
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defined in Sec. . Sometimes we will also call examples5.1.1 data points.

One of the oldest datasets studied by statisticians and machine learning re-
searchers is the Iris dataset ( , ). It is a collection of measurements ofFisher 1936
different parts of 150 iris plants. Each individual plant corresponds to one example.
The features within each example are the measurements of each of the parts of the
plant: the sepal length, sepal width, petal length and petal width. The dataset
also records which species each plant belonged to. Three different species are
represented in the dataset.

Unsupervised learning algorithms experience a dataset containing many features,
then learn useful properties of the structure of this dataset. In the context of deep
learning, we usually want to learn the entire probability distribution that generated
a dataset, whether explicitly as in density estimation or implicitly for tasks like
synthesis or denoising. Some other unsupervised learning algorithms perform other
roles, like clustering, which consists of dividing the dataset into clusters of similar
examples.

Supervised learning algorithms experience a dataset containing features, but
each example is also associated with a label targetor . For example, the Iris dataset
is annotated with the species of each iris plant. A supervised learning algorithm
can study the Iris dataset and learn to classify iris plants into three different species
based on their measurements.

Roughly speaking, unsupervised learning involves observing several examples
of a random vector , and attempting to implicitly or explicitly learn the proba-
bility distribution p( ), or some interesting properties of that distribution, while
supervised learning involves observing several examples of a random vector and
an associated value or vector , and learning to predict from , usually by
estimating p( | ). The term supervised learning originates from the view of
the target being provided by an instructor or teacher who shows the machine
learning system what to do. In unsupervised learning, there is no instructor or
teacher, and the algorithm must learn to make sense of the data without this guide.

Unsupervised learning and supervised learning are not formally defined terms.
The lines between them are often blurred. Many machine learning technologies can

be used to perform both tasks. For example, the chain rule of probability states

that for a vector ∈ R
n, the joint distribution can be decomposed as

p( ) =

n

i

p(xi | x , . . . , xi ). (5.1)

This decomposition means that we can solve the ostensibly unsupervised problem of
modeling p( ) by splitting it into n supervised learning problems. Alternatively, we
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can solve the supervised learning problem of learning p(y | ) by using traditional
unsupervised learning technologies to learn the joint distribution p( , y) and
inferring

p y( | ) =
p , y( )

y p , y( )
. (5.2)

Though unsupervised learning and supervised learning are not completely formal or

distinct concepts, they do help to roughly categorize some of the things we do with
machine learning algorithms. Traditionally, people refer to regression, classification
and structured output problems as supervised learning. Density estimation in
support of other tasks is usually considered unsupervised learning.

Other variants of the learning paradigm are possible. For example, in semi-
supervised learning, some examples include a supervision target but others do
not. In multi-instance learning, an entire collection of examples is labeled as
containing or not containing an example of a class, but the individual members
of the collection are not labeled. For a recent example of multi-instance learning
with deep models, see ( ).Kotzias et al. 2015

Some machine learning algorithms do not just experience a fixed dataset. For

example, reinforcement learning algorithms interact with an environment, so there
is a feedback loop between the learning system and its experiences. Such algorithms
are beyond the scope of this book. Please see ( ) orSutton and Barto 1998 Bertsekas
and Tsitsiklis 1996 Mnih( ) for information about reinforcement learning, and et al.
( ) for the deep learning approach to reinforcement learning.2013

Most machine learning algorithms simply experience a dataset. A dataset can
be described in many ways. In all cases, a dataset is a collection of examples,
which are in turn collections of features.

One common way of describing a dataset is with a . A designdesign matrix
matrix is a matrix containing a different example in each row. Each column of the
matrix corresponds to a different feature. For instance, the Iris dataset contains

150 examples with four features for each example. This means we can represent
the dataset with a design matrix X ∈ R , where Xi, is the sepal length of
plant i,Xi, is the sepal width of plant i, etc. We will describe most of the learning
algorithms in this book in terms of how they operate on design matrix datasets.

Of course, to describe a dataset as a design matrix, it must be possible to
describe each example as a vector, and each of these vectors must be the same size.
This is not always possible. For example, if you have a collection of photographs
with different widths and heights, then different photographs will contain different
numbers of pixels, so not all of the photographs may be described with the same
length of vector. Sec. and Chapter describe how to handle different types9.7 10
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of such heterogeneous data. In cases like these, rather than describing the dataset
as a matrix with m rows, we will describe it as a set containing m elements:
{x ,x , . . . ,x m }. This notation does not imply that any two example vectors
x i and x j have the same size.

In the case of supervised learning, the example contains a label or target as
well as a collection of features. For example, if we want to use a learning algorithm
to perform object recognition from photographs, we need to specify which object
appears in each of the photos. We might do this with a numeric code, with 0
signifying a person, 1 signifying a car, 2 signifying a cat, etc. Often when working

with a dataset containing a design matrix of feature observations X, we also
provide a vector of labels , withy yi providing the label for example .i

Of course, sometimes the label may be more than just a single number. For
example, if we want to train a speech recognition system to transcribe entire
sentences, then the label for each example sentence is a sequence of words.

Just as there is no formal definition of supervised and unsupervised learning,
there is no rigid taxonomy of datasets or experiences. The structures described here
cover most cases, but it is always possible to design new ones for new applications.

5.1.4 Example: Linear Regression

Our definition of a machine learning algorithm as an algorithm that is capable
of improving a computer program’s performance at some task via experience is
somewhat abstract. To make this more concrete, we present an example of a simple
machine learning algorithm: linear regression. We will return to this example
repeatedly as we introduce more machine learning concepts that help to understand

its behavior.

As the name implies, linear regression solves a regression problem. In other
words, the goal is to build a system that can take a vector x ∈ R

n as input and
predict the value of a scalar y ∈ R as its output. In the case of linear regression,
the output is a linear function of the input. Let ŷ be the value that our model
predicts should take on. We define the output to bey

ŷ = w x (5.3)

where w ∈ R
n is a vector of parameters.

Parameters are values that control the behavior of the system. In this case, wi is
the coefficient that we multiply by feature xi before summing up the contributions
from all the features. We can think of w as a set of that determine howweights
each feature affects the prediction. If a feature xi receives a positive weight wi ,
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then increasing the value of that feature increases the value of our prediction ŷ.
If a feature receives a negative weight, then increasing the value of that feature
decreases the value of our prediction. If a feature’s weight is large in magnitude,
then it has a large effect on the prediction. If a feature’s weight is zero, it has no
effect on the prediction.

We thus have a definition of our task T : to predict y from x by outputting
ŷ = w x. Next we need a definition of our performance measure, .P

Suppose that we have a design matrix of m example inputs that we will not

use for training, only for evaluating how well the model performs. We also have
a vector of regression targets providing the correct value of y for each of these
examples. Because this dataset will only be used for evaluation, we call it the test
set. We refer to the design matrix of inputs as X and the vector of regression
targets as y .

One way of measuring the performance of the model is to compute the mean
squared error of the model on the test set. If ŷ gives the predictions of the
model on the test set, then the mean squared error is given by

MSE =
1

m
i

(ŷ − y )i . (5.4)

Intuitively, one can see that this error measure decreases to 0 when ŷ = y .
We can also see that

MSE =
1

m
||ŷ − y || , (5.5)

so the error increases whenever the Euclidean distance between the predictions
and the targets increases.

To make a machine learning algorithm, we need to design an algorithm that
will improve the weights w in a way that reduces MSE when the algorithm
is allowed to gain experience by observing a training set (X ,y ). One
intuitive way of doing this (which we will justify later, in Sec. ) is just to5.5.1
minimize the mean squared error on the training set, MSE .

To minimize MSE , we can simply solve for where its gradient is :

∇ MSE = 0 (5.6)

⇒ ∇ 1

m
||ŷ − y || = 0 (5.7)

⇒ 1

m
∇ ||X w y− || = 0 (5.8)
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w
w

w y = w x
w

⇒ ∇ X w y− X w y− = 0 (5.9)

⇒ ∇ w X X w w− 2 X y + y y = 0

(5.10)
⇒ 2X X w X− 2 y = 0 (5.11)

⇒ w = X X X y (5.12)

The system of equations whose solution is given by Eq. is known as the5.12
normal equations. Evaluating Eq. constitutes a simple learning algorithm.5.12
For an example of the linear regression learning algorithm in action, see Fig. .5.1

It is worth noting that the term linear regression is often used to refer to a
slightly more sophisticated model with one additional parameter—an intercept
term . In this modelb

ŷ = w x+ b (5.13)

so the mapping from parameters to predictions is still a linear function but the
mapping from features to predictions is now an affine function. This extension to
affine functions means that the plot of the model’s predictions still looks like a
line, but it need not pass through the origin. Instead of adding the bias parameter
b, one can continue to use the model with only weights but augment x with an
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extra entry that is always set to . The weight corresponding to the extra entry1 1
plays the role of the bias parameter. We will frequently use the term “linear” when
referring to affine functions throughout this book.

The intercept term b is often called the parameter of the affine transfor-bias
mation. This terminology derives from the point of view that the output of the
transformation is biased toward being b in the absence of any input. This term
is different from the idea of a statistical bias, in which a statistical estimation
algorithm’s expected estimate of a quantity is not equal to the true quantity.

Linear regression is of course an extremely simple and limited learning algorithm,
but it provides an example of how a learning algorithm can work. In the subsequent
sections we will describe some of the basic principles underlying learning algorithm
design and demonstrate how these principles can be used to build more complicated
learning algorithms.

5.2 Capacity, Overfitting and Underfitting

The central challenge in machine learning is that we must perform well on
inputs—not just those on which our model was trained. The

ability to perform well on previously unobserved inputs is called generalization.

Typically, when training a machine learning model, we have access to a training
set, we can compute some error measure on the training set called the training
error, and we reduce this training error. So far, what we have described is simply
an optimization problem. What separates machine learning from optimization is
that we want the generalization error test error, also called the , to be low as well.
The generalization error is defined as the expected value of the error on a new
input. Here the expectation is taken across different possible inputs, drawn from
the distribution of inputs we expect the system to encounter in practice.

We typically estimate the generalization error of a machine learning model by
measuring its performance on a of examples that were collected separatelytest set
from the training set.

In our linear regression example, we trained the model by minimizing the
training error,

1

m
||X w y− || , (5.14)

but we actually care about the test error,
m

||X w y− || .
How can we affect performance on the test set when we get to observe only the

training set? The field of statistical learning theory provides some answers. If the

110



CHAPTER 5. MACHINE LEARNING BASICS

training and the test set are collected arbitrarily, there is indeed little we can do.
If we are allowed to make some assumptions about how the training and test set
are collected, then we can make some progress.

The train and test data are generated by a probability distribution over datasets
called the data generating process. We typically make a set of assumptions known
collectively as the These assumptions are that the examplesi.i.d. assumptions
in each dataset are independent from each other, and that the train set and test
set are identically distributed, drawn from the same probability distribution as
each other. This assumption allows us to describe the data generating process

with a probability distribution over a single example. The same distribution is
then used to generate every train example and every test example. We call that
shared underlying distribution the data generating distribution, denoted p . This
probabilistic framework and the i.i.d. assumptions allow us to mathematically
study the relationship between training error and test error.

One immediate connection we can observe between the training and test error
is that the expected training error of a randomly selected model is equal to the
expected test error of that model. Suppose we have a probability distribution
p(x, y) and we sample from it repeatedly to generate the train set and the test set.
For some fixed value w , then the expected training set error is exactly the same as
the expected test set error, because both expectations are formed using the same

dataset sampling process. The only difference between the two conditions is the
name we assign to the dataset we sample.

Of course, when we use a machine learning algorithm, we do not fix the
parameters ahead of time, then sample both datasets. We sample the training set,
then use it to choose the parameters to reduce training set error, then sample the
test set. Under this process, the expected test error is greater than or equal to
the expected value of training error. The factors determining how well a machine
learning algorithm will perform are its ability to:

1. Make the training error small.

2. Make the gap between training and test error small.

These two factors correspond to the two central challenges in machine learning:
underfitting overfittingand . Underfitting occurs when the model is not able to
obtain a sufficiently low error value on the training set. Overfitting occurs when

the gap between the training error and test error is too large.

We can control whether a model is more likely to overfit or underfit by altering
its capacity. Informally, a model’s capacity is its ability to fit a wide variety of
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functions. Models with low capacity may struggle to fit the training set. Models
with high capacity can overfit by memorizing properties of the training set that do
not serve them well on the test set.

One way to control the capacity of a learning algorithm is by choosing its
hypothesis space, the set of functions that the learning algorithm is allowed to
select as being the solution. For example, the linear regression algorithm has the
set of all linear functions of its input as its hypothesis space. We can generalize
linear regression to include polynomials, rather than just linear functions, in its
hypothesis space. Doing so increases the model’s capacity.

A polynomial of degree one gives us the linear regression model with which we
are already familiar, with prediction

ŷ b wx.= + (5.15)

By introducing x as another feature provided to the linear regression model, we
can learn a model that is quadratic as a function of :x

ŷ b w= + x w+ x . (5.16)

Though this model implements a quadratic function of its , the output is

still a linear function of the , so we can still use the normal equations
to train the model in closed form. We can continue to add more powers of x as
additional features, for example to obtain a polynomial of degree 9:

ŷ b= +

i

wix
i . (5.17)

Machine learning algorithms will generally perform best when their capacity
is appropriate in regard to the true complexity of the task they need to perform

and the amount of training data they are provided with. Models with insufficient
capacity are unable to solve complex tasks. Models with high capacity can solve
complex tasks, but when their capacity is higher than needed to solve the present
task they may overfit.

Fig. shows this principle in action. We compare a linear, quadratic and5.2
degree-9 predictor attempting to fit a problem where the true underlying function
is quadratic. The linear function is unable to capture the curvature in the true un-
derlying problem, so it underfits. The degree-9 predictor is capable of representing
the correct function, but it is also capable of representing infinitely many other
functions that pass exactly through the training points, because we have more
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parameters than training examples. We have little chance of choosing a solution
that generalizes well when so many wildly different solutions exist. In this example,
the quadratic model is perfectly matched to the true structure of the task so it
generalizes well to new data.

x y

So far we have only described changing a model’s capacity by changing the
number of input features it has (and simultaneously adding new parameters
associated with those features). There are in fact many ways of changing a model’s

capacity. Capacity is not determined only by the choice of model. The model
specifies which family of functions the learning algorithm can choose from when
varying the parameters in order to reduce a training objective. This is called the
representational capacity of the model. In many cases, finding the best function
within this family is a very difficult optimization problem. In practice, the learning
algorithm does not actually find the best function, but merely one that significantly
reduces the training error. These additional limitations, such as the imperfection
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of the optimization algorithm, mean that the learning algorithm’s effective capacity
may be less than the representational capacity of the model family.

Our modern ideas about improving the generalization of machine learning
models are refinements of thought dating back to philosophers at least as early
as Ptolemy. Many early scholars invoke a principle of parsimony that is now
most widely known as Occam’s razor (c. 1287-1347). This principle states that
among competing hypotheses that explain known observations equally well, one
should choose the “simplest” one. This idea was formalized and made more precise
in the 20th century by the founders of statistical learning theory (Vapnik and

Chervonenkis 1971 Vapnik 1982 Blumer 1989 Vapnik 1995, ; , ; et al., ; , ).

Statistical learning theory provides various means of quantifying model capacity.
Among these, the most well-known is the Vapnik-Chervonenkis dimension, or VC
dimension. The VC dimension measures the capacity of a binary classifier. The
VC dimension is defined as being the largest possible value of m for which there
exists a training set of m different x points that the classifier can label arbitrarily.

Quantifying the capacity of the model allows statistical learning theory to
make quantitative predictions. The most important results in statistical learning
theory show that the discrepancy between training error and generalization error
is bounded from above by a quantity that grows as the model capacity grows but
shrinks as the number of training examples increases (Vapnik and Chervonenkis,

1971 Vapnik 1982 Blumer 1989 Vapnik 1995; , ; et al., ; , ). These bounds provide
intellectual justification that machine learning algorithms can work, but they are
rarely used in practice when working with deep learning algorithms. This is in
part because the bounds are often quite loose and in part because it can be quite
difficult to determine the capacity of deep learning algorithms. The problem of
determining the capacity of a deep learning model is especially difficult because the
effective capacity is limited by the capabilities of the optimization algorithm, and
we have little theoretical understanding of the very general non-convex optimization
problems involved in deep learning.

We must remember that while simpler functions are more likely to generalize
(to have a small gap between training and test error) we must still choose a

sufficiently complex hypothesis to achieve low training error. Typically, training
error decreases until it asymptotes to the minimum possible error value as model
capacity increases (assuming the error measure has a minimum value). Typically,
generalization error has a U-shaped curve as a function of model capacity. This is
illustrated in Fig. .5.3

To reach the most extreme case of arbitrarily high capacity, we introduce
the concept of non-parametric models. So far, we have seen only parametric
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models, such as linear regression. Parametric models learn a function described
by a parameter vector whose size is finite and fixed before any data is observed.
Non-parametric models have no such limitation.

Sometimes, non-parametric models are just theoretical abstractions (such as
an algorithm that searches over all possible probability distributions) that cannot
be implemented in practice. However, we can also design practical non-parametric
models by making their complexity a function of the training set size. One example
of such an algorithm is nearest neighbor regression. Unlike linear regression, which
has a fixed-length vector of weights, the nearest neighbor regression model simply

stores the X and y from the training set. When asked to classify a test point x,
the model looks up the nearest entry in the training set and returns the associated
regression target. In other words, ŷ = yi where i = arg min ||X i, − ||x . The
algorithm can also be generalized to distance metrics other than the L norm, such
as learned distance metrics ( , ). If the algorithm is allowedGoldberger et al. 2005
to break ties by averaging the yi values for all Xi, that are tied for nearest, then
this algorithm is able to achieve the minimum possible training error (which might
be greater than zero, if two identical inputs are associated with different outputs)
on any regression dataset.

Finally, we can also create a non-parametric learning algorithm by wrapping a
parametric learning algorithm inside another algorithm that increases the number
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of parameters as needed. For example, we could imagine an outer loop of learning
that changes the degree of the polynomial learned by linear regression on top of a
polynomial expansion of the input.

The ideal model is an oracle that simply knows the true probability distribution
that generates the data. Even such a model will still incur some error on many
problems, because there may still be some noise in the distribution. In the case
of supervised learning, the mapping from x to y may be inherently stochastic,
or y may be a deterministic function that involves other variables besides those
included in x. The error incurred by an oracle making predictions from the true

distribution is called thep , y(x ) Bayes error.

Training and generalization error vary as the size of the training set varies.
Expected generalization error can never increase as the number of training examples
increases. For non-parametric models, more data yields better generalization until
the best possible error is achieved. Any fixed parametric model with less than
optimal capacity will asymptote to an error value that exceeds the Bayes error. See
Fig. for an illustration. Note that it is possible for the model to have optimal5.4
capacity and yet still have a large gap between training and generalization error.
In this situation, we may be able to reduce this gap by gathering more training
examples.

5.2.1 The No Free Lunch Theorem

Learning theory claims that a machine learning algorithm can generalize well from
a finite training set of examples. This seems to contradict some basic principles of
logic. Inductive reasoning, or inferring general rules from a limited set of examples,
is not logically valid. To logically infer a rule describing every member of a set,
one must have information about every member of that set.

In part, machine learning avoids this problem by offering only probabilistic rules,

rather than the entirely certain rules used in purely logical reasoning. Machine
learning promises to find rules that are probably mostcorrect about members of
the set they concern.

Unfortunately, even this does not resolve the entire problem. The no free lunch
theorem for machine learning (Wolpert 1996, ) states that, averaged over all possible
data generating distributions, every classification algorithm has the same error
rate when classifying previously unobserved points. In other words, in some sense,
no machine learning algorithm is universally any better than any other. The most
sophisticated algorithm we can conceive of has the same average performance (over
all possible tasks) as merely predicting that every point belongs to the same class.
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Fortunately, these results hold only when we average over possible dataall
generating distributions. If we make assumptions about the kinds of probability
distributions we encounter in real-world applications, then we can design learning
algorithms that perform well on these distributions.

This means that the goal of machine learning research is not to seek a universal
learning algorithm or the absolute best learning algorithm. Instead, our goal is to
understand what kinds of distributions are relevant to the “real world” that an AI
agent experiences, and what kinds of machine learning algorithms perform well on
data drawn from the kinds of data generating distributions we care about.

5.2.2 Regularization

The no free lunch theorem implies that we must design our machine learning
algorithms to perform well on a specific task. We do so by building a set of
preferences into the learning algorithm. When these preferences are aligned with
the learning problems we ask the algorithm to solve, it performs better.

So far, the only method of modifying a learning algorithm we have discussed is

to increase or decrease the model’s capacity by adding or removing functions from
the hypothesis space of solutions the learning algorithm is able to choose. We gave
the specific example of increasing or decreasing the degree of a polynomial for a
regression problem. The view we have described so far is oversimplified.

The behavior of our algorithm is strongly affected not just by how large we
make the set of functions allowed in its hypothesis space, but by the specific identity
of those functions. The learning algorithm we have studied so far, linear regression,
has a hypothesis space consisting of the set of linear functions of its input. These
linear functions can be very useful for problems where the relationship between
inputs and outputs truly is close to linear. They are less useful for problems
that behave in a very nonlinear fashion. For example, linear regression would

not perform very well if we tried to use it to predict sin(x) from x . We can thus
control the performance of our algorithms by choosing what kind of functions we
allow them to draw solutions from, as well as by controlling the amount of these
functions.

We can also give a learning algorithm a preference for one solution in its
hypothesis space to another. This means that both functions are eligible, but one
is preferred. The unpreferred solution be chosen only if it fits the training data
significantly better than the preferred solution.

For example, we can modify the training criterion for linear regression to
include weight decay. To perform linear regression with weight decay, we minimize
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a sum comprising both the mean squared error on the training and a criterion
J(w) that expresses a preference for the weights to have smaller squared L norm.
Specifically,

J( ) = w MSE + λw w, (5.18)

where λ is a value chosen ahead of time that controls the strength of our preference
for smaller weights. When λ= 0, we impose no preference, and larger λ forces the
weights to become smaller. Minimizing J(w ) results in a choice of weights that
make a tradeoff between fitting the training data and being small. This gives us

solutions that have a smaller slope, or put weight on fewer of the features. As an
example of how we can control a model’s tendency to overfit or underfit via weight
decay, we can train a high-degree polynomial regression model with different values
of . See Fig. for the results.λ 5.5

λ

λ

More generally, we can regularize a model that learns a function f(x;θ) by
adding a penalty called a regularizer to the cost function. In the case of weight
decay, the regularizer is Ω(w) = w w. In Chapter , we will see that many other7
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regularizers are possible.

Expressing preferences for one function over another is a more general way
of controlling a model’s capacity than including or excluding members from the
hypothesis space. We can think of excluding a function from a hypothesis space as
expressing an infinitely strong preference against that function.

In our weight decay example, we expressed our preference for linear functions
defined with smaller weights explicitly, via an extra term in the criterion we
minimize. There are many other ways of expressing preferences for different

solutions, both implicitly and explicitly. Together, these different approaches are
known as regularization.

Regularization is one of the central concerns of the
field of machine learning, rivaled in its importance only by optimization.

The no free lunch theorem has made it clear that there is no best machine
learning algorithm, and, in particular, no best form of regularization. Instead
we must choose a form of regularization that is well-suited to the particular task
we want to solve. The philosophy of deep learning in general and this book in
particular is that a very wide range of tasks (such as all of the intellectual tasks
that people can do) may all be solved effectively using very general-purpose forms
of regularization.

5.3 Hyperparameters and Validation Sets

Most machine learning algorithms have several settings that we can use to control
the behavior of the learning algorithm. These settings are called hyperparameters.
The values of hyperparameters are not adapted by the learning algorithm itself
(though we can design a nested learning procedure where one learning algorithm
learns the best hyperparameters for another learning algorithm).

In the polynomial regression example we saw in Fig. , there is a single hyper-5.2
parameter: the degree of the polynomial, which acts as a capacity hyperparameter.

The λ value used to control the strength of weight decay is another example of a
hyperparameter.

Sometimes a setting is chosen to be a hyperparameter that the learning algo-
rithm does not learn because it is difficult to optimize. More frequently, we do
not learn the hyperparameter because it is not appropriate to learn that hyper-
parameter on the training set. This applies to all hyperparameters that control
model capacity. If learned on the training set, such hyperparameters would always
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choose the maximum possible model capacity, resulting in overfitting (refer to
Fig. ). For example, we can always fit the training set better with a higher5.3
degree polynomial and a weight decay setting of λ = 0 than we could with a lower
degree polynomial and a positive weight decay setting.

To solve this problem, we need a of examples that the trainingvalidation set
algorithm does not observe.

Earlier we discussed how a held-out test set, composed of examples coming from
the same distribution as the training set, can be used to estimate the generalization

error of a learner, after the learning process has completed. It is important that the
test examples are not used in any way to make choices about the model, including
its hyperparameters. For this reason, no example from the test set can be used
in the validation set. Therefore, we always construct the validation set from the
training data. Specifically, we split the training data into two disjoint subsets. One
of these subsets is used to learn the parameters. The other subset is our validation
set, used to estimate the generalization error during or after training, allowing
for the hyperparameters to be updated accordingly. The subset of data used to
learn the parameters is still typically called the training set, even though this
may be confused with the larger pool of data used for the entire training process.
The subset of data used to guide the selection of hyperparameters is called the
validation set. Typically, one uses about 80% of the training data for training and

20% for validation. Since the validation set is used to “train” the hyperparameters,
the validation set error will underestimate the generalization error, though typically
by a smaller amount than the training error. After all hyperparameter optimization
is complete, the generalization error may be estimated using the test set.

In practice, when the same test set has been used repeatedly to evaluate
performance of different algorithms over many years, and especially if we consider
all the attempts from the scientific community at beating the reported state-of-
the-art performance on that test set, we end up having optimistic evaluations with
the test set as well. Benchmarks can thus become stale and then do not reflect the
true field performance of a trained system. Thankfully, the community tends to
move on to new (and usually more ambitious and larger) benchmark datasets.

5.3.1 Cross-Validation

Dividing the dataset into a fixed training set and a fixed test set can be problematic
if it results in the test set being small. A small test set implies statistical uncertainty
around the estimated average test error, making it difficult to claim that algorithm
A works better than algorithm on the given task.B
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When the dataset has hundreds of thousands of examples or more, this is not
a serious issue. When the dataset is too small, there are alternative procedures,
which allow one to use all of the examples in the estimation of the mean test
error, at the price of increased computational cost. These procedures are based on
the idea of repeating the training and testing computation on different randomly
chosen subsets or splits of the original dataset. The most common of these is the
k-fold cross-validation procedure, shown in Algorithm , in which a partition5.1
of the dataset is formed by splitting it into k non-overlapping subsets. The test
error may then be estimated by taking the average test error across k trials. On

trial i, the i-th subset of the data is used as the test set and the rest of the data is
used as the training set. One problem is that there exist no unbiased estimators of
the variance of such average error estimators (Bengio and Grandvalet 2004, ), but
approximations are typically used.

5.4 Estimators, Bias and Variance

The field of statistics gives us many tools that can be used to achieve the machine
learning goal of solving a task not only on the training set but also to generalize.
Foundational concepts such as parameter estimation, bias and variance are useful

to formally characterize notions of generalization, underfitting and overfitting.

5.4.1 Point Estimation

Point estimation is the attempt to provide the single “best” prediction of some
quantity of interest. In general the quantity of interest can be a single parameter
or a vector of parameters in some parametric model, such as the weights in our
linear regression example in Sec. , but it can also be a whole function.5.1.4

In order to distinguish estimates of parameters from their true value, our

convention will be to denote a point estimate of a parameter byθ θ̂.

Let {x , . . . ,x m } be a set of m independent and identically distributed
(i.i.d.) data points. A point estimator statisticor is any function of the data:

θ̂m = (g x , . . . ,xm ). (5.19)

The definition does not require that g return a value that is close to the true
θ or even that the range of g is the same as the set of allowable values of θ.
This definition of a point estimator is very general and allows the designer of an
estimator great flexibility. While almost any function thus qualifies as an estimator,
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The k-fold cross-validation algorithm. It can be used to estimate
generalization error of a learning algorithm A when the given dataset D is too

small for a simple train/test or train/valid split to yield accurate estimation of
generalization error, because the mean of a loss L on a small test set may have too
high variance. The dataset D contains as elements the abstract examples z i (for
the i-th example), which could stand for an (input,target) pair z i = (x i , y i )
in the case of supervised learning, or for just an input z i = x i in the case
of unsupervised learning. The algorithm returns the vector of errors e for each
example in D, whose mean is the estimated generalization error. The errors on
individual examples can be used to compute a confidence interval around the mean
(Eq. ). While these confidence intervals are not well-justified after the use of5.47
cross-validation, it is still common practice to use them to declare that algorithm A
is better than algorithm B only if the confidence interval of the error of algorithm
A lies below and does not intersect the confidence interval of algorithm .B

( ):D, A, L, k

D, the given dataset, with elements z i

A , the learning algorithm, seen as a function that takes a dataset as
input and outputs a learned function

L , the loss function, seen as a function from a learned function f and
an example z i ∈ ∈D to a scalar R

k, the number of folds
Split into mutually exclusive subsetsD k Di , whose union is .D

i kfrom to1
f i= (A D D\ i)

z j in D i

e j = (L fi, z j )

e
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a good estimator is a function whose output is close to the true underlying θ that
generated the training data.

For now, we take the frequentist perspective on statistics. That is, we assume
that the true parameter value θ is fixed but unknown, while the point estimate
θ̂ is a function of the data. Since the data is drawn from a random process, any
function of the data is random. Therefore θ̂ is a random variable.

Point estimation can also refer to the estimation of the relationship between
input and target variables. We refer to these types of point estimates as function

estimators.

As we mentioned above, sometimes we are interested in
performing function estimation (or function approximation). Here we are trying to
predict a variable y given an input vector x. We assume that there is a function
f(x) that describes the approximate relationship between y and x. For example,
we may assume that y = f(x) + , where  stands for the part of y that is not
predictable from x. In function estimation, we are interested in approximating
f with a model or estimate f̂. Function estimation is really just the same as
estimating a parameter θ; the function estimator f̂ is simply a point estimator in
function space. The linear regression example (discussed above in Sec. ) and5.1.4

the polynomial regression example (discussed in Sec. ) are both examples of5.2
scenarios that may be interpreted either as estimating a parameterw or estimating
a function f̂ ymapping from tox .

We now review the most commonly studied properties of point estimators and
discuss what they tell us about these estimators.

5.4.2 Bias

The bias of an estimator is defined as:

bias(θ̂m) = (E θ̂m) − θ (5.20)

where the expectation is over the data (seen as samples from a random variable) and
θ is the true underlying value of θ used to define the data generating distribution.
An estimator θ̂m is said to be unbiased if bias(θ̂m) = , which implies that E(θ̂m) =
θ. An estimator θ̂m is said to be asymptotically unbiased if lim

m
bias(θ̂m) = ,

which implies that lim
m

E(θ̂m) = θ.

Consider a set of samples {x , . . . , x m }
that are independently and identically distributed according to a Bernoulli distri-
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bution with mean :θ
P x( i ; ) = θ θx (1 )− θ x . (5.21)

A common estimator for the θ parameter of this distribution is the mean of the

training samples:

θ̂m =
1

m

m

i

x i . (5.22)

To determine whether this estimator is biased, we can substitute Eq. into Eq.5.22
5.20:

bias(θ̂m) = [E θ̂m] − θ (5.23)

= E
1

m

m

i

x i − θ (5.24)

=
1

m

m

i

E x i − θ (5.25)

=
1

m

m

i x

x i θx (1 )− θ x − θ (5.26)

=
1

m

m

i

( )θ − θ (5.27)

= = 0θ θ− (5.28)

Since bias(θ̂) = 0, we say that our estimator θ̂ is unbiased.

Now, consider
a set of samples {x , . . . , xm } that are independently and identically distributed
according to a Gaussian distribution p(x i ) = N (x i ; µ, σ ), where i ∈ {1, . . . ,m}.
Recall that the Gaussian probability density function is given by

p x( i ;µ, σ ) =
1√

2πσ
exp −1

2

(x i − µ)

σ
. (5.29)

A common estimator of the Gaussian mean parameter is known as the sample
mean:

µ̂m=
1

m

m

i

x i (5.30)
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To determine the bias of the sample mean, we are again interested in calculating
its expectation:

bias(µ̂m) = [ˆE µm] − µ (5.31)

= E
1

m

m

i

x i − µ (5.32)

=
1

m

m

i

E x i − µ (5.33)

=
1

m

m

i

µ − µ (5.34)

= = 0µ µ− (5.35)

Thus we find that the sample mean is an unbiased estimator of Gaussian mean
parameter.

As an
example, we compare two different estimators of the variance parameter σ of a
Gaussian distribution. We are interested in knowing if either estimator is biased.

The first estimator of σ we consider is known as the sample variance:

σ̂m =
1

m

m

i

x i − µ̂m , (5.36)

where µ̂m is the sample mean, defined above. More formally, we are interested in
computing

bias(σ̂m) = [ˆE σm ] − σ (5.37)

We begin by evaluating the term E[σ̂m]:

E[σ̂m ] =E
1

m

m

i

x i − µ̂m (5.38)

=
m− 1

m
σ (5.39)

Returning to Eq. , we conclude that the bias of5.37 σ̂m is −σ /m. Therefore, the
sample variance is a biased estimator.
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The unbiased sample variance estimator

σ̃m =
1

m− 1

m

i

x i − µ̂m (5.40)

provides an alternative approach. As the name suggests this estimator is unbiased.
That is, we find that E[σ̃m] = σ :

E[σ̃m] = E
1

m− 1

m

i

x i − µ̂m (5.41)

=
m

m− 1
E[σ̂m ] (5.42)

=
m

m− 1

m− 1

m
σ (5.43)

= σ . (5.44)

We have two estimators: one is biased and the other is not. While unbiased
estimators are clearly desirable, they are not always the “best” estimators. As we
will see we often use biased estimators that possess other important properties.

5.4.3 Variance and Standard Error

Another property of the estimator that we might want to consider is how much
we expect it to vary as a function of the data sample. Just as we computed the

expectation of the estimator to determine its bias, we can compute its variance.
The variance of an estimator is simply the variance

Var(θ̂) (5.45)

where the random variable is the training set. Alternately, the square root of the
variance is called the standard error, denoted SE(θ̂).

The variance or the standard error of an estimator provides a measure of how
we would expect the estimate we compute from data to vary as we independently
resample the dataset from the underlying data generating process. Just as we
might like an estimator to exhibit low bias we would also like it to have relatively
low variance.

When we compute any statistic using a finite number of samples, our estimate
of the true underlying parameter is uncertain, in the sense that we could have
obtained other samples from the same distribution and their statistics would have
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been different. The expected degree of variation in any estimator is a source of
error that we want to quantify.

The standard error of the mean is given by

SE(µ̂m) = Var[
1

m

m

i

x i ] =
σ√
m
, (5.46)

where σ is the true variance of the samples x i. The standard error is often
estimated by using an estimate of σ. Unfortunately, neither the square root of
the sample variance nor the square root of the unbiased estimator of the variance

provide an unbiased estimate of the standard deviation. Both approaches tend
to underestimate the true standard deviation, but are still used in practice. The
square root of the unbiased estimator of the variance is less of an underestimate.
For large , the approximation is quite reasonable.m

The standard error of the mean is very useful in machine learning experiments.
We often estimate the generalization error by computing the sample mean of the
error on the test set. The number of examples in the test set determines the
accuracy of this estimate. Taking advantage of the central limit theorem, which
tells us that the mean will be approximately distributed with a normal distribution,
we can use the standard error to compute the probability that the true expectation
falls in any chosen interval. For example, the 95% confidence interval centered on
the mean is µ̂m is

(µ̂m− 1 96SE(ˆ. µm) ˆ, µm + 1 96SE(ˆ. µm)), (5.47)

under the normal distribution with mean µ̂m and variance SE( µ̂m ) . In machine
learning experiments, it is common to say that algorithmA is better than algorithm
B if the upper bound of the 95% confidence interval for the error of algorithm A is
less than the lower bound of the 95% confidence interval for the error of algorithm
B.

We once again consider a set of samples
{x , . . . , x m } drawn independently and identically from a Bernoulli distribution

(recall P (x i ; θ) = θ x (1 − θ) x ). This time we are interested in computing
the variance of the estimator θ̂m = m

m
i x i .

Var θ̂m = Var
1

m

m

i

x i (5.48)
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=
1

m

m

i

Var x i (5.49)

=
1

m

m

i

θ θ(1 − ) (5.50)

=
1

m
mθ θ(1 − ) (5.51)

=
1

m
θ θ(1 − ) (5.52)

The variance of the estimator decreases as a function of m, the number of examples
in the dataset. This is a common property of popular estimators that we will
return to when we discuss consistency (see Sec. ).5.4.5

5.4.4 Trading off Bias and Variance to Minimize Mean Squared
Error

Bias and variance measure two different sources of error in an estimator. Bias
measures the expected deviation from the true value of the function or parameter.
Variance on the other hand, provides a measure of the deviation from the expected

estimator value that any particular sampling of the data is likely to cause.

What happens when we are given a choice between two estimators, one with
more bias and one with more variance? How do we choose between them? For
example, imagine that we are interested in approximating the function shown in
Fig. and we are only offered the choice between a model with large bias and5.2
one that suffers from large variance. How do we choose between them?

The most common way to negotiate this trade-off is to use cross-validation.
Empirically, cross-validation is highly successful on many real-world tasks. Alter-
natively, we can also compare the mean squared error (MSE) of the estimates:

MSE = [(E θ̂m− θ) ] (5.53)

= Bias(θ̂m) + Var(θ̂m) (5.54)

The MSE measures the overall expected deviation—in a squared error sense—
between the estimator and the true value of the parameter θ. As is clear from
Eq. , evaluating the MSE incorporates both the bias and the variance. Desirable5.54
estimators are those with small MSE and these are estimators that manage to keep
both their bias and variance somewhat in check.

The relationship between bias and variance is tightly linked to the machine
learning concepts of capacity, underfitting and overfitting. In the case where gen-
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x

eralization error is measured by the MSE (where bias and variance are meaningful
components of generalization error), increasing capacity tends to increase variance
and decrease bias. This is illustrated in Fig. , where we see again the U-shaped5.6
curve of generalization error as a function of capacity.

5.4.5 Consistency

So far we have discussed the properties of various estimators for a training set of
fixed size. Usually, we are also concerned with the behavior of an estimator as the
amount of training data grows. In particular, we usually wish that, as the number
of data points m in our dataset increases, our point estimates converge to the true
value of the corresponding parameters. More formally, we would like that

lim
m

θ̂m
p→ θ. (5.55)

The symbol
p→ means that the convergence is in probability, i.e. for any  > 0,

P (|θ̂m − |θ > ) → 0 as m → ∞ . The condition described by Eq. is5.55
known as consistency. It is sometimes referred to as weak consistency, with
strong consistency referring to the almost sure convergence of θ̂ to θ. Almost sure
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convergence of a sequence of random variables , , . . . to a value x occurs
when p(lim

m
m = ) = 1x .

Consistency ensures that the bias induced by the estimator is assured to
diminish as the number of data examples grows. However, the reverse is not
true—asymptotic unbiasedness does not imply consistency. For example, consider
estimating the mean parameter µ of a normal distribution N(x ;µ, σ ), with a
dataset consisting ofm samples: {x , . . . , x m }. We could use the first sample
x of the dataset as an unbiased estimator: θ̂ = x . In that case, E(θ̂m) = θ
so the estimator is unbiased no matter how many data points are seen. This, of

course, implies that the estimate is asymptotically unbiased. However, this is not
a consistent estimator as it is the case thatnot θ̂m → → ∞θ mas .

5.5 Maximum Likelihood Estimation

Previously, we have seen some definitions of common estimators and analyzed
their properties. But where did these estimators come from? Rather than guessing
that some function might make a good estimator and then analyzing its bias and
variance, we would like to have some principle from which we can derive specific
functions that are good estimators for different models.

The most common such principle is the maximum likelihood principle.

Consider a set of m examples X = {x , . . . ,xm } drawn independently from
the true but unknown data generating distribution p ( ).

Let p ( ;θ) be a parametric family of probability distributions over the
same space indexed by θ. In other words, p (x; θ) maps any configuration x
to a real number estimating the true probability p ( )x .

The maximum likelihood estimator for is then defined asθ

θ = arg max p ( ; )X θ (5.56)

= arg max

m

i

p (x i ; )θ (5.57)

This product over many probabilities can be inconvenient for a variety of reasons.
For example, it is prone to numerical underflow. To obtain a more convenient
but equivalent optimization problem, we observe that taking the logarithm of the
likelihood does not change its arg max but does conveniently transform a product
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into a sum:

θ = arg max

m

i

log p (x i ; )θ . (5.58)

Because the argmax does not change when we rescale the cost function, we can
divide bym to obtain a version of the criterion that is expressed as an expectation
with respect to the empirical distribution p̂ defined by the training data:

θ = arg maxE
p

log p ( ; )x θ . (5.59)

One way to interpret maximum likelihood estimation is to view it as minimizing
the dissimilarity between the empirical distribution p̂ defined by the training
set and the model distribution, with the degree of dissimilarity between the two
measured by the KL divergence. The KL divergence is given by

D (p̂ kp ) = E
p

[log p̂ ( ) logx − p ( )]x . (5.60)

The term on the left is a function only of the data generating process, not the
model. This means when we train the model to minimize the KL divergence, we
need only minimize

− E
p

[log p ( )]x (5.61)

which is of course the same as the maximization in Eq. .5.59

Minimizing this KL divergence corresponds exactly to minimizing the cross-
entropy between the distributions. Many authors use the term “cross-entropy” to
identify specifically the negative log-likelihood of a Bernoulli or softmax distribution,
but that is a misnomer. Any loss consisting of a negative log-likelihood is a cross
entropy between the empirical distribution defined by the training set and the
model. For example, mean squared error is the cross-entropy between the empirical
distribution and a Gaussian model.

We can thus see maximum likelihood as an attempt to make the model dis-
tribution match the empirical distribution p̂ . Ideally, we would like to match

the true data generating distribution p , but we have no direct access to this
distribution.

While the optimal θ is the same regardless of whether we are maximizing the
likelihood or minimizing the KL divergence, the values of the objective functions
are different. In software, we often phrase both as minimizing a cost function.
Maximum likelihood thus becomes minimization of the negative log-likelihood
(NLL), or equivalently, minimization of the cross entropy. The perspective of
maximum likelihood as minimum KL divergence becomes helpful in this case
because the KL divergence has a known minimum value of zero. The negative
log-likelihood can actually become negative when is real-valued.x
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5.5.1 Conditional Log-Likelihood and Mean Squared Error

The maximum likelihood estimator can readily be generalized to the case where
our goal is to estimate a conditional probability P( | ;θ) in order to predict

given . This is actually the most common situation because it forms the basis for
most supervised learning. If X represents all our inputs and Y all our observed
targets, then the conditional maximum likelihood estimator is

θ = arg max P .( ; )Y X| θ (5.62)

If the examples are assumed to be i.i.d., then this can be decomposed into

θ = arg max

m

i

log (P y i | x i ; )θ . (5.63)

Linear regression,
introduced earlier in Sec. , may be justified as a maximum likelihood procedure.5.1.4
Previously, we motivated linear regression as an algorithm that learns to take an
input x and produce an output value ŷ. The mapping from x to ŷ is chosen to
minimize mean squared error, a criterion that we introduced more or less arbitrarily.
We now revisit linear regression from the point of view of maximum likelihood
estimation. Instead of producing a single prediction ŷ, we now think of the model
as producing a conditional distribution p(y | x). We can imagine that with an
infinitely large training set, we might see several training examples with the same
input value x but different values of y . The goal of the learning algorithm is now to
fit the distribution p(y | x) to all of those different y values that are all compatible
with x. To derive the same linear regression algorithm we obtained before, we

define p(y | x) = N (y; ŷ(x;w), σ ). The function ŷ(x;w) gives the prediction of
the mean of the Gaussian. In this example, we assume that the variance is fixed to
some constant σ chosen by the user. We will see that this choice of the functional
form of p(y | x) causes the maximum likelihood estimation procedure to yield the
same learning algorithm as we developed before. Since the examples are assumed
to be i.i.d., the conditional log-likelihood (Eq. ) is given by5.63

m

i

log (p y i | x i ; )θ (5.64)

= log−m σ − m

2
log(2 )π −

m

i

|ŷ i − y i ||
2σ

(5.65)
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where ŷ i is the output of the linear regression on the i-th input x i and m is the
number of the training examples. Comparing the log-likelihood with the mean
squared error,

MSE =
1

m

m

i

||ŷ i − y i || , (5.66)

we immediately see that maximizing the log-likelihood with respect to w yields

the same estimate of the parametersw as does minimizing the mean squared error.
The two criteria have different values but the same location of the optimum. This
justifies the use of the MSE as a maximum likelihood estimation procedure. As we
will see, the maximum likelihood estimator has several desirable properties.

5.5.2 Properties of Maximum Likelihood

The main appeal of the maximum likelihood estimator is that it can be shown to
be the best estimator asymptotically, as the number of examples m→ ∞, in terms
of its rate of convergence as increases.m

Under appropriate conditions, maximum likelihood estimator has the property
of consistency (see Sec. above), meaning that as the number of training5.4.5

examples approaches infinity, the maximum likelihood estimate of a parameter
converges to the true value of the parameter. These conditions are:

• The true distribution p must lie within the model family p (·; θ).
Otherwise, no estimator can recover p .

• The true distribution p must correspond to exactly one value of θ. Other-
wise, maximum likelihood can recover the correct p , but will not be able
to determine which value of was used by the data generating processing.θ

There are other inductive principles besides the maximum likelihood estimator,

many of which share the property of being consistent estimators. However, consis-
tent estimators can differ in their , meaning that one consistentstatistic efficiency
estimator may obtain lower generalization error for a fixed number of samples m,
or equivalently, may require fewer examples to obtain a fixed level of generalization
error.

Statistical efficiency is typically studied in the parametric case (like in linear
regression) where our goal is to estimate the value of a parameter (and assuming
it is possible to identify the true parameter), not the value of a function. A way to
measure how close we are to the true parameter is by the expected mean squared
error, computing the squared difference between the estimated and true parameter
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values, where the expectation is over m training samples from the data generating
distribution. That parametric mean squared error decreases as m increases, and
for m large, the Cramér-Rao lower bound ( , ; , ) shows that noRao 1945 Cramér 1946
consistent estimator has a lower mean squared error than the maximum likelihood
estimator.

For these reasons (consistency and efficiency), maximum likelihood is often
considered the preferred estimator to use for machine learning. When the number
of examples is small enough to yield overfitting behavior, regularization strategies
such as weight decay may be used to obtain a biased version of maximum likelihood

that has less variance when training data is limited.

5.6 Bayesian Statistics

So far we have discussed frequentist statistics and approaches based on estimating a
single value of θ, then making all predictions thereafter based on that one estimate.

Another approach is to consider all possible values of θ when making a prediction.
The latter is the domain of .Bayesian statistics

As discussed in Sec. , the frequentist perspective is that the true parameter5.4.1
value θ is fixed but unknown, while the point estimate θ̂ is a random variable on
account of it being a function of the dataset (which is seen as random).

The Bayesian perspective on statistics is quite different. The Bayesian uses
probability to reflect degrees of certainty of states of knowledge. The dataset is
directly observed and so is not random. On the other hand, the true parameter θ
is unknown or uncertain and thus is represented as a random variable.

Before observing the data, we represent our knowledge of θ using the prior
probability distribution, p(θ) (sometimes referred to as simply “the prior”). Gen-

erally, the machine learning practitioner selects a prior distribution that is quite
broad (i.e. with high entropy) to reflect a high degree of uncertainty in the value of
θ before observing any data. For example, one might assume thata priori θ lies
in some finite range or volume, with a uniform distribution. Many priors instead
reflect a preference for “simpler” solutions (such as smaller magnitude coefficients,
or a function that is closer to being constant).

Now consider that we have a set of data samples {x , . . . , x m }. We can
recover the effect of data on our belief about θ by combining the data likelihood
p x( , . . . , x m | θ) with the prior via Bayes’ rule:

p x(θ | , . . . , x m ) =
p x( , . . . , x m | θ θ) (p )

p x( , . . . , x m )
(5.67)
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In the scenarios where Bayesian estimation is typically used, the prior begins as a
relatively uniform or Gaussian distribution with high entropy, and the observation
of the data usually causes the posterior to lose entropy and concentrate around a
few highly likely values of the parameters.

Relative to maximum likelihood estimation, Bayesian estimation offers two
important differences. First, unlike the maximum likelihood approach that makes
predictions using a point estimate of θ, the Bayesian approach is to make predictions
using a full distribution over θ. For example, after observing m examples, the
predicted distribution over the next data sample, x m , is given by

p x( m | x , . . . , xm ) = p x( m | |θ θ) (p x , . . . , x m ) d .θ (5.68)

Here each value of θ with positive probability density contributes to the prediction
of the next example, with the contribution weighted by the posterior density itself.

After having observed {x , . . . , xm }, if we are still quite uncertain about the
value of θ, then this uncertainty is incorporated directly into any predictions we
might make.

In Sec. , we discussed how the frequentist approach addresses the uncertainty5.4
in a given point estimate of θ by evaluating its variance. The variance of the
estimator is an assessment of how the estimate might change with alternative
samplings of the observed data. The Bayesian answer to the question of how to deal
with the uncertainty in the estimator is to simply integrate over it, which tends to
protect well against overfitting. This integral is of course just an application of
the laws of probability, making the Bayesian approach simple to justify, while the
frequentist machinery for constructing an estimator is based on the rather ad hoc
decision to summarize all knowledge contained in the dataset with a single point

estimate.

The second important difference between the Bayesian approach to estimation
and the maximum likelihood approach is due to the contribution of the Bayesian
prior distribution. The prior has an influence by shifting probability mass density
towards regions of the parameter space that are preferred . In practice,a priori
the prior often expresses a preference for models that are simpler or more smooth.
Critics of the Bayesian approach identify the prior as a source of subjective human
judgment impacting the predictions.

Bayesian methods typically generalize much better when limited training data
is available, but typically suffer from high computational cost when the number of
training examples is large.
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Here we consider the Bayesian esti-
mation approach to learning the linear regression parameters. In linear regression,
we learn a linear mapping from an input vector x ∈ R

n to predict the value of a
scalar . The prediction is parametrized by the vectory ∈ R w ∈ R

n:

ŷ = w x. (5.69)

Given a set of m training samples (X ,y ), we can express the prediction
of over the entire training set as:y

ŷ = X w. (5.70)

Expressed as a Gaussian conditional distribution on y , we have

p(y |X ,w y) = (N ;X w I, ) (5.71)

∝ exp −1

2
(y −X w) (y −X w) ,

(5.72)

where we follow the standard MSE formulation in assuming that the Gaussian
variance on y is one. In what follows, to reduce the notational burden, we refer to
(X ,y ) ( )as simply X y, .

To determine the posterior distribution over the model parameter vector w, we
first need to specify a prior distribution. The prior should reflect our naive belief
about the value of these parameters. While it is sometimes difficult or unnatural
to express our prior beliefs in terms of the parameters of the model, in practice we
typically assume a fairly broad distribution expressing a high degree of uncertainty

about θ. For real-valued parameters it is common to use a Gaussian as a prior
distribution:

p( ) = ( ;w N w µ , ) exp∝ −1

2
(w µ− ) (w µ− ) (5.73)

where µ and are the prior distribution mean vector and covariance matrix
respectively.

With the prior thus specified, we can now proceed in determining the posterior
distribution over the model parameters.

p , p , p(w X| y) ∝ (y X| w) ( )w (5.74)

Unless there is a reason to assume a particular covariance structure, we typically assume a
diagonal covariance matrix .

137



CHAPTER 5. MACHINE LEARNING BASICS

∝ exp −1

2
( )y Xw− ( )y Xw− exp − 1

2
(w µ− ) (w µ− )

(5.75)

∝ exp −1

2
−2y Xw w+ X Xw w+ w µ− 2 w .

(5.76)

We now define m = X X + and µm = m X y + µ . Using
these new variables, we find that the posterior may be rewritten as a Gaussian
distribution:

p ,(w X| y) exp∝ − 1

2
(w µ− m) m (w µ− m) +

1

2
µm m µm (5.77)

∝ exp − 1

2
(w µ− m) m (w µ− m) . (5.78)

All terms that do not include the parameter vector w have been omitted; they

are implied by the fact that the distribution must be normalized to integrate to .1
Eq. shows how to normalize a multivariate Gaussian distribution.3.23

Examining this posterior distribution allows us to gain some intuition for the
effect of Bayesian inference. In most situations, we set µ to . If we set = α I,
then µm gives the same estimate of w as does frequentist linear regression with
a weight decay penalty of αw w . One difference is that the Bayesian estimate
is undefined if alpha is set to zero—-we are not allowed to begin the Bayesian
learning process with an infinitely wide prior on w. The more important difference
is that the Bayesian estimate provides a covariance matrix, showing how likely all
the different values of are, rather than providing only the estimatew µm.

5.6.1 Maximum (MAP) Estimation

While the most principled approach is to make predictions using the full Bayesian
posterior distribution over the parameter θ , it is still often desirable to have a
single point estimate. One common reason for desiring a point estimate is that
most operations involving the Bayesian posterior for most interesting models are
intractable, and a point estimate offers a tractable approximation. Rather than
simply returning to the maximum likelihood estimate, we can still gain some of
the benefit of the Bayesian approach by allowing the prior to influence the choice

of the point estimate. One rational way to do this is to choose the maximum a
posteriori (MAP) point estimate. The MAP estimate chooses the point of maximal

138



CHAPTER 5. MACHINE LEARNING BASICS

posterior probability (or maximal probability density in the more common case of
continuous ):θ

θ = arg maxp( ) = arg maxθ x| log ( ) + log ( )p x θ| p θ . (5.79)

We recognize, above on the right hand side, log p(x θ| ), i.e. the standard log-
likelihood term, and , corresponding to the prior distribution.log ( )p θ

As an example, consider a linear regression model with a Gaussian prior on the
weights w. If this prior is given by N (w; , λI ), then the log-prior term in Eq.
5.79 is proportional to the familiar λw w weight decay penalty, plus a term that
does not depend on w and does not affect the learning process. MAP Bayesian
inference with a Gaussian prior on the weights thus corresponds to weight decay.

As with full Bayesian inference, MAP Bayesian inference has the advantage of
leveraging information that is brought by the prior and cannot be found in the
training data. This additional information helps to reduce the variance in the
MAP point estimate (in comparison to the ML estimate). However, it does so at
the price of increased bias.

Many regularized estimation strategies, such as maximum likelihood learning
regularized with weight decay, can be interpreted as making the MAP approxima-
tion to Bayesian inference. This view applies when the regularization consists of
adding an extra term to the objective function that corresponds to log p(θ ). Not
all regularization penalties correspond to MAP Bayesian inference. For example,
some regularizer terms may not be the logarithm of a probability distribution.

Other regularization terms depend on the data, which of course a prior probability
distribution is not allowed to do.

MAP Bayesian inference provides a straightforward way to design complicated
yet interpretable regularization terms. For example, a more complicated penalty
term can be derived by using a mixture of Gaussians, rather than a single Gaussian
distribution, as the prior (Nowlan and Hinton 1992, ).

5.7 Supervised Learning Algorithms

Recall from Sec. that supervised learning algorithms are, roughly speaking,5.1.3
learning algorithms that learn to associate some input with some output, given a
training set of examples of inputs x and outputs y . In many cases the outputs
y may be difficult to collect automatically and must be provided by a human
“supervisor,” but the term still applies even when the training set targets were
collected automatically.
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5.7.1 Probabilistic Supervised Learning

Most supervised learning algorithms in this book are based on estimating a
probability distribution p(y | x). We can do this simply by using maximum

likelihood estimation to find the best parameter vector θ for a parametric family
of distributions .p y( | x θ; )

We have already seen that linear regression corresponds to the family

p y y( | Nx θ; ) = ( ;θ x I, ). (5.80)

We can generalize linear regression to the classification scenario by defining a
different family of probability distributions. If we have two classes, class 0 and
class 1, then we need only specify the probability of one of these classes. The
probability of class 1 determines the probability of class 0, because these two values
must add up to 1.

The normal distribution over real-valued numbers that we used for linear
regression is parametrized in terms of a mean. Any value we supply for this mean
is valid. A distribution over a binary variable is slightly more complicated, because
its mean must always be between 0 and 1. One way to solve this problem is to use
the logistic sigmoid function to squash the output of the linear function into the
interval (0, 1) and interpret that value as a probability:

p y σ( = 1 ; ) = | x θ (θ x). (5.81)

This approach is known as logistic regression (a somewhat strange name since we
use the model for classification rather than regression).

In the case of linear regression, we were able to find the optimal weights by

solving the normal equations. Logistic regression is somewhat more difficult. There
is no closed-form solution for its optimal weights. Instead, we must search for
them by maximizing the log-likelihood. We can do this by minimizing the negative
log-likelihood (NLL) using gradient descent.

This same strategy can be applied to essentially any supervised learning problem,
by writing down a parametric family of conditional probability distributions over
the right kind of input and output variables.

5.7.2 Support Vector Machines

One of the most influential approaches to supervised learning is the support vector
machine ( , ;Boser et al. 1992 Cortes and Vapnik 1995, ). This model is similar to
logistic regression in that it is driven by a linear function w x+b. Unlike logistic
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regression, the support vector machine does not provide probabilities, but only
outputs a class identity. The SVM predicts that the positive class is present when
w x + b is positive. Likewise, it predicts that the negative class is present when
w x+ b is negative.

One key innovation associated with support vector machines is the .kernel trick
The kernel trick consists of observing that many machine learning algorithms can
be written exclusively in terms of dot products between examples. For example, it
can be shown that the linear function used by the support vector machine can be
re-written as

w x+ = +b b

m

i

αix x i (5.82)

where x i is a training example and α is a vector of coefficients. Rewriting the
learning algorithm this way allows us to replace x by the output of a given feature
function φ(x) and the dot product with a function k(x x, i ) = φ(x)·φ (x i ) called
a . Thekernel · operator represents an inner product analogous to φ(x) φ (x i ).
For some feature spaces, we may not use literally the vector inner product. In
some infinite dimensional spaces, we need to use other kinds of inner products, for
example, inner products based on integration rather than summation. A complete
development of these kinds of inner products is beyond the scope of this book.

After replacing dot products with kernel evaluations, we can make predictions

using the function

f b( ) = x +
i

α ik ,(x x i ). (5.83)

This function is nonlinear with respect to x, but the relationship between φ(x)

and f(x) is linear. Also, the relationship between α and f (x) is linear. The
kernel-based function is exactly equivalent to preprocessing the data by applying
φ( )x to all inputs, then learning a linear model in the new transformed space.

The kernel trick is powerful for two reasons. First, it allows us to learn models
that are nonlinear as a function of x using convex optimization techniques that are
guaranteed to converge efficiently. This is possible because we consider φ fixed and
optimize only α, i.e., the optimization algorithm can view the decision function
as being linear in a different space. Second, the kernel function k often admits
an implementation that is significantly more computational efficient than naively
constructing two vectors and explicitly taking their dot product.φ( )x

In some cases, φ(x) can even be infinite dimensional, which would result in

an infinite computational cost for the naive, explicit approach. In many cases,
k(x x, ) is a nonlinear, tractable function of x even when φ(x) is intractable. As
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an example of an infinite-dimensional feature space with a tractable kernel, we
construct a feature mapping φ(x) over the non-negative integers x . Suppose that
this mapping returns a vector containing x ones followed by infinitely many zeros.
We can write a kernel function k(x, x i ) = min(x, x i ) that is exactly equivalent
to the corresponding infinite-dimensional dot product.

The most commonly used kernel is the Gaussian kernel

k , , σ(u v u v) = (N − ; 0 I) (5.84)

where N(x; µ, ) is the standard normal density. This kernel is also known as
the radial basis function (RBF) kernel, because its value decreases along lines in
v space radiating outward from u . The Gaussian kernel corresponds to a dot
product in an infinite-dimensional space, but the derivation of this space is less
straightforward than in our example of the kernel over the integers.min

We can think of the Gaussian kernel as performing a kind of .template matching
A training example x associated with training label y becomes a template for class
y. When a test point x is near x according to Euclidean distance, the Gaussian
kernel has a large response, indicating that x is very similar to the x template.

The model then puts a large weight on the associated training label y. Overall,
the prediction will combine many such training labels weighted by the similarity
of the corresponding training examples.

Support vector machines are not the only algorithm that can be enhanced
using the kernel trick. Many other linear models can be enhanced in this way. The
category of algorithms that employ the kernel trick is known as kernel machines
or kernel methods ( , ;Williams and Rasmussen 1996 Schölkopf 1999et al., ).

A major drawback to kernel machines is that the cost of evaluating the decision
function is linear in the number of training examples, because the i-th example
contributes a term α ik(x x, i ) to the decision function. Support vector machines
are able to mitigate this by learning an α vector that contains mostly zeros.

Classifying a new example then requires evaluating the kernel function only for
the training examples that have non-zero αi. These training examples are known
as support vectors.

Kernel machines also suffer from a high computational cost of training when
the dataset is large. We will revisit this idea in Sec. . Kernel machines with5.9
generic kernels struggle to generalize well. We will explain why in Sec. . The5.11
modern incarnation of deep learning was designed to overcome these limitations of
kernel machines. The current deep learning renaissance began when Hinton et al.
( ) demonstrated that a neural network could outperform the RBF kernel SVM2006
on the MNIST benchmark.
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5.7.3 Other Simple Supervised Learning Algorithms

We have already briefly encountered another non-probabilistic supervised learning
algorithm, nearest neighbor regression. More generally, k-nearest neighbors is

a family of techniques that can be used for classification or regression. As a
non-parametric learning algorithm, k-nearest neighbors is not restricted to a fixed
number of parameters. We usually think of the k-nearest neighbors algorithm
as not having any parameters, but rather implementing a simple function of the
training data. In fact, there is not even really a training stage or learning process.
Instead, at test time, when we want to produce an output y for a new test input x,
we find the k-nearest neighbors to x in the training data X. We then return the
average of the corresponding y values in the training set. This works for essentially
any kind of supervised learning where we can define an average over y values. In
the case of classification, we can average over one-hot code vectors c with cy = 1
and ci = 0 for all other values of i. We can then interpret the average over these

one-hot codes as giving a probability distribution over classes. As a non-parametric
learning algorithm, k-nearest neighbor can achieve very high capacity. For example,
suppose we have a multiclass classification task and measure performance with 0-1
loss. In this setting, -nearest neighbor converges to double the Bayes error as the1
number of training examples approaches infinity. The error in excess of the Bayes
error results from choosing a single neighbor by breaking ties between equally
distant neighbors randomly. When there is infinite training data, all test points x
will have infinitely many training set neighbors at distance zero. If we allow the
algorithm to use all of these neighbors to vote, rather than randomly choosing one
of them, the procedure converges to the Bayes error rate. The high capacity of
k-nearest neighbors allows it to obtain high accuracy given a large training set.
However, it does so at high computational cost, and it may generalize very badly

given a small, finite training set. One weakness of k-nearest neighbors is that it
cannot learn that one feature is more discriminative than another. For example,
imagine we have a regression task with x ∈ R drawn from an isotropic Gaussian
distribution, but only a single variable x is relevant to the output. Suppose
further that this feature simply encodes the output directly, i.e. that y = x in all
cases. Nearest neighbor regression will not be able to detect this simple pattern.
The nearest neighbor of most points x will be determined by the large number of
features x through x , not by the lone feature x . Thus the output on small
training sets will essentially be random.
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Another type of learning algorithm that also breaks the input space into regions
and has separate parameters for each region is the decision tree ( ,Breiman et al.
1984) and its many variants. As shown in Fig. , each node of the decision tree5.7
is associated with a region in the input space, and internal nodes break that region
into one sub-region for each child of the node (typically using an axis-aligned
cut). Space is thus sub-divided into non-overlapping regions, with a one-to-one
correspondence between leaf nodes and input regions. Each leaf node usually maps
every point in its input region to the same output. Decision trees are usually
trained with specialized algorithms that are beyond the scope of this book. The

learning algorithm can be considered non-parametric if it is allowed to learn a tree
of arbitrary size, though decision trees are usually regularized with size constraints
that turn them into parametric models in practice. Decision trees as they are
typically used, with axis-aligned splits and constant outputs within each node,
struggle to solve some problems that are easy even for logistic regression. For
example, if we have a two-class problem and the positive class occurs wherever
x > x , the decision boundary is not axis-aligned. The decision tree will thus
need to approximate the decision boundary with many nodes, implementing a step
function that constantly walks back and forth across the true decision function
with axis-aligned steps.

As we have seen, nearest neighbor predictors and decision trees have many

limitations. Nonetheless, they are useful learning algorithms when computational
resources are constrained. We can also build intuition for more sophisticated
learning algorithms by thinking about the similarities and differences between
sophisticated algorithms and -NN or decision tree baselines.k

See ( ), ( ), ( ) or other machineMurphy 2012 Bishop 2006 Hastie et al. 2001
learning textbooks for more material on traditional supervised learning algorithms.

5.8 Unsupervised Learning Algorithms

Recall from Sec. that unsupervised algorithms are those that experience only5.1.3

“features” but not a supervision signal. The distinction between supervised and
unsupervised algorithms is not formally and rigidly defined because there is no
objective test for distinguishing whether a value is a feature or a target provided by
a supervisor. Informally, unsupervised learning refers to most attempts to extract
information from a distribution that do not require human labor to annotate
examples. The term is usually associated with density estimation, learning to
draw samples from a distribution, learning to denoise data from some distribution,
finding a manifold that the data lies near, or clustering the data into groups of
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related examples.

A classic unsupervised learning task is to find the “best” representation of the
data. By ‘best’ we can mean different things, but generally speaking we are looking
for a representation that preserves as much information about x as possible while
obeying some penalty or constraint aimed at keeping the representation orsimpler
more accessible than itself.x

There are multiple ways of defining a representation. Three of thesimpler 
most common include lower dimensional representations, sparse representations

and independent representations. Low-dimensional representations attempt to
compress as much information about x as possible in a smaller representation.
Sparse representations ( , ; , ;Barlow 1989 Olshausen and Field 1996 Hinton and
Ghahramani 1997, ) embed the dataset into a representation whose entries are
mostly zeroes for most inputs. The use of sparse representations typically requires
increasing the dimensionality of the representation, so that the representation
becoming mostly zeroes does not discard too much information. This results in an
overall structure of the representation that tends to distribute data along the axes
of the representation space. Independent representations attempt to disentangle
the sources of variation underlying the data distribution such that the dimensions
of the representation are statistically independent.

Of course these three criteria are certainly not mutually exclusive. Low-

dimensional representations often yield elements that have fewer or weaker de-
pendencies than the original high-dimensional data. This is because one way to
reduce the size of a representation is to find and remove redundancies. Identifying
and removing more redundancy allows the dimensionality reduction algorithm to
achieve more compression while discarding less information.

The notion of representation is one of the central themes of deep learning and
therefore one of the central themes in this book. In this section, we develop some
simple examples of representation learning algorithms. Together, these example
algorithms show how to operationalize all three of the criteria above. Most of the
remaining chapters introduce additional representation learning algorithms that
develop these criteria in different ways or introduce other criteria.

5.8.1 Principal Components Analysis

In Sec. , we saw that the principal components analysis algorithm provides a2.12
means of compressing data. We can also view PCA as an unsupervised learning
algorithm that learns a representation of data. This representation is based on
two of the criteria for a simple representation described above. PCA learns a
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x

z= x W z
z

representation that has lower dimensionality than the original input. It also learns
a representation whose elements have no linear correlation with each other. This
is a first step toward the criterion of learning representations whose elements are
statistically independent. To achieve full independence, a representation learning
algorithm must also remove the nonlinear relationships between variables.

PCA learns an orthogonal, linear transformation of the data that projects an
input x to a representation z as shown in Fig. . In Sec. , we saw that we5.8 2.12
could learn a one-dimensional representation that best reconstructs the original
data (in the sense of mean squared error) and that this representation actually
corresponds to the first principal component of the data. Thus we can use PCA
as a simple and effective dimensionality reduction method that preserves as much
of the information in the data as possible (again, as measured by least-squares

reconstruction error). In the following, we will study how the PCA representation
decorrelates the original data representation .X

Let us consider the m n× -dimensional design matrix X. We will assume that
the data has a mean of zero, E[x] = . If this is not the case, the data can easily
be centered by subtracting the mean from all examples in a preprocessing step.

The unbiased sample covariance matrix associated with is given by:X

Var[ ] =x
1

m− 1
X X. (5.85)
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PCA finds a representation (through linear transformation) z = x W where
Var[ ]z is diagonal.

In Sec. , we saw that the principal components of a design matrix2.12 X are
given by the eigenvectors of X X. From this view,

X X W W= . (5.86)

In this section, we exploit an alternative derivation of the principal components. The
principal components may also be obtained via the singular value decomposition.
Specifically, they are the right singular vectors of X . To see this, letW be the
right singular vectors in the decomposition X =U W . We then recover the
original eigenvector equation with as the eigenvector basis:W

X X = U W U W = W W . (5.87)

The SVD is helpful to show that PCA results in a diagonal Var[z]. Using the
SVD of , we can express the variance of as:X X

Var[ ] =x
1

m− 1
X X (5.88)

=
1

m− 1
(U W ) U W (5.89)

=
1

m− 1
W U U W (5.90)

=
1

m− 1
W W , (5.91)

where we use the fact that U U = I because the U matrix of the singular value
definition is defined to be orthonormal. This shows that if we take z = x W, we
can ensure that the covariance of is diagonal as required:z

Var[ ] =z
1

m− 1
Z Z (5.92)

=
1

m− 1
W X XW (5.93)

=
1

m− 1
WW WW (5.94)

=
1

m− 1
, (5.95)

where this time we use the fact that WW = I, again from the definition of the
SVD.
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The above analysis shows that when we project the data x to z, via the linear
transformationW , the resulting representation has a diagonal covariance matrix
(as given by ) which immediately implies that the individual elements of z are
mutually uncorrelated.

This ability of PCA to transform data into a representation where the elements
are mutually uncorrelated is a very important property of PCA. It is a simple
example of a representation that attempt to

underlying the data. In the case of PCA, this disentangling takes
the form of finding a rotation of the input space (described byW ) that aligns the

principal axes of variance with the basis of the new representation space associated
with .z

While correlation is an important category of dependency between elements of
the data, we are also interested in learning representations that disentangle more
complicated forms of feature dependencies. For this, we will need more than what
can be done with a simple linear transformation.

5.8.2 -means Clusteringk

Another example of a simple representation learning algorithm is k -means clustering.
The k-means clustering algorithm divides the training set into k different clusters
of examples that are near each other. We can thus think of the algorithm as
providing a k-dimensional one-hot code vector h representing an input x. If x
belongs to cluster i , then hi = 1 and all other entries of the representation h are
zero.

The one-hot code provided by k-means clustering is an example of a sparse
representation, because the majority of its entries are zero for every input. Later,
we will develop other algorithms that learn more flexible sparse representations,
where more than one entry can be non-zero for each input x . One-hot codes

are an extreme example of sparse representations that lose many of the benefits
of a distributed representation. The one-hot code still confers some statistical
advantages (it naturally conveys the idea that all examples in the same cluster are
similar to each other) and it confers the computational advantage that the entire
representation may be captured by a single integer.

The k-means algorithmworks by initializing k different centroids {µ , . . . ,µ k }
to different values, then alternating between two different steps until convergence.
In one step, each training example is assigned to cluster i, where i is the index of
the nearest centroid µ i . In the other step, each centroid µ i is updated to the
mean of all training examples x j assigned to cluster .i
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One difficulty pertaining to clustering is that the clustering problem is inherently
ill-posed, in the sense that there is no single criterion that measures how well a
clustering of the data corresponds to the real world. We can measure properties of
the clustering such as the average Euclidean distance from a cluster centroid to the
members of the cluster. This allows us to tell how well we are able to reconstruct
the training data from the cluster assignments. We do not know how well the
cluster assignments correspond to properties of the real world. Moreover, there
may be many different clusterings that all correspond well to some property of
the real world. We may hope to find a clustering that relates to one feature but

obtain a different, equally valid clustering that is not relevant to our task. For
example, suppose that we run two clustering algorithms on a dataset consisting of
images of red trucks, images of red cars, images of gray trucks, and images of gray
cars. If we ask each clustering algorithm to find two clusters, one algorithm may
find a cluster of cars and a cluster of trucks, while another may find a cluster of
red vehicles and a cluster of gray vehicles. Suppose we also run a third clustering
algorithm, which is allowed to determine the number of clusters. This may assign
the examples to four clusters, red cars, red trucks, gray cars, and gray trucks. This
new clustering now at least captures information about both attributes, but it has
lost information about similarity. Red cars are in a different cluster from gray
cars, just as they are in a different cluster from gray trucks. The output of the

clustering algorithm does not tell us that red cars are more similar to gray cars
than they are to gray trucks. They are different from both things, and that is all
we know.

These issues illustrate some of the reasons that we may prefer a distributed
representation to a one-hot representation. A distributed representation could have
two attributes for each vehicle—one representing its color and one representing
whether it is a car or a truck. It is still not entirely clear what the optimal
distributed representation is (how can the learning algorithm know whether the
two attributes we are interested in are color and car-versus-truck rather than
manufacturer and age?) but having many attributes reduces the burden on the
algorithm to guess which single attribute we care about, and allows us to measure
similarity between objects in a fine-grained way by comparing many attributes

instead of just testing whether one attribute matches.

5.9 Stochastic Gradient Descent

Nearly all of deep learning is powered by one very important algorithm: stochastic
gradient descent SGDor . Stochastic gradient descent is an extension of the gradient

150



CHAPTER 5. MACHINE LEARNING BASICS

descent algorithm introduced in Sec. .4.3

A recurring problem in machine learning is that large training sets are necessary
for good generalization, but large training sets are also more computationally
expensive.

The cost function used by a machine learning algorithm often decomposes as a
sum over training examples of some per-example loss function. For example, the
negative conditional log-likelihood of the training data can be written as

J( ) = θ E
, p

L , y,(x θ) =
1

m

m

i

L(x i , y i ,θ) (5.96)

where is the per-example lossL L , y, p y .(x θ) = log− ( | x θ; )

For these additive cost functions, gradient descent requires computing

∇ J( ) =θ
1

m

m

i

∇ L(x i , y i , .θ) (5.97)

The computational cost of this operation is O(m). As the training set size grows to
billions of examples, the time to take a single gradient step becomes prohibitively
long.

The insight of stochastic gradient descent is that the gradient is an expectation.
The expectation may be approximately estimated using a small set of samples.
Specifically, on each step of the algorithm, we can sample a minibatch of examples
B = {x , . . . ,x m } drawn uniformly from the training set. The minibatch size
m is typically chosen to be a relatively small number of examples, ranging from
1 to a few hundred. Crucially, m is usually held fixed as the training set size m
grows. We may fit a training set with billions of examples using updates computed

on only a hundred examples.

The estimate of the gradient is formed as

g =
1

m
∇

m

i

L(x i , y i , .θ) (5.98)

using examples from the minibatch . The stochastic gradient descent algorithmB

then follows the estimated gradient downhill:

θ θ g← −  , (5.99)

where is the learning rate.
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Gradient descent in general has often been regarded as slow or unreliable. In
the past, the application of gradient descent to non-convex optimization problems
was regarded as foolhardy or unprincipled. Today, we know that the machine
learning models described in Part work very well when trained with gradientII
descent. The optimization algorithm may not be guaranteed to arrive at even a
local minimum in a reasonable amount of time, but it often finds a very low value
of the cost function quickly enough to be useful.

Stochastic gradient descent has many important uses outside the context of
deep learning. It is the main way to train large linear models on very large

datasets. For a fixed model size, the cost per SGD update does not depend on the
training set size m. In practice, we often use a larger model as the training set size
increases, but we are not forced to do so. The number of updates required to reach
convergence usually increases with training set size. However, as m approaches
infinity, the model will eventually converge to its best possible test error before
SGD has sampled every example in the training set. Increasing m further will not
extend the amount of training time needed to reach the model’s best possible test
error. From this point of view, one can argue that the asymptotic cost of training
a model with SGD is as a function of .O(1) m

Prior to the advent of deep learning, the main way to learn nonlinear models
was to use the kernel trick in combination with a linear model. Many kernel learning

algorithms require constructing anm m× matrix Gi,j = k(x i ,x j ). Constructing
this matrix has computational cost O(m ), which is clearly undesirable for datasets
with billions of examples. In academia, starting in 2006, deep learning was
initially interesting because it was able to generalize to new examples better
than competing algorithms when trained on medium-sized datasets with tens of
thousands of examples. Soon after, deep learning garnered additional interest in
industry, because it provided a scalable way of training nonlinear models on large
datasets.

Stochastic gradient descent and many enhancements to it are described further
in Chapter .8

5.10 Building a Machine Learning Algorithm

Nearly all deep learning algorithms can be described as particular instances of
a fairly simple recipe: combine a specification of a dataset, a cost function, an
optimization procedure and a model.

For example, the linear regression algorithm combines a dataset consisting of
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X yand , the cost function

J , b(w ) = −E
, p

log p ( )y | x , (5.100)

the model specification p (y | x) = N (y; x w+ b, 1), and, in most cases, the
optimization algorithm defined by solving for where the gradient of the cost is zero
using the normal equations.

By realizing that we can replace any of these components mostly independently
from the others, we can obtain a very wide variety of algorithms.

The cost function typically includes at least one term that causes the learning
process to perform statistical estimation. The most common cost function is the

negative log-likelihood, so that minimizing the cost function causes maximum
likelihood estimation.

The cost function may also include additional terms, such as regularization
terms. For example, we can add weight decay to the linear regression cost function
to obtain

J , b λ(w ) = || ||w − E
, p

log p ( )y | x . (5.101)

This still allows closed-form optimization.

If we change the model to be nonlinear, then most cost functions can no longer
be optimized in closed form. This requires us to choose an iterative numerical
optimization procedure, such as gradient descent.

The recipe for constructing a learning algorithm by combining models, costs, and
optimization algorithms supports both supervised and unsupervised learning. The
linear regression example shows how to support supervised learning. Unsupervised
learning can be supported by defining a dataset that contains onlyX and providing
an appropriate unsupervised cost and model. For example, we can obtain the first
PCA vector by specifying that our loss function is

J( ) = w E
p

|| − ||x r( ; )x w (5.102)

while our model is defined to have w with norm one and reconstruction function
r( ) = x w xw.

In some cases, the cost function may be a function that we cannot actually
evaluate, for computational reasons. In these cases, we can still approximately
minimize it using iterative numerical optimization so long as we have some way of
approximating its gradients.

Most machine learning algorithms make use of this recipe, though it may not
immediately be obvious. If a machine learning algorithm seems especially unique or
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hand-designed, it can usually be understood as using a special-case optimizer. Some
models such as decision trees or k-means require special-case optimizers because
their cost functions have flat regions that make them inappropriate for minimization
by gradient-based optimizers. Recognizing that most machine learning algorithms
can be described using this recipe helps to see the different algorithms as part of a
taxonomy of methods for doing related tasks that work for similar reasons, rather
than as a long list of algorithms that each have separate justifications.

5.11 Challenges Motivating Deep Learning

The simple machine learning algorithms described in this chapter work very well on
a wide variety of important problems. However, they have not succeeded in solving
the central problems in AI, such as recognizing speech or recognizing objects.

The development of deep learning was motivated in part by the failure of
traditional algorithms to generalize well on such AI tasks.

This section is about how the challenge of generalizing to new examples becomes
exponentially more difficult when working with high-dimensional data, and how
the mechanisms used to achieve generalization in traditional machine learning
are insufficient to learn complicated functions in high-dimensional spaces. Such

spaces also often impose high computational costs. Deep learning was designed to
overcome these and other obstacles.

5.11.1 The Curse of Dimensionality

Many machine learning problems become exceedingly difficult when the number
of dimensions in the data is high. This phenomenon is known as the curse
of dimensionality. Of particular concern is that the number of possible distinct
configurations of a set of variables increases exponentially as the number of variables

increases.
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×
10 = 1000

d v
O(v )

The curse of dimensionality arises in many places in computer science, and
especially so in machine learning.

One challenge posed by the curse of dimensionality is a statistical challenge.
As illustrated in Fig. , a statistical challenge arises because the number of5.9
possible configurations of x is much larger than the number of training examples.
To understand the issue, let us consider that the input space is organized into a
grid, like in the figure. In low dimensions we can describe this space with a low

number of grid cells that are mostly occupied by the data. When generalizing to a
new data point, we can usually tell what to do simply by inspecting the training
examples that lie in the same cell as the new input. For example, if estimating
the probability density at some point x, we can just return the number of training
examples in the same unit volume cell as x, divided by the total number of training
examples. If we wish to classify an example, we can return the most common class
of training examples in the same cell. If we are doing regression we can average
the target values observed over the examples in that cell. But what about the
cells for which we have seen no example? Because in high-dimensional spaces the
number of configurations is going to be huge, much larger than our number of
examples, most configurations will have no training example associated with it.
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How could we possibly say something meaningful about these new configurations?
Many traditional machine learning algorithms simply assume that the output at a
new point should be approximately the same as the output at the nearest training
point.

5.11.2 Local Constancy and Smoothness Regularization

In order to generalize well, machine learning algorithms need to be guided by prior

beliefs about what kind of function they should learn. Previously, we have seen
these priors incorporated as explicit beliefs in the form of probability distributions
over parameters of the model. More informally, we may also discuss prior beliefs as
directly influencing the itself and only indirectly acting on the parametersfunction
via their effect on the function. Additionally, we informally discuss prior beliefs as
being expressed implicitly, by choosing algorithms that are biased toward choosing
some class of functions over another, even though these biases may not be expressed
(or even possible to express) in terms of a probability distribution representing our
degree of belief in various functions.

Among the most widely used of these implicit “priors” is the smoothness prior
or local constancy prior. This prior states that the function we learn should not

change very much within a small region.

Many simpler algorithms rely exclusively on this prior to generalize well, and
as a result they fail to scale to the statistical challenges involved in solving AI-
level tasks. Throughout this book, we will describe how deep learning introduces
additional (explicit and implicit) priors in order to reduce the generalization
error on sophisticated tasks. Here, we explain why the smoothness prior alone is
insufficient for these tasks.

There are many different ways to implicitly or explicitly express a prior belief
that the learned function should be smooth or locally constant. All of these different
methods are designed to encourage the learning process to learn a function f that
satisfies the condition

f ( ) x ≈ f ( + )x  (5.103)

for most configurations x and small change . In other words, if we know a good
answer for an input x (for example, if x is a labeled training example) then that
answer is probably good in the neighborhood of x. If we have several good answers
in some neighborhood we would combine them (by some form of averaging or
interpolation) to produce an answer that agrees with as many of them as much as
possible.

An extreme example of the local constancy approach is the k -nearest neighbors

156



CHAPTER 5. MACHINE LEARNING BASICS

family of learning algorithms. These predictors are literally constant over each
region containing all the points x that have the same set of k nearest neighbors in
the training set. For k = 1, the number of distinguishable regions cannot be more
than the number of training examples.

While the k-nearest neighbors algorithm copies the output from nearby training
examples, most kernel machines interpolate between training set outputs associated
with nearby training examples. An important class of kernels is the family of local
kernels where k(u v, ) is large when u = v and decreases as u and v grow farther
apart from each other. A local kernel can be thought of as a similarity function

that performs template matching, by measuring how closely a test example x
resembles each training example x i . Much of the modern motivation for deep
learning is derived from studying the limitations of local template matching and
how deep models are able to succeed in cases where local template matching fails
( , ).Bengio et al. 2006b

Decision trees also suffer from the limitations of exclusively smoothness-based
learning because they break the input space into as many regions as there are
leaves and use a separate parameter (or sometimes many parameters for extensions
of decision trees) in each region. If the target function requires a tree with at
least n leaves to be represented accurately, then at least n training examples are
required to fit the tree. A multiple of n is needed to achieve some level of statistical

confidence in the predicted output.

In general, to distinguish O(k) regions in input space, all of these methods
require O(k) examples. Typically there are O( k) parameters, with O(1) parameters
associated with each of the O(k) regions. The case of a nearest neighbor scenario,
where each training example can be used to define at most one region, is illustrated
in Fig. .5.10

Is there a way to represent a complex function that has many more regions
to be distinguished than the number of training examples? Clearly, assuming
only smoothness of the underlying function will not allow a learner to do that.
For example, imagine that the target function is a kind of checkerboard. A
checkerboard contains many variations but there is a simple structure to them.

Imagine what happens when the number of training examples is substantially
smaller than the number of black and white squares on the checkerboard. Based
on only local generalization and the smoothness or local constancy prior, we would
be guaranteed to correctly guess the color of a new point if it lies within the same
checkerboard square as a training example. There is no guarantee that the learner
could correctly extend the checkerboard pattern to points lying in squares that do
not contain training examples. With this prior alone, the only information that an
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example tells us is the color of its square, and the only way to get the colors of the
entire checkerboard right is to cover each of its cells with at least one example.

The smoothness assumption and the associated non-parametric learning algo-
rithms work extremely well so long as there are enough examples for the learning
algorithm to observe high points on most peaks and low points on most valleys
of the true underlying function to be learned. This is generally true when the
function to be learned is smooth enough and varies in few enough dimensions.
In high dimensions, even a very smooth function can change smoothly but in a
different way along each dimension. If the function additionally behaves differently

in different regions, it can become extremely complicated to describe with a set of
training examples. If the function is complicated (we want to distinguish a huge
number of regions compared to the number of examples), is there any hope to
generalize well?

The answer to both of these questions is yes. The key insight is that a very
large number of regions, e.g., O(2 k), can be defined with O(k) examples, so long
as we introduce some dependencies between the regions via additional assumptions
about the underlying data generating distribution. In this way, we can actually
generalize non-locally ( , ; , ). ManyBengio and Monperrus 2005 Bengio et al. 2006c
different deep learning algorithms provide implicit or explicit assumptions that are
reasonable for a broad range of AI tasks in order to capture these advantages.

Other approaches to machine learning often make stronger, task-specific as-
sumptions. For example, we could easily solve the checkerboard task by providing
the assumption that the target function is periodic. Usually we do not include such
strong, task-specific assumptions into neural networks so that they can generalize
to a much wider variety of structures. AI tasks have structure that is much too
complex to be limited to simple, manually specified properties such as periodicity,
so we want learning algorithms that embody more general-purpose assumptions.
The core idea in deep learning is that we assume that the data was generated
by the or features, potentially at multiple levels in a
hierarchy. Many other similarly generic assumptions can further improve deep
learning algorithms. These apparently mild assumptions allow an exponential gain

in the relationship between the number of examples and the number of regions
that can be distinguished. These exponential gains are described more precisely in
Sec. , Sec. , and Sec. . The exponential advantages conferred by the6.4.1 15.4 15.5
use of deep, distributed representations counter the exponential challenges posed
by the curse of dimensionality.

159



CHAPTER 5. MACHINE LEARNING BASICS

5.11.3 Manifold Learning

An important concept underlying many ideas in machine learning is that of a
manifold.

A is a connected region. Mathematically, it is a set of points, associatedmanifold
with a neighborhood around each point. From any given point, the manifold locally
appears to be a Euclidean space. In everyday life, we experience the surface of the
world as a 2-D plane, but it is in fact a spherical manifold in 3-D space.

The definition of a neighborhood surrounding each point implies the existence
of transformations that can be applied to move on the manifold from one position
to a neighboring one. In the example of the world’s surface as a manifold, one can
walk north, south, east, or west.

Although there is a formal mathematical meaning to the term “manifold,”
in machine learning it tends to be used more loosely to designate a connected

set of points that can be approximated well by considering only a small number
of degrees of freedom, or dimensions, embedded in a higher-dimensional space.
Each dimension corresponds to a local direction of variation. See Fig. for an5.11
example of training data lying near a one-dimensional manifold embedded in two-
dimensional space. In the context of machine learning, we allow the dimensionality
of the manifold to vary from one point to another. This often happens when a
manifold intersects itself. For example, a figure eight is a manifold that has a single
dimension in most places but two dimensions at the intersection at the center.
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Many machine learning problems seem hopeless if we expect the machine
learning algorithm to learn functions with interesting variations across all of
R
n. Manifold learning algorithms surmount this obstacle by assuming that most

of R
n consists of invalid inputs, and that interesting inputs occur only along

a collection of manifolds containing a small subset of points, with interesting
variations in the output of the learned function occurring only along directions
that lie on the manifold, or with interesting variations happening only when we
move from one manifold to another. Manifold learning was introduced in the case
of continuous-valued data and the unsupervised learning setting, although this

probability concentration idea can be generalized to both discrete data and the
supervised learning setting: the key assumption remains that probability mass is
highly concentrated.

The assumption that the data lies along a low-dimensional manifold may not
always be correct or useful. We argue that in the context of AI tasks, such as
those that involve processing images, sounds, or text, the manifold assumption is
at least approximately correct. The evidence in favor of this assumption consists
of two categories of observations.

The first observation in favor of the manifold hypothesis is that the probability
distribution over images, text strings, and sounds that occur in real life is highly
concentrated. Uniform noise essentially never resembles structured inputs from

these domains. Fig. shows how, instead, uniformly sampled points look like the5.12
patterns of static that appear on analog television sets when no signal is available.
Similarly, if you generate a document by picking letters uniformly at random, what
is the probability that you will get a meaningful English-language text? Almost
zero, again, because most of the long sequences of letters do not correspond to a
natural language sequence: the distribution of natural language sequences occupies
a very small volume in the total space of sequences of letters.
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Of course, concentrated probability distributions are not sufficient to show
that the data lies on a reasonably small number of manifolds. We must also

establish that the examples we encounter are connected to each other by other
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examples, with each example surrounded by other highly similar examples that
may be reached by applying transformations to traverse the manifold. The second
argument in favor of the manifold hypothesis is that we can also imagine such
neighborhoods and transformations, at least informally. In the case of images, we
can certainly think of many possible transformations that allow us to trace out a
manifold in image space: we can gradually dim or brighten the lights, gradually
move or rotate objects in the image, gradually alter the colors on the surfaces of
objects, etc. It remains likely that there are multiple manifolds involved in most
applications. For example, the manifold of images of human faces may not be

connected to the manifold of images of cat faces.

These thought experiments supporting the manifold hypotheses convey some in-
tuitive reasons supporting it. More rigorous experiments (Cayton 2005 Narayanan, ;
and Mitter 2010 Schölkopf 1998 Roweis and Saul 2000 Tenenbaum, ; et al., ; , ; et al.,
2000 Brand 2003 Belkin and Niyogi 2003 Donoho and Grimes 2003 Weinberger; , ; , ; , ;
and Saul 2004, ) clearly support the hypothesis for a large class of datasets of
interest in AI.

When the data lies on a low-dimensional manifold, it can be most natural
for machine learning algorithms to represent the data in terms of coordinates on
the manifold, rather than in terms of coordinates in R

n. In everyday life, we can
think of roads as 1-D manifolds embedded in 3-D space. We give directions to

specific addresses in terms of address numbers along these 1-D roads, not in terms
of coordinates in 3-D space. Extracting these manifold coordinates is challenging,
but holds the promise to improve many machine learning algorithms. This general
principle is applied in many contexts. Fig. shows the manifold structure of a5.13
dataset consisting of faces. By the end of this book, we will have developed the
methods necessary to learn such a manifold structure. In Fig. , we will see20.6
how a machine learning algorithm can successfully accomplish this goal.

This concludes Part , which has provided the basic concepts in mathematicsI
and machine learning which are employed throughout the remaining parts of the
book. You are now prepared to embark upon your study of deep learning.
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Part II

Deep Networks: Modern

Practices
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This part of the book summarizes the state of modern deep learning as it is
used to solve practical applications.

Deep learning has a long history and many aspirations. Several approaches
have been proposed that have yet to entirely bear fruit. Several ambitious goals
have yet to be realized. These less-developed branches of deep learning appear in
the final part of the book.

This part focuses only on those approaches that are essentially working tech-
nologies that are already used heavily in industry.

Modern deep learning provides a very powerful framework for supervised
learning. By adding more layers and more units within a layer, a deep network can
represent functions of increasing complexity. Most tasks that consist of mapping an
input vector to an output vector, and that are easy for a person to do rapidly, can
be accomplished via deep learning, given sufficiently large models and sufficiently
large datasets of labeled training examples. Other tasks, that can not be described
as associating one vector to another, or that are difficult enough that a person
would require time to think and reflect in order to accomplish the task, remain
beyond the scope of deep learning for now.

This part of the book describes the core parametric function approximation
technology that is behind nearly all modern practical applications of deep learning.

We begin by describing the feedforward deep network model that is used to
represent these functions. Next, we present advanced techniques for regularization
and optimization of such models. Scaling these models to large inputs such as high
resolution images or long temporal sequences requires specialization. We introduce
the convolutional network for scaling to large images and the recurrent neural
network for processing temporal sequences. Finally, we present general guidelines
for the practical methodology involved in designing, building, and configuring an
application involving deep learning, and review some of the applications of deep
learning.

These chapters are the most important for a practitioner—someone who wants
to begin implementing and using deep learning algorithms to solve real-world
problems today.
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Chapter 6

Deep Feedforward Networks

Deep feedforward networks feedforward neural networks multi-, also often called , or
layer perceptrons MLPs( ), are the quintessential deep learning models. The goal
of a feedforward network is to approximate some function f∗. For example, for
a classifier, y = f ∗(x) maps an input x to a category y. A feedforward network

defines a mapping y = f (x; θ) and learns the value of the parameters θ that result
in the best function approximation.

These models are called feedforward because information flows through the
function being evaluated from x, through the intermediate computations used to
define f , and finally to the output y. There are no feedback connections in which
outputs of the model are fed back into itself. When feedforward neural networks
are extended to include feedback connections, they are called recurrent neural
networks, presented in Chapter .10

Feedforward networks are of extreme importance to machine learning practi-
tioners. They form the basis of many important commercial applications. For
example, the convolutional networks used for object recognition from photos are a

specialized kind of feedforward network. Feedforward networks are a conceptual
stepping stone on the path to recurrent networks, which power many natural
language applications.

Feedforward neural networks are called because they are typically rep-networks
resented by composing together many different functions. The model is associated
with a directed acyclic graph describing how the functions are composed together.
For example, we might have three functions f(1), f(2), and f (3) connected in a
chain, to form f(x) = f(3) (f (2)(f(1)(x))). These chain structures are the most
commonly used structures of neural networks. In this case, f (1) is called the first
layer of the network, f (2) is called the second layer, and so on. The overall length
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of the chain gives the of the model. It is from this terminology that thedepth
name “deep learning” arises. The final layer of a feedforward network is called the
output layer. During neural network training, we drive f(x) to match f ∗(x). The
training data provides us with noisy, approximate examples of f ∗(x) evaluated at
different training points. Each example x is accompanied by a label y f≈ ∗(x).
The training examples specify directly what the output layer must do at each point
x; it must produce a value that is close to y. The behavior of the other layers is
not directly specified by the training data. The learning algorithm must decide
how to use those layers to produce the desired output, but the training data does

not say what each individual layer should do. Instead, the learning algorithm must
decide how to use these layers to best implement an approximation of f ∗. Because
the training data does not show the desired output for each of these layers, these
layers are called .hidden layers

Finally, these networks are called neural because they are loosely inspired by
neuroscience. Each hidden layer of the network is typically vector-valued. The
dimensionality of these hidden layers determines the of the model. Eachwidth
element of the vector may be interpreted as playing a role analogous to a neuron.
Rather than thinking of the layer as representing a single vector-to-vector function,
we can also think of the layer as consisting of many that act in parallel,units
each representing a vector-to-scalar function. Each unit resembles a neuron in

the sense that it receives input from many other units and computes its own
activation value. The idea of using many layers of vector-valued representation
is drawn from neuroscience. The choice of the functions f( )i (x) used to compute
these representations is also loosely guided by neuroscientific observations about
the functions that biological neurons compute. However, modern neural network
research is guided by many mathematical and engineering disciplines, and the
goal of neural networks is not to perfectly model the brain. It is best to think of
feedforward networks as function approximation machines that are designed to
achieve statistical generalization, occasionally drawing some insights from what we
know about the brain, rather than as models of brain function.

One way to understand feedforward networks is to begin with linear models

and consider how to overcome their limitations. Linear models, such as logistic
regression and linear regression, are appealing because they may be fit efficiently
and reliably, either in closed form or with convex optimization. Linear models also
have the obvious defect that the model capacity is limited to linear functions, so
the model cannot understand the interaction between any two input variables.

To extend linear models to represent nonlinear functions of x, we can apply
the linear model not to x itself but to a transformed input φ(x), where φ is a
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nonlinear transformation. Equivalently, we can apply the kernel trick described in
Sec. , to obtain a nonlinear learning algorithm based on implicitly applying5.7.2
the φ mapping. We can think of φ as providing a set of features describing x, or
as providing a new representation for .x

The question is then how to choose the mapping .φ

1. One option is to use a very generic φ, such as the infinite-dimensional φ that
is implicitly used by kernel machines based on the RBF kernel. If φ(x) is
of high enough dimension, we can always have enough capacity to fit the
training set, but generalization to the test set often remains poor. Very
generic feature mappings are usually based only on the principle of local
smoothness and do not encode enough prior information to solve advanced
problems.

2. Another option is to manually engineer φ. Until the advent of deep learning,
this was the dominant approach. This approach requires decades of human
effort for each separate task, with practitioners specializing in different
domains such as speech recognition or computer vision, and with little
transfer between domains.

3. The strategy of deep learning is to learn φ. In this approach, we have a model
y = f(x;θ w, ) = φ(x; θ)>w. We now have parameters θ that we use to learn

φ from a broad class of functions, and parameters w that map from φ(x) to
the desired output. This is an example of a deep feedforward network, with
φ defining a hidden layer. This approach is the only one of the three that
gives up on the convexity of the training problem, but the benefits outweigh
the harms. In this approach, we parametrize the representation as φ(x; θ)
and use the optimization algorithm to find the θ that corresponds to a good
representation. If we wish, this approach can capture the benefit of the first
approach by being highly generic—we do so by using a very broad family
φ(x;θ). This approach can also capture the benefit of the second approach.
Human practitioners can encode their knowledge to help generalization by
designing families φ(x ;θ) that they expect will perform well. The advantage

is that the human designer only needs to find the right general function
family rather than finding precisely the right function.

This general principle of improving models by learning features extends beyond
the feedforward networks described in this chapter. It is a recurring theme of deep
learning that applies to all of the kinds of models described throughout this book.
Feedforward networks are the application of this principle to learning deterministic
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mappings from x to y that lack feedback connections. Other models presented
later will apply these principles to learning stochastic mappings, learning functions
with feedback, and learning probability distributions over a single vector.

We begin this chapter with a simple example of a feedforward network. Next,
we address each of the design decisions needed to deploy a feedforward network.
First, training a feedforward network requires making many of the same design
decisions as are necessary for a linear model: choosing the optimizer, the cost
function, and the form of the output units. We review these basics of gradient-based
learning, then proceed to confront some of the design decisions that are unique

to feedforward networks. Feedforward networks have introduced the concept of a
hidden layer, and this requires us to choose the that will beactivation functions
used to compute the hidden layer values. We must also design the architecture of
the network, including how many layers the network should contain, how these
networks should be connected to each other, and how many units should be in
each layer. Learning in deep neural networks requires computing the gradients of
complicated functions. We present the back-propagation algorithm and its modern
generalizations, which can be used to efficiently compute these gradients. Finally,
we close with some historical perspective.

6.1 Example: Learning XOR

To make the idea of a feedforward network more concrete, we begin with an
example of a fully functioning feedforward network on a very simple task: learning
the XOR function.

The XOR function (“exclusive or”) is an operation on two binary values, x1
and x2. When exactly one of these binary values is equal to , the XOR function1
returns . Otherwise, it returns 0. The XOR function provides the target function1
y = f∗(x) that we want to learn. Our model provides a function y = f(x;θ) and
our learning algorithm will adapt the parameters θ to make f as similar as possible
to f∗ .

In this simple example, we will not be concerned with statistical generalization.
We want our network to perform correctly on the four points X = {[0,0]>, [0 , 1]> ,
[1,0]>, and [1, 1]>}. We will train the network on all four of these points. The
only challenge is to fit the training set.

We can treat this problem as a regression problem and use a mean squared error
loss function. We choose this loss function to simplify the math for this example
as much as possible. We will see later that there are other, more appropriate
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approaches for modeling binary data.

Evaluated on our whole training set, the MSE loss function is

J( ) =θ
1

4 ∈X
(f∗ ( ) ( ; ))x − f x θ 2 . (6.1)

Now we must choose the form of our model, f(x;θ). Suppose that we choose
a linear model, with consisting of and . Our model is defined to beθ w b

f , b( ;x w ) = x>w + b. (6.2)

We can minimize J(θ) in closed form with respect to w and b using the normal
equations.

After solving the normal equations, we obtain w = and b= 1
2. The linear

model simply outputs 0.5 everywhere. Why does this happen? Fig. shows how6.1
a linear model is not able to represent the XOR function. One way to solve this
problem is to use a model that learns a different feature space in which a linear
model is able to represent the solution.

Specifically, we will introduce a very simple feedforward network with one
hidden layer containing two hidden units. See Fig. for an illustration of6.2
this model. This feedforward network has a vector of hidden units h that are
computed by a function f(1)(x;W c, ). The values of these hidden units are then
used as the input for a second layer. The second layer is the output layer of the
network. The output layer is still just a linear regression model, but now it is
applied to h rather than to x. The network now contains two functions chained
together: h= f(1) (x;W c, ) and y = f (2)(h;w, b), with the complete model being
f , , , b f( ;x W c w ) = (2)(f (1)( ))x .

What function should f (1) compute? Linear models have served us well so far,
and it may be tempting to make f(1) be linear as well. Unfortunately, if f(1) were

linear, then the feedforward network as a whole would remain a linear function of
its input. Ignoring the intercept terms for the moment, suppose f (1)(x) =W>x
and f(2)(h) = h>w. Then f(x) = w>W>x. We could represent this function as
f( ) = x x>w 0 where w 0 = Ww.

Clearly, we must use a nonlinear function to describe the features. Most neural
networks do so using an affine transformation controlled by learned parameters,
followed by a fixed, nonlinear function called an activation function. We use that
strategy here, by defining h = g(W >x+ c), where W provides the weights of a
linear transformation and c the biases. Previously, to describe a linear regression
model, we used a vector of weights and a scalar bias parameter to describe an
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W
x h w h y

affine transformation from an input vector to an output scalar. Now, we describe
an affine transformation from a vector x to a vector h, so an entire vector of bias
parameters is needed. The activation function g is typically chosen to be a function
that is applied element-wise, with h i =g(x>W :,i+ci). In modern neural networks,
the default recommendation is to use the rectified linear unit or ReLU (Jarrett
et al., ;2009 Nair and Hinton 2010 Glorot 2011a, ; et al., ) defined by the activation
function depicted in Fig. .g z , z( ) = max 0{ } 6.3

We can now specify our complete network as

f , , , b( ;x W c w ) = w> max 0{ ,W >x c+ } + b. (6.3)

We can now specify a solution to the XOR problem. Let

W =
1 1
1 1

, (6.4)

c =
0

−1
, (6.5)

w =
1

−2
, (6.6)
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and .b = 0

We can now walk through the way that the model processes a batch of inputs.
LetX be the design matrix containing all four points in the binary input space,
with one example per row:

X =

0 0

0 1
1 0

1 1

. (6.7)

The first step in the neural network is to multiply the input matrix by the first
layer’s weight matrix:

XW =

0 0
1 1
1 1
2 2

. (6.8)

Next, we add the bias vector , to obtainc

0 1−
1 0
1 0
2 1

. (6.9)

In this space, all of the examples lie along a line with slope . As we move along1

this line, the output needs to begin at , then rise to , then drop back down to .0 1 0
A linear model cannot implement such a function. To finish computing the value
of for each example, we apply the rectified linear transformation:h

0 0
1 0

1 0
2 1

. (6.10)

This transformation has changed the relationship between the examples. They no
longer lie on a single line. As shown in Fig. , they now lie in a space where a6.1
linear model can solve the problem.

We finish by multiplying by the weight vector :w

0

1
1
0

. (6.11)
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The neural network has obtained the correct answer for every example in the batch.

In this example, we simply specified the solution, then showed that it obtained
zero error. In a real situation, there might be billions of model parameters and
billions of training examples, so one cannot simply guess the solution as we did
here. Instead, a gradient-based optimization algorithm can find parameters that
produce very little error. The solution we described to the XOR problem is at a
global minimum of the loss function, so gradient descent could converge to this
point. There are other equivalent solutions to the XOR problem that gradient
descent could also find. The convergence point of gradient descent depends on the

initial values of the parameters. In practice, gradient descent would usually not
find clean, easily understood, integer-valued solutions like the one we presented
here.

6.2 Gradient-Based Learning

Designing and training a neural network is not much different from training any
other machine learning model with gradient descent. In Sec. , we described5.10
how to build a machine learning algorithm by specifying an optimization procedure,
a cost function, and a model family.

The largest difference between the linear models we have seen so far and neural
networks is that the nonlinearity of a neural network causes most interesting loss
functions to become non-convex. This means that neural networks are usually
trained by using iterative, gradient-based optimizers that merely drive the cost
function to a very low value, rather than the linear equation solvers used to train
linear regression models or the convex optimization algorithms with global conver-
gence guarantees used to train logistic regression or SVMs. Convex optimization
converges starting from any initial parameters (in theory—in practice it is very
robust but can encounter numerical problems). Stochastic gradient descent applied
to non-convex loss functions has no such convergence guarantee, and is sensitive
to the values of the initial parameters. For feedforward neural networks, it is

important to initialize all weights to small random values. The biases may be
initialized to zero or to small positive values. The iterative gradient-based opti-
mization algorithms used to train feedforward networks and almost all other deep
models will be described in detail in Chapter , with parameter initialization in8
particular discussed in Sec. . For the moment, it suffices to understand that8.4
the training algorithm is almost always based on using the gradient to descend the
cost function in one way or another. The specific algorithms are improvements
and refinements on the ideas of gradient descent, introduced in Sec. , and,4.3
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more specifically, are most often improvements of the stochastic gradient descent
algorithm, introduced in Sec. .5.9

We can of course, train models such as linear regression and support vector
machines with gradient descent too, and in fact this is common when the training
set is extremely large. From this point of view, training a neural network is not
much different from training any other model. Computing the gradient is slightly
more complicated for a neural network, but can still be done efficiently and exactly.
Sec. will describe how to obtain the gradient using the back-propagation6.5
algorithm and modern generalizations of the back-propagation algorithm.

As with other machine learning models, to apply gradient-based learning we
must choose a cost function, and we must choose how to represent the output of
the model. We now revisit these design considerations with special emphasis on
the neural networks scenario.

An important aspect of the design of a deep neural network is the choice of the

cost function. Fortunately, the cost functions for neural networks are more or less
the same as those for other parametric models, such as linear models.

In most cases, our parametric model defines a distribution p(y x| ;θ ) and
we simply use the principle of maximum likelihood. This means we use the
cross-entropy between the training data and the model’s predictions as the cost
function.

Sometimes, we take a simpler approach, where rather than predicting a complete
probability distribution over y, we merely predict some statistic of y conditioned
on . Specialized loss functions allow us to train a predictor of these estimates.x

The total cost function used to train a neural network will often combine one
of the primary cost functions described here with a regularization term. We have

already seen some simple examples of regularization applied to linear models in Sec.
5.2.2. The weight decay approach used for linear models is also directly applicable
to deep neural networks and is among the most popular regularization strategies.
More advanced regularization strategies for neural networks will be described in
Chapter .7

Most modern neural networks are trained using maximum likelihood. This means
that the cost function is simply the negative log-likelihood, equivalently described
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as the cross-entropy between the training data and the model distribution. This
cost function is given by

J( ) = θ −E , ∼p̂ log pmodel( )y x| . (6.12)

The specific form of the cost function changes from model to model, depending
on the specific form of log pmodel . The expansion of the above equation typically

yields some terms that do not depend on the model parameters and may be
discarded. For example, as we saw in Sec. , if5.5.1 pmodel (y x| ) = N (y;f (x;θ), I),
then we recover the mean squared error cost,

J θ( ) =
1

2
E , ∼p̂ || − ||y f( ; )x θ 2 + const, (6.13)

up to a scaling factor of 12 and a term that does not depend on . The discardedθ
constant is based on the variance of the Gaussian distribution, which in this case
we chose not to parametrize. Previously, we saw that the equivalence between
maximum likelihood estimation with an output distribution and minimization of
mean squared error holds for a linear model, but in fact, the equivalence holds

regardless of the used to predict the mean of the Gaussian.f( ; )x θ

An advantage of this approach of deriving the cost function from maximum
likelihood is that it removes the burden of designing cost functions for each model.
Specifying a model p(y x| ) automatically determines a cost function log p(y x| ).

One recurring theme throughout neural network design is that the gradient of
the cost function must be large and predictable enough to serve as a good guide
for the learning algorithm. Functions that saturate (become very flat) undermine
this objective because they make the gradient become very small. In many cases
this happens because the activation functions used to produce the output of the
hidden units or the output units saturate. The negative log-likelihood helps to
avoid this problem for many models. Many output units involve an exp function

that can saturate when its argument is very negative. The log function in the
negative log-likelihood cost function undoes the exp of some output units. We will
discuss the interaction between the cost function and the choice of output unit in
Sec. .6.2.2

One unusual property of the cross-entropy cost used to perform maximum
likelihood estimation is that it usually does not have a minimum value when applied
to the models commonly used in practice. For discrete output variables, most
models are parametrized in such a way that they cannot represent a probability
of zero or one, but can come arbitrarily close to doing so. Logistic regression
is an example of such a model. For real-valued output variables, if the model
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can control the density of the output distribution (for example, by learning the
variance parameter of a Gaussian output distribution) then it becomes possible
to assign extremely high density to the correct training set outputs, resulting in
cross-entropy approaching negative infinity. Regularization techniques described
in Chapter provide several different ways of modifying the learning problem so7
that the model cannot reap unlimited reward in this way.

Instead of learning a full probability distribution p(y x| ;θ) we often want to learn
just one conditional statistic of given .y x

For example, we may have a predictor f (x;θ) that we wish to predict the mean
of .y

If we use a sufficiently powerful neural network, we can think of the neural

network as being able to represent any function f from a wide class of functions,
with this class being limited only by features such as continuity and boundedness
rather than by having a specific parametric form. From this point of view, we
can view the cost function as being a rather than just a function. Afunctional
functional is a mapping from functions to real numbers. We can thus think of
learning as choosing a function rather than merely choosing a set of parameters.
We can design our cost functional to have its minimum occur at some specific
function we desire. For example, we can design the cost functional to have its
minimum lie on the function that maps x to the expected value of y given x.
Solving an optimization problem with respect to a function requires a mathematical
tool called calculus of variations, described in Sec. . It is not necessary to19.4.2

understand calculus of variations to understand the content of this chapter. At
the moment, it is only necessary to understand that calculus of variations may be
used to derive the following two results.

Our first result derived using calculus of variations is that solving the optimiza-
tion problem

f ∗ = arg min
f

E , ∼p || − ||y f( )x 2 (6.14)

yields
f ∗( ) = x E ∼p ( )| [ ]y , (6.15)

so long as this function lies within the class we optimize over. In other words, if we
could train on infinitely many samples from the true data-generating distribution,
minimizing the mean squared error cost function gives a function that predicts the
mean of for each value of .y x
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Different cost functions give different statistics. A second result derived using
calculus of variations is that

f ∗ = arg min
f

E , ∼p || − ||y f( )x 1 (6.16)

yields a function that predicts the value of y for each x, so long as such a
function may be described by the family of functions we optimize over. This cost
function is commonly called mean absolute error.

Unfortunately, mean squared error and mean absolute error often lead to poor
results when used with gradient-based optimization. Some output units that
saturate produce very small gradients when combined with these cost functions.

This is one reason that the cross-entropy cost function is more popular than mean
squared error or mean absolute error, even when it is not necessary to estimate an
entire distribution .p( )y x|

The choice of cost function is tightly coupled with the choice of output unit. Most
of the time, we simply use the cross-entropy between the data distribution and the
model distribution. The choice of how to represent the output then determines
the form of the cross-entropy function.

Any kind of neural network unit that may be used as an output can also be
used as a hidden unit. Here, we focus on the use of these units as outputs of the
model, but in principle they can be used internally as well. We revisit these units
with additional detail about their use as hidden units in Sec. .6.3

Throughout this section, we suppose that the feedforward network provides a
set of hidden features defined by h = f (x; θ). The role of the output layer is then
to provide some additional transformation from the features to complete the task
that the network must perform.

One simple kind of output unit is an output unit based on an affine transformation
with no nonlinearity. These are often just called linear units.

Given featuresh, a layer of linear output units produces a vector ŷ = W>h+b.

Linear output layers are often used to produce the mean of a conditional
Gaussian distribution:

p( ) = ( ;y x| N y ŷ I, ). (6.17)
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Maximizing the log-likelihood is then equivalent to minimizing the mean squared
error.

The maximum likelihood framework makes it straightforward to learn the
covariance of the Gaussian too, or to make the covariance of the Gaussian be a
function of the input. However, the covariance must be constrained to be a positive
definite matrix for all inputs. It is difficult to satisfy such constraints with a linear
output layer, so typically other output units are used to parametrize the covariance.
Approaches to modeling the covariance are described shortly, in Sec. .6.2.2.4

Because linear units do not saturate, they pose little difficulty for gradient-
based optimization algorithms and may be used with a wide variety of optimization
algorithms.

Many tasks require predicting the value of a binary variable y . Classification
problems with two classes can be cast in this form.

The maximum-likelihood approach is to define a Bernoulli distribution over y

conditioned on .x

A Bernoulli distribution is defined by just a single number. The neural net
needs to predict only P (y= 1 | x). For this number to be a valid probability, it
must lie in the interval [0, 1].

Satisfying this constraint requires some careful design effort. Suppose we were
to use a linear unit, and threshold its value to obtain a valid probability:

P y( = 1 ) = max| x 0 min, 1,w>h+ b . (6.18)

This would indeed define a valid conditional distribution, but we would not be able

to train it very effectively with gradient descent. Any time that w>h + b strayed
outside the unit interval, the gradient of the output of the model with respect to
its parameters would be . A gradient of is typically problematic because the
learning algorithm no longer has a guide for how to improve the corresponding
parameters.

Instead, it is better to use a different approach that ensures there is always a
strong gradient whenever the model has the wrong answer. This approach is based
on using sigmoid output units combined with maximum likelihood.

A sigmoid output unit is defined by

ŷ σ= w>h+ b (6.19)
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where is the logistic sigmoid function described in Sec. .σ 3.10

We can think of the sigmoid output unit as having two components. First, it
uses a linear layer to compute z =w>h+ b. Next, it uses the sigmoid activation
function to convert into a probability.z

We omit the dependence on x for the moment to discuss how to define a
probability distribution over y using the value z . The sigmoid can be motivated
by constructing an unnormalized probability distribution P̃(y ), which does not
sum to 1. We can then divide by an appropriate constant to obtain a valid

probability distribution. If we begin with the assumption that the unnormalized log
probabilities are linear in y and z , we can exponentiate to obtain the unnormalized
probabilities. We then normalize to see that this yields a Bernoulli distribution
controlled by a sigmoidal transformation of :z

log P̃ y yz( ) = (6.20)

P̃ y yz( ) = exp( ) (6.21)

P y( ) =
exp( )yz
1
y =0 exp(y 0z)

(6.22)

P y σ y z .( ) = ((2 − 1) ) (6.23)

Probability distributions based on exponentiation and normalization are common
throughout the statistical modeling literature. The z variable defining such a
distribution over binary variables is called a logit.

This approach to predicting the probabilities in log-space is natural to use
with maximum likelihood learning. Because the cost function used with maximum
likelihood is − logP(y | x), the log in the cost function undoes the exp of the
sigmoid. Without this effect, the saturation of the sigmoid could prevent gradient-

based learning from making good progress. The loss function for maximum
likelihood learning of a Bernoulli parametrized by a sigmoid is

J P y( ) = logθ − ( | x) (6.24)

= log ((2 1) )− σ y − z (6.25)

= ((1 2 ) )ζ − y z . (6.26)

This derivation makes use of some properties from Sec. . By rewriting3.10
the loss in terms of the softplus function, we can see that it saturates only when
(1 − 2y)z is very negative. Saturation thus occurs only when the model already
has the right answer—when y = 1 and z is very positive, or y = 0 and z is very
negative. When z has the wrong sign, the argument to the softplus function,
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(1− 2y )z, may be simplified to | |z . As | |z becomes large while z has the wrong sign,
the softplus function asymptotes toward simply returning its argument | |z . The
derivative with respect to z asymptotes to sign(z), so, in the limit of extremely
incorrect z, the softplus function does not shrink the gradient at all. This property
is very useful because it means that gradient-based learning can act to quickly
correct a mistaken .z

When we use other loss functions, such as mean squared error, the loss can
saturate anytime σ(z ) saturates. The sigmoid activation function saturates to 0
when z becomes very negative and saturates to when1 z becomes very positive.

The gradient can shrink too small to be useful for learning whenever this happens,
whether the model has the correct answer or the incorrect answer. For this reason,
maximum likelihood is almost always the preferred approach to training sigmoid
output units.

Analytically, the logarithm of the sigmoid is always defined and finite, because
the sigmoid returns values restricted to the open interval (0,1), rather than using
the entire closed interval of valid probabilities [0,1]. In software implementations,
to avoid numerical problems, it is best to write the negative log-likelihood as a
function of z, rather than as a function of ŷ = σ (z). If the sigmoid function
underflows to zero, then taking the logarithm of ŷ yields negative infinity.

Any time we wish to represent a probability distribution over a discrete variable
with n possible values, we may use the softmax function. This can be seen as a
generalization of the sigmoid function which was used to represent a probability
distribution over a binary variable.

Softmax functions are most often used as the output of a classifier, to represent
the probability distribution over n different classes. More rarely, softmax functions

can be used inside the model itself, if we wish the model to choose between one of
n different options for some internal variable.

In the case of binary variables, we wished to produce a single number

ŷ P y .= ( = 1 )| x (6.27)

Because this number needed to lie between and , and because we wanted the0 1
logarithm of the number to be well-behaved for gradient-based optimization of
the log-likelihood, we chose to instead predict a number z = log P̃(y = 1 | x).
Exponentiating and normalizing gave us a Bernoulli distribution controlled by the
sigmoid function.
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To generalize to the case of a discrete variable with n values, we now need
to produce a vector ŷ, with ŷi = P (y = i | x). We require not only that each
element of ŷi be between and , but also that the entire vector sums to so that0 1 1
it represents a valid probability distribution. The same approach that worked for
the Bernoulli distribution generalizes to the multinoulli distribution. First, a linear
layer predicts unnormalized log probabilities:

z W= >h b+ , (6.28)

where z i = log P̃ (y = i | x). The softmax function can then exponentiate and
normalize to obtain the desiredz ŷ. Formally, the softmax function is given by

softmax( )z i =
exp(zi)

j exp(zj )
. (6.29)

As with the logistic sigmoid, the use of the exp function works very well when
training the softmax to output a target value y using maximum log-likelihood. In
this case, we wish to maximize logP (y = i ;z) = log softmax(z)i. Defining the
softmax in terms of exp is natural because the log in the log-likelihood can undo
the of the softmax:exp

log softmax( )z i = zi − log
j

exp(zj ). (6.30)

The first term of Eq. shows that the input6.30 zi always has a direct con-
tribution to the cost function. Because this term cannot saturate, we know that
learning can proceed, even if the contribution of zi to the second term of Eq. 6.30
becomes very small. When maximizing the log-likelihood, the first term encourages
zi to be pushed up, while the second term encourages all of z to be pushed down.
To gain some intuition for the second term, log j exp(zj), observe that this term
can be roughly approximated by maxj z j. This approximation is based on the idea
that exp(zk) is insignificant for any zk that is noticeably less than max j z j. The

intuition we can gain from this approximation is that the negative log-likelihood
cost function always strongly penalizes the most active incorrect prediction. If the
correct answer already has the largest input to the softmax, then the −zi term
and the log j exp(zj) ≈ maxj zj = zi terms will roughly cancel. This example
will then contribute little to the overall training cost, which will be dominated by
other examples that are not yet correctly classified.

So far we have discussed only a single example. Overall, unregularized maximum
likelihood will drive the model to learn parameters that drive the softmax to predict
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the fraction of counts of each outcome observed in the training set:

softmax( ( ; ))z x θ i ≈
m
j=1 y =i, =
m
j=1 =

. (6.31)

Because maximum likelihood is a consistent estimator, this is guaranteed to happen
so long as the model family is capable of representing the training distribution. In

practice, limited model capacity and imperfect optimization will mean that the
model is only able to approximate these fractions.

Many objective functions other than the log-likelihood do not work as well
with the softmax function. Specifically, objective functions that do not use a log to
undo the exp of the softmax fail to learn when the argument to the exp becomes
very negative, causing the gradient to vanish. In particular, squared error is a
poor loss function for softmax units, and can fail to train the model to change its
output, even when the model makes highly confident incorrect predictions ( ,Bridle
1990). To understand why these other loss functions can fail, we need to examine
the softmax function itself.

Like the sigmoid, the softmax activation can saturate. The sigmoid function has

a single output that saturates when its input is extremely negative or extremely
positive. In the case of the softmax, there are multiple output values. These
output values can saturate when the differences between input values become
extreme. When the softmax saturates, many cost functions based on the softmax
also saturate, unless they are able to invert the saturating activating function.

To see that the softmax function responds to the difference between its inputs,
observe that the softmax output is invariant to adding the same scalar to all of its
inputs:

softmax( ) = softmax( + )z z c . (6.32)

Using this property, we can derive a numerically stable variant of the softmax:

softmax( ) = softmax( maxz z −
i
zi). (6.33)

The reformulated version allows us to evaluate softmax with only small numerical
errors even when z contains extremely large or extremely negative numbers. Ex-
amining the numerically stable variant, we see that the softmax function is driven
by the amount that its arguments deviate from maxi zi.

An output softmax(z)i saturates to when the corresponding input is maximal1 
(zi = maxi zi ) and zi is much greater than all of the other inputs. The output
softmax(z)i can also saturate to when0 zi is not maximal and the maximum is
much greater. This is a generalization of the way that sigmoid units saturate, and
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can cause similar difficulties for learning if the loss function is not designed to
compensate for it.

The argument z to the softmax function can be produced in two different ways.
The most common is simply to have an earlier layer of the neural network output
every element of z, as described above using the linear layer z = W>h+b . While
straightforward, this approach actually overparametrizes the distribution. The
constraint that the n outputs must sum to means that only1 n− 1 parameters are
necessary; the probability of the n -th value may be obtained by subtracting the
first n−1 1probabilities from . We can thus impose a requirement that one element

of z be fixed. For example, we can require that zn = 0. Indeed, this is exactly
what the sigmoid unit does. Defining P (y = 1 | x) = σ(z) is equivalent to defining
P (y= 1 | x) = softmax(z )1 with a two-dimensional z and z1 = 0. Both the n− 1
argument and the n argument approaches to the softmax can describe the same
set of probability distributions, but have different learning dynamics. In practice,
there is rarely much difference between using the overparametrized version or the
restricted version, and it is simpler to implement the overparametrized version.

From a neuroscientific point of view, it is interesting to think of the softmax as
a way to create a form of competition between the units that participate in it: the
softmax outputs always sum to 1 so an increase in the value of one unit necessarily
corresponds to a decrease in the value of others. This is analogous to the lateral

inhibition that is believed to exist between nearby neurons in the cortex. At the
extreme (when the difference between the maximal ai and the others is large in
magnitude) it becomes a form of (one of the outputs is nearly 1winner-take-all
and the others are nearly 0).

The name “softmax” can be somewhat confusing. The function is more closely
related to the argmax function than the max function. The term “soft” derives
from the fact that the softmax function is continuous and differentiable. The
argmax function, with its result represented as a one-hot vector, is not continuous
or differentiable. The softmax function thus provides a “softened” version of the
argmax. The corresponding soft version of the maximum function is softmax(z)>z.
It would perhaps be better to call the softmax function “softargmax,” but the

current name is an entrenched convention.

The linear, sigmoid, and softmax output units described above are the most

common. Neural networks can generalize to almost any kind of output layer that
we wish. The principle of maximum likelihood provides a guide for how to design
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a good cost function for nearly any kind of output layer.

In general, if we define a conditional distribution p(y x| ;θ ), the principle of
maximum likelihood suggests we use as our cost function.− |log (p y x θ; )

In general, we can think of the neural network as representing a function f(x; θ).
The outputs of this function are not direct predictions of the value y. Instead,
f (x;θ) = ω provides the parameters for a distribution over y. Our loss function

can then be interpreted as .− log ( ; ( ))p ω x

For example, we may wish to learn the variance of a conditional Gaussian for

, given . In the simple case, where the variance σ2 is a constant, there is a
closed form expression because the maximum likelihood estimator of variance is
simply the empirical mean of the squared difference between observations and
their expected value. A computationally more expensive approach that does not
require writing special-case code is to simply include the variance as one of the
properties of the distribution p( | x) that is controlled by ω = f(x ;θ). The
negative log-likelihood − log p (y;ω(x)) will then provide a cost function with the
appropriate terms necessary to make our optimization procedure incrementally
learn the variance. In the simple case where the standard deviation does not depend
on the input, we can make a new parameter in the network that is copied directly
into ω. This new parameter might be σ itself or could be a parameter v representing
σ2 or it could be a parameter β representing 1

σ
, depending on how we choose to

parametrize the distribution. We may wish our model to predict a different amount
of variance in for different values of . This is called a heteroscedastic model.
In the heteroscedastic case, we simply make the specification of the variance be
one of the values output by f ( ; θ). A typical way to do this is to formulate the
Gaussian distribution using precision, rather than variance, as described in Eq.
3.22. In the multivariate case it is most common to use a diagonal precision matrix

diag (6.34)( )β .

This formulation works well with gradient descent because the formula for the
log-likelihood of the Gaussian distribution parametrized by β involves only mul-
tiplication by βi and addition of logβi . The gradient of multiplication, addition,
and logarithm operations is well-behaved. By comparison, if we parametrized the

output in terms of variance, we would need to use division. The division function
becomes arbitrarily steep near zero. While large gradients can help learning,
arbitrarily large gradients usually result in instability. If we parametrized the
output in terms of standard deviation, the log-likelihood would still involve division,
and would also involve squaring. The gradient through the squaring operation
can vanish near zero, making it difficult to learn parameters that are squared.
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Regardless of whether we use standard deviation, variance, or precision, we must
ensure that the covariance matrix of the Gaussian is positive definite. Because
the eigenvalues of the precision matrix are the reciprocals of the eigenvalues of
the covariance matrix, this is equivalent to ensuring that the precision matrix is
positive definite. If we use a diagonal matrix, or a scalar times the diagonal matrix,
then the only condition we need to enforce on the output of the model is positivity.
If we suppose that a is the raw activation of the model used to determine the
diagonal precision, we can use the softplus function to obtain a positive precision
vector: β = ζ(a). This same strategy applies equally if using variance or standard

deviation rather than precision or if using a scalar times identity rather than
diagonal matrix.

It is rare to learn a covariance or precision matrix with richer structure than
diagonal. If the covariance is full and conditional, then a parametrization must
be chosen that guarantees positive-definiteness of the predicted covariance matrix.
This can be achieved by writing ( ) = ( )x B x B >( )x , whereB is an unconstrained
square matrix. One practical issue if the matrix is full rank is that computing the
likelihood is expensive, with a d d× matrix requiring O(d3) computation for the
determinant and inverse of (x) (or equivalently, and more commonly done, its
eigendecomposition or that of ).B x( )

We often want to perform multimodal regression, that is, to predict real values

that come from a conditional distribution p(y x| ) that can have several different
peaks in y space for the same value of x. In this case, a Gaussian mixture is
a natural representation for the output ( , ; , ).Jacobs et al. 1991 Bishop 1994
Neural networks with Gaussian mixtures as their output are often called mixture
density networks. A Gaussian mixture output with n components is defined by
the conditional probability distribution

p( ) =y x|
n

i=1

p i( = c | Nx) ( ;y µ( )i ( )x ,
( )i ( ))x . (6.35)

The neural network must have three outputs: a vector defining p(c = i | x), a
matrix providing µ( )i (x) for all i, and a tensor providing ( )i (x) for all i. These
outputs must satisfy different constraints:

1. Mixture components p(c = i | x): these form a multinoulli distribution
over the n different components associated with latent variable c, and can

We consider c to be latent because we do not observe it in the data: given input and target
, it is not possible to know with certainty which Gaussian component was responsible for , but

we can imagine that was generated by picking one of them, and make that unobserved choice a
random variable.
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typically be obtained by a softmax over an n-dimensional vector, to guarantee
that these outputs are positive and sum to 1.

2. Means µ( )i (x): these indicate the center or mean associated with the i-th
Gaussian component, and are unconstrained (typically with no nonlinearity

at all for these output units). If is a d-vector, then the network must output
an n d× matrix containing all n of these d-dimensional vectors. Learning
these means with maximum likelihood is slightly more complicated than
learning the means of a distribution with only one output mode. We only
want to update the mean for the component that actually produced the
observation. In practice, we do not know which component produced each
observation. The expression for the negative log-likelihood naturally weights
each example’s contribution to the loss for each component by the probability
that the component produced the example.

3. Covariances ( )i (x): these specify the covariance matrix for each component
i. As when learning a single Gaussian component, we typically use a diagonal
matrix to avoid needing to compute determinants. As with learning the means
of the mixture, maximum likelihood is complicated by needing to assign
partial responsibility for each point to each mixture component. Gradient
descent will automatically follow the correct process if given the correct
specification of the negative log-likelihood under the mixture model.

It has been reported that gradient-based optimization of conditional Gaussian
mixtures (on the output of neural networks) can be unreliable, in part because one
gets divisions (by the variance) which can be numerically unstable (when some
variance gets to be small for a particular example, yielding very large gradients).
One solution is to clip gradients (see Sec. ) while another is to scale the10.11.1
gradients heuristically ( , ).Murray and Larochelle 2014

Gaussian mixture outputs are particularly effective in generative models of

speech (Schuster 1999, ) or movements of physical objects (Graves 2013, ). The
mixture density strategy gives a way for the network to represent multiple output
modes and to control the variance of its output, which is crucial for obtaining
a high degree of quality in these real-valued domains. An example of a mixture
density network is shown in Fig. .6.4

In general, we may wish to continue to model larger vectors y containing more
variables, and to impose richer and richer structures on these output variables. For
example, we may wish for our neural network to output a sequence of characters
that forms a sentence. In these cases, we may continue to use the principle
of maximum likelihood applied to our model p(y;ω(x)), but the model we use
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x y
p (y x| )

x

to describe y becomes complex enough to be beyond the scope of this chapter.
Chapter describes how to use recurrent neural networks to define such models10
over sequences, and Part describes advanced techniques for modeling arbitraryIII

probability distributions.

6.3 Hidden Units

So far we have focused our discussion on design choices for neural networks that
are common to most parametric machine learning models trained with gradient-
based optimization. Now we turn to an issue that is unique to feedforward neural
networks: how to choose the type of hidden unit to use in the hidden layers of the
model.

The design of hidden units is an extremely active area of research and does not

yet have many definitive guiding theoretical principles.

Rectified linear units are an excellent default choice of hidden unit. Many other
types of hidden units are available. It can be difficult to determine when to use
which kind (though rectified linear units are usually an acceptable choice). We
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describe here some of the basic intuitions motivating each type of hidden units.
These intuitions can be used to suggest when to try out each of these units. It is
usually impossible to predict in advance which will work best. The design process
consists of trial and error, intuiting that a kind of hidden unit may work well,
and then training a network with that kind of hidden unit and evaluating its
performance on a validation set.

Some of the hidden units included in this list are not actually differentiable at
all input points. For example, the rectified linear function g(z) = max{0, z} is not
differentiable at z = 0. This may seem like it invalidates g for use with a gradient-

based learning algorithm. In practice, gradient descent still performs well enough
for these models to be used for machine learning tasks. This is in part because
neural network training algorithms do not usually arrive at a local minimum of
the cost function, but instead merely reduce its value significantly, as shown in
Fig. . These ideas will be described further in Chapter . Because we do not4.3 8
expect training to actually reach a point where the gradient is , it is acceptable
for the minima of the cost function to correspond to points with undefined gradient.
Hidden units that are not differentiable are usually non-differentiable at only a
small number of points. In general, a function g(z ) has a left derivative defined
by the slope of the function immediately to the left of z and a right derivative
defined by the slope of the function immediately to the right of z . A function

is differentiable at z only if both the left derivative and the right derivative are
defined and equal to each other. The functions used in the context of neural
networks usually have defined left derivatives and defined right derivatives. In the
case of g(z) = max{0, z}, the left derivative at z = 0 0is and the right derivative
is . Software implementations of neural network training usually return one of1
the one-sided derivatives rather than reporting that the derivative is undefined or
raising an error. This may be heuristically justified by observing that gradient-
based optimization on a digital computer is subject to numerical error anyway.
When a function is asked to evaluate g(0), it is very unlikely that the underlying
value truly was . Instead, it was likely to be some small value0  that was rounded
to . In some contexts, more theoretically pleasing justifications are available, but0
these usually do not apply to neural network training. The important point is that

in practice one can safely disregard the non-differentiability of the hidden unit
activation functions described below.

Unless indicated otherwise, most hidden units can be described as accepting
a vector of inputs x, computing an affine transformation z = W >x+ b, and
then applying an element-wise nonlinear function g(z). Most hidden units are
distinguished from each other only by the choice of the form of the activation
function .g( )z
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Rectified linear units use the activation function .g z , z( ) = max 0{ }
Rectified linear units are easy to optimize because they are so similar to linear

units. The only difference between a linear unit and a rectified linear unit is
that a rectified linear unit outputs zero across half its domain. This makes the
derivatives through a rectified linear unit remain large whenever the unit is active.
The gradients are not only large but also consistent. The second derivative of the
rectifying operation is almost everywhere, and the derivative of the rectifying0
operation is everywhere that the unit is active. This means that the gradient1
direction is far more useful for learning than it would be with activation functions
that introduce second-order effects.

Rectified linear units are typically used on top of an affine transformation:

h W= (g >x b+ ). (6.36)

When initializing the parameters of the affine transformation, it can be a good

practice to set all elements of b to a small, positive value, such as 0.1. This makes
it very likely that the rectified linear units will be initially active for most inputs
in the training set and allow the derivatives to pass through.

Several generalizations of rectified linear units exist. Most of these general-
izations perform comparably to rectified linear units and occasionally perform
better.

One drawback to rectified linear units is that they cannot learn via gradient-
based methods on examples for which their activation is zero. A variety of
generalizations of rectified linear units guarantee that they receive gradient every-
where.

Three generalizations of rectified linear units are based on using a non-zero

slope αi when zi < 0: hi = g (z α, )i = max(0, zi) + α imin(0, zi). Absolute value
rectification fixes αi = −1 to obtain g(z) = | |z . It is used for object recognition
from images ( , ), where it makes sense to seek features that areJarrett et al. 2009
invariant under a polarity reversal of the input illumination. Other generalizations
of rectified linear units are more broadly applicable. A leaky ReLU ( ,Maas et al.
2013) fixes αi to a small value like 0.01 while a parametric ReLU PReLUor treats
αi as a learnable parameter ( , ).He et al. 2015

Maxout units (Goodfellow 2013aet al., ) generalize rectified linear units further.
Instead of applying an element-wise function g(z), maxout units divide z into
groups of k values. Each maxout unit then outputs the maximum element of one
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of these groups:
g( )z i= max

j∈G
zj (6.37)

where G
( )i is the indices of the inputs for group i , {(i − 1)k+ 1, . . . , ik} . This

provides a way of learning a piecewise linear function that responds to multiple
directions in the input space.x

A maxout unit can learn a piecewise linear, convex function with up to k pieces.
Maxout units can thus be seen as itself rather
than just the relationship between units. With large enough k, a maxout unit can
learn to approximate any convex function with arbitrary fidelity. In particular,

a maxout layer with two pieces can learn to implement the same function of the
input x as a traditional layer using the rectified linear activation function, absolute
value rectification function, or the leaky or parametric ReLU, or can learn to
implement a totally different function altogether. The maxout layer will of course
be parametrized differently from any of these other layer types, so the learning
dynamics will be different even in the cases where maxout learns to implement the
same function of as one of the other layer types.x

Each maxout unit is now parametrized by k weight vectors instead of just one,
so maxout units typically need more regularization than rectified linear units. They
can work well without regularization if the training set is large and the number of
pieces per unit is kept low ( , ).Cai et al. 2013

Maxout units have a few other benefits. In some cases, one can gain some sta-
tistical and computational advantages by requiring fewer parameters. Specifically,
if the features captured by n different linear filters can be summarized without
losing information by taking the max over each group of k features, then the next
layer can get by with times fewer weights.k

Because each unit is driven by multiple filters, maxout units have some redun-
dancy that helps them to resist a phenomenon called catastrophic forgetting in
which neural networks forget how to perform tasks that they were trained on in
the past (Goodfellow 2014aet al., ).

Rectified linear units and all of these generalizations of them are based on the
principle that models are easier to optimize if their behavior is closer to linear.

This same general principle of using linear behavior to obtain easier optimization
also applies in other contexts besides deep linear networks. Recurrent networks can
learn from sequences and produce a sequence of states and outputs. When training
them, one needs to propagate information through several time steps, which is much
easier when some linear computations (with some directional derivatives being of
magnitude near 1) are involved. One of the best-performing recurrent network
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architectures, the LSTM, propagates information through time via summation—a
particular straightforward kind of such linear activation. This is discussed further
in Sec. .10.10

Prior to the introduction of rectified linear units, most neural networks used the
logistic sigmoid activation function

g z σ z( ) = ( ) (6.38)

or the hyperbolic tangent activation function

g z z .( ) = tanh( ) (6.39)

These activation functions are closely related because .tanh( ) = 2 (2 ) 1z σ z −
We have already seen sigmoid units as output units, used to predict the

probability that a binary variable is . Unlike piecewise linear units, sigmoidal1
units saturate across most of their domain—they saturate to a high value when
z is very positive, saturate to a low value when z is very negative, and are only
strongly sensitive to their input when z is near 0. The widespread saturation of
sigmoidal units can make gradient-based learning very difficult. For this reason,

their use as hidden units in feedforward networks is now discouraged. Their use
as output units is compatible with the use of gradient-based learning when an
appropriate cost function can undo the saturation of the sigmoid in the output
layer.

When a sigmoidal activation function must be used, the hyperbolic tangent
activation function typically performs better than the logistic sigmoid. It resembles
the identity function more closely, in the sense that tanh(0) = 0 while σ(0) = 1

2 .
Because tanh is similar to identity near , training a deep neural network0 ŷ =
w> tanh(U> tanh(V >x)) resembles training a linear model ŷ =w>U >V >x so
long as the activations of the network can be kept small. This makes training the
tanh network easier.

Sigmoidal activation functions are more common in settings other than feed-
forward networks. Recurrent networks, many probabilistic models, and some
autoencoders have additional requirements that rule out the use of piecewise
linear activation functions and make sigmoidal units more appealing despite the
drawbacks of saturation.
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Many other types of hidden units are possible, but are used less frequently.

In general, a wide variety of differentiable functions perform perfectly well.
Many unpublished activation functions perform just as well as the popular ones.
To provide a concrete example, the authors tested a feedforward network using
h = cos(Wx + b) on the MNIST dataset and obtained an error rate of less than
1%, which is competitive with results obtained using more conventional activation
functions. During research and development of new techniques, it is common
to test many different activation functions and find that several variations on
standard practice perform comparably. This means that usually new hidden unit
types are published only if they are clearly demonstrated to provide a significant
improvement. New hidden unit types that perform roughly comparably to known
types are so common as to be uninteresting.

It would be impractical to list all of the hidden unit types that have appeared

in the literature. We highlight a few especially useful and distinctive ones.

One possibility is to not have an activation g(z) at all. One can also think of
this as using the identity function as the activation function. We have already
seen that a linear unit can be useful as the output of a neural network. It may
also be used as a hidden unit. If every layer of the neural network consists of only
linear transformations, then the network as a whole will be linear. However, it
is acceptable for some layers of the neural network to be purely linear. Consider
a neural network layer with n inputs and p outputs, h = g(W>x+ b). We may
replace this with two layers, with one layer using weight matrix U and the other
using weight matrix V . If the first layer has no activation function, then we have
essentially factored the weight matrix of the original layer based on W . The

factored approach is to compute h = g(V >U>x+b). If U produces q outputs,
then U and V together contain only (n+ p)q parameters, while W contains np
parameters. For small q, this can be a considerable saving in parameters. It
comes at the cost of constraining the linear transformation to be low-rank, but
these low-rank relationships are often sufficient. Linear hidden units thus offer an
effective way of reducing the number of parameters in a network.

Softmax units are another kind of unit that is usually used as an output (as
described in Sec. ) but may sometimes be used as a hidden unit. Softmax6.2.2.3
units naturally represent a probability distribution over a discrete variable with k
possible values, so they may be used as a kind of switch. These kinds of hidden
units are usually only used in more advanced architectures that explicitly learn to

manipulate memory, described in Sec. .10.12
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A few other reasonably common hidden unit types include:

• Radial basis function RBFor unit: hi = exp − 1
σ

||W:,i − ||x 2 . This

function becomes more active as x approaches a templateW:,i. Because it

saturates to for most , it can be difficult to optimize.0 x

• Softplus: g(a) = ζ(a) = log(1 + ea). This is a smooth version of the rectifier,
introduced by ( ) for function approximation and byDugas et al. 2001 Nair
and Hinton 2010( ) for the conditional distributions of undirected probabilistic
models. ( ) compared the softplus and rectifier and foundGlorot et al. 2011a
better results with the latter. The use of the softplus is generally discouraged.
The softplus demonstrates that the performance of hidden unit types can
be very counterintuitive—one might expect it to have an advantage over
the rectifier due to being differentiable everywhere or due to saturating less
completely, but empirically it does not.

• Hard tanh: this is shaped similarly to the tanh and the rectifier but unlike
the latter, it is bounded, g(a) = max (−1,min(1, a)). It was introduced
by ( ).Collobert 2004

Hidden unit design remains an active area of research and many useful hidden
unit types remain to be discovered.

6.4 Architecture Design

Another key design consideration for neural networks is determining the architecture.
The word architecture refers to the overall structure of the network: how many
units it should have and how these units should be connected to each other.

Most neural networks are organized into groups of units called layers. Most
neural network architectures arrange these layers in a chain structure, with each

layer being a function of the layer that preceded it. In this structure, the first layer
is given by

h(1) = g(1) W (1)>x b+ (1) , (6.40)

the second layer is given by

h(2) = g(2) W (2)>h(1) + b(2) , (6.41)

and so on.
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In these chain-based architectures, the main architectural considerations are
to choose the depth of the network and the width of each layer. As we will see,
a network with even one hidden layer is sufficient to fit the training set. Deeper
networks often are able to use far fewer units per layer and far fewer parameters
and often generalize to the test set, but are also often harder to optimize. The
ideal network architecture for a task must be found via experimentation guided by
monitoring the validation set error.

A linear model, mapping from features to outputs via matrix multiplication, can
by definition represent only linear functions. It has the advantage of being easy to
train because many loss functions result in convex optimization problems when
applied to linear models. Unfortunately, we often want to learn nonlinear functions.

At first glance, we might presume that learning a nonlinear function requires
designing a specialized model family for the kind of nonlinearity we want to learn.
Fortunately, feedforward networks with hidden layers provide a universal approxi-

mation framework. Specifically, the universal approximation theorem ( ,Hornik et al.
1989 Cybenko 1989; , ) states that a feedforward network with a linear output layer
and at least one hidden layer with any “squashing” activation function (such as
the logistic sigmoid activation function) can approximate any Borel measurable
function from one finite-dimensional space to another with any desired non-zero
amount of error, provided that the network is given enough hidden units. The
derivatives of the feedforward network can also approximate the derivatives of the
function arbitrarily well ( , ). The concept of Borel measurabilityHornik et al. 1990
is beyond the scope of this book; for our purposes it suffices to say that any
continuous function on a closed and bounded subset of Rn is Borel measurable
and therefore may be approximated by a neural network. A neural network may
also approximate any function mapping from any finite dimensional discrete space

to another. While the original theorems were first stated in terms of units with
activation functions that saturate both for very negative and for very positive
arguments, universal approximation theorems have also been proven for a wider
class of activation functions, which includes the now commonly used rectified linear
unit ( , ).Leshno et al. 1993

The universal approximation theorem means that regardless of what function
we are trying to learn, we know that a large MLP will be able to this
function. However, we are not guaranteed that the training algorithm will be able
to that function. Even if the MLP is able to represent the function, learning
can fail for two different reasons. First, the optimization algorithm used for training
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may not be able to find the value of the parameters that corresponds to the desired
function. Second, the training algorithm might choose the wrong function due to
overfitting. Recall from Sec. that the “no free lunch” theorem shows that5.2.1
there is no universally superior machine learning algorithm. Feedforward networks
provide a universal system for representing functions, in the sense that, given a
function, there exists a feedforward network that approximates the function. There
is no universal procedure for examining a training set of specific examples and
choosing a function that will generalize to points not in the training set.

The universal approximation theorem says that there exists a network large

enough to achieve any degree of accuracy we desire, but the theorem does not
say how large this network will be. ( ) provides some bounds on theBarron 1993
size of a single-layer network needed to approximate a broad class of functions.
Unfortunately, in the worse case, an exponential number of hidden units (possibly
with one hidden unit corresponding to each input configuration that needs to be
distinguished) may be required. This is easiest to see in the binary case: the
number of possible binary functions on vectors v ∈ {0, 1}n is 22 and selecting
one such function requires 2n bits, which will in general require O(2n) degrees of
freedom.

In summary, a feedforward network with a single layer is sufficient to represent
any function, but the layer may be infeasibly large and may fail to learn and

generalize correctly. In many circumstances, using deeper models can reduce the
number of units required to represent the desired function and can reduce the
amount of generalization error.

There exist families of functions which can be approximated efficiently by an
architecture with depth greater than some value d, but which require a much larger
model if depth is restricted to be less than or equal to d. In many cases, the number
of hidden units required by the shallow model is exponential in n. Such results
were first proven for models that do not resemble the continuous, differentiable
neural networks used for machine learning, but have since been extended to these
models. The first results were for circuits of logic gates ( , ). LaterHåstad 1986
work extended these results to linear threshold units with non-negative weights

( , ; , ), and then to networks withHåstad and Goldmann 1991 Hajnal et al. 1993
continuous-valued activations ( , ; , ). Many modernMaass 1992 Maass et al. 1994
neural networks use rectified linear units. ( ) demonstratedLeshno et al. 1993
that shallow networks with a broad family of non-polynomial activation functions,
including rectified linear units, have universal approximation properties, but these
results do not address the questions of depth or efficiency—they specify only that
a sufficiently wide rectifier network could represent any function. Pascanu et al.
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( ) and ( ) showed that functions representable with a2013b Montufar et al. 2014
deep rectifier net can require an exponential number of hidden units with a shallow
(one hidden layer) network. More precisely, they showed that piecewise linear
networks (which can be obtained from rectifier nonlinearities or maxout units) can
represent functions with a number of regions that is exponential in the depth of the
network. Fig. illustrates how a network with absolute value rectification creates6.5
mirror images of the function computed on top of some hidden unit, with respect
to the input of that hidden unit. Each hidden unit specifies where to fold the
input space in order to create mirror responses (on both sides of the absolute value

nonlinearity). By composing these folding operations, we obtain an exponentially
large number of piecewise linear regions which can capture all kinds of regular
(e.g., repeating) patterns.

More precisely, the main theorem in ( ) states that theMontufar et al. 2014
number of linear regions carved out by a deep rectifier network with d inputs,
depth , and units per hidden layer, isl n

O
n

d

d l( −1)
nd , (6.42)

i.e., exponential in the depth . In the case of maxout networks with filters perl k
unit, the number of linear regions is

O k( 1)+l− d . (6.43)
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Of course, there is no guarantee that the kinds of functions we want to learn in
applications of machine learning (and in particular for AI) share such a property.

We may also want to choose a deep model for statistical reasons. Any time
we choose a specific machine learning algorithm, we are implicitly stating some
set of prior beliefs we have about what kind of function the algorithm should
learn. Choosing a deep model encodes a very general belief that the function we
want to learn should involve composition of several simpler functions. This can be
interpreted from a representation learning point of view as saying that we believe
the learning problem consists of discovering a set of underlying factors of variation

that can in turn be described in terms of other, simpler underlying factors of
variation. Alternately, we can interpret the use of a deep architecture as expressing
a belief that the function we want to learn is a computer program consisting of
multiple steps, where each step makes use of the previous step’s output. These
intermediate outputs are not necessarily factors of variation, but can instead be
analogous to counters or pointers that the network uses to organize its internal
processing. Empirically, greater depth does seem to result in better generalization
for a wide variety of tasks ( , ; , ; , ;Bengio et al. 2007 Erhan et al. 2009 Bengio 2009
Mesnil 2011 Ciresan 2012 Krizhevsky 2012 Sermanetet al., ; et al., ; et al., ; et al.,
2013 Farabet 2013 Couprie 2013 Kahou 2013 Goodfellow; et al., ; et al., ; et al., ;
et al. et al., ;2014d Szegedy , ). See Fig. and Fig. for examples of some2014a 6.6 6.7

of these empirical results. This suggests that using deep architectures does indeed
express a useful prior over the space of functions the model learns.

So far we have described neural networks as being simple chains of layers, with the
main considerations being the depth of the network and the width of each layer.
In practice, neural networks show considerably more diversity.

Many neural network architectures have been developed for specific tasks.

Specialized architectures for computer vision called convolutional networks are
described in Chapter . Feedforward networks may also be generalized to the9
recurrent neural networks for sequence processing, described in Chapter , which10
have their own architectural considerations.

In general, the layers need not be connected in a chain, even though this is the
most common practice. Many architectures build a main chain but then add extra
architectural features to it, such as skip connections going from layer i to layer
i+ 2 or higher. These skip connections make it easier for the gradient to flow from
output layers to layers nearer the input.
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Another key consideration of architecture design is exactly how to connect a
pair of layers to each other. In the default neural network layer described by a linear
transformation via a matrix W , every input unit is connected to every output
unit. Many specialized networks in the chapters ahead have fewer connections, so
that each unit in the input layer is connected to only a small subset of units in
the output layer. These strategies for reducing the number of connections reduce
the number of parameters and the amount of computation required to evaluate
the network, but are often highly problem-dependent. For example, convolutional
networks, described in Chapter , use specialized patterns of sparse connections9

that are very effective for computer vision problems. In this chapter, it is difficult
to give much more specific advice concerning the architecture of a generic neural
network. Subsequent chapters develop the particular architectural strategies that
have been found to work well for different application domains.

6.5 Back-Propagation and Other Differentiation Algo-

rithms

When we use a feedforward neural network to accept an input x and produce an
output ŷ , information flows forward through the network. The inputs x provide
the initial information that then propagates up to the hidden units at each layer
and finally produces ŷ. This is called forward propagation. During training,
forward propagation can continue onward until it produces a scalar cost J (θ). The
back-propagation backpropalgorithm ( , ), often simply calledRumelhart et al. 1986a ,
allows the information from the cost to then flow backwards through the network,
in order to compute the gradient.

Computing an analytical expression for the gradient is straightforward, but
numerically evaluating such an expression can be computationally expensive. The
back-propagation algorithm does so using a simple and inexpensive procedure.

The term back-propagation is often misunderstood as meaning the whole
learning algorithm for multi-layer neural networks. Actually, back-propagation
refers only to the method for computing the gradient, while another algorithm,
such as stochastic gradient descent, is used to perform learning using this gradient.
Furthermore, back-propagation is often misunderstood as being specific to multi-
layer neural networks, but in principle it can compute derivatives of any function
(for some functions, the correct response is to report that the derivative of the
function is undefined). Specifically, we will describe how to compute the gradient
∇ f(x y, ) for an arbitrary function f, where x is a set of variables whose derivatives
are desired, and y is an additional set of variables that are inputs to the function
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but whose derivatives are not required. In learning algorithms, the gradient we most
often require is the gradient of the cost function with respect to the parameters,
∇ J(θ). Many machine learning tasks involve computing other derivatives, either
as part of the learning process, or to analyze the learned model. The back-
propagation algorithm can be applied to these tasks as well, and is not restricted
to computing the gradient of the cost function with respect to the parameters. The
idea of computing derivatives by propagating information through a network is
very general, and can be used to compute values such as the Jacobian of a function
f with multiple outputs. We restrict our description here to the most commonly

used case where has a single output.f

So far we have discussed neural networks with a relatively informal graph language.
To describe the back-propagation algorithm more precisely, it is helpful to have a
more precise computational graph language.

Many ways of formalizing computation as graphs are possible.

Here, we use each node in the graph to indicate a variable. The variable may
be a scalar, vector, matrix, tensor, or even a variable of another type.

To formalize our graphs, we also need to introduce the idea of an operation.
An operation is a simple function of one or more variables. Our graph language
is accompanied by a set of allowable operations. Functions more complicated
than the operations in this set may be described by composing many operations
together.

Without loss of generality, we define an operation to return only a single
output variable. This does not lose generality because the output variable can have
multiple entries, such as a vector. Software implementations of back-propagation
usually support operations with multiple outputs, but we avoid this case in our

description because it introduces many extra details that are not important to
conceptual understanding.

If a variable y is computed by applying an operation to a variable x, then
we draw a directed edge from x to y . We sometimes annotate the output node
with the name of the operation applied, and other times omit this label when the
operation is clear from context.

Examples of computational graphs are shown in Fig. .6.8
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The chain rule of calculus (not to be confused with the chain rule of probability) is
used to compute the derivatives of functions formed by composing other functions

whose derivatives are known. Back-propagation is an algorithm that computes the
chain rule, with a specific order of operations that is highly efficient.

Let x be a real number, and let f and g both be functions mapping from a real
number to a real number. Suppose that y = g (x) and z = f(g(x)) = f (y). Then
the chain rule states that

dz

dx
=
dz

dy

dy

dx
. (6.44)

We can generalize this beyond the scalar case. Suppose that x ∈ Rm, y ∈ Rn,
g maps from R

m to R
n, and f maps from R

n to R. If y = g(x) and z = f (y), then

∂z

∂xi
=

j

∂z

∂yj

∂yj
∂xi
. (6.45)

In vector notation, this may be equivalently written as

∇ z =
∂y

∂x

>
∇ z, (6.46)

where ∂
∂

is the Jacobian matrix of .n m× g

From this we see that the gradient of a variable x can be obtained by multiplying
a Jacobian matrix ∂

∂
by a gradient ∇ z. The back-propagation algorithm consists

of performing such a Jacobian-gradient product for each operation in the graph.

Usually we do not apply the back-propagation algorithm merely to vectors,
but rather to tensors of arbitrary dimensionality. Conceptually, this is exactly the
same as back-propagation with vectors. The only difference is how the numbers
are arranged in a grid to form a tensor. We could imagine flattening each tensor
into a vector before we run back-propagation, computing a vector-valued gradient,
and then reshaping the gradient back into a tensor. In this rearranged view,
back-propagation is still just multiplying Jacobians by gradients.

To denote the gradient of a value z with respect to a tensor , we write ∇ z,
just as if were a vector. The indices into now have multiple coordinates—for
example, a 3-D tensor is indexed by three coordinates. We can abstract this away
by using a single variable i to represent the complete tuple of indices. For all

possible index tuples i, (∇ z)i gives
∂z
∂ . This is exactly the same as how for all
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possible integer indices i into a vector, (∇ z )i gives
∂z
∂x . Using this notation, we

can write the chain rule as it applies to tensors. If and , then= (g ) z f= ( )

∇ z =
j

(∇ j)
∂z

∂ j
. (6.47)

Using the chain rule, it is straightforward to write down an algebraic expression for
the gradient of a scalar with respect to any node in the computational graph that
produced that scalar. However, actually evaluating that expression in a computer
introduces some extra considerations.

Specifically, many subexpressions may be repeated several times within the
overall expression for the gradient. Any procedure that computes the gradient
will need to choose whether to store these subexpressions or to recompute them
several times. An example of how these repeated subexpressions arise is given in
Fig. . In some cases, computing the same subexpression twice would simply6.9

be wasteful. For complicated graphs, there can be exponentially many of these
wasted computations, making a naive implementation of the chain rule infeasible.
In other cases, computing the same subexpression twice could be a valid way to
reduce memory consumption at the cost of higher runtime.

We first begin by a version of the back-propagation algorithm that specifies
the actual gradient computation directly (Algorithm along with Algorithm6.2 6.1
for the associated forward computation), in the order it will actually be done and
according to the recursive application of chain rule. One could either directly
perform these computations or view the description of the algorithm as a symbolic
specification of the computational graph for computing the back-propagation. How-
ever, this formulation does not make explicit the manipulation and the construction

of the symbolic graph that performs the gradient computation. Such a formulation
is presented below in Sec. , with Algorithm , where we also generalize to6.5.6 6.5
nodes that contain arbitrary tensors.

First consider a computational graph describing how to compute a single scalar
u( )n (say the loss on a training example). This scalar is the quantity whose
gradient we want to obtain, with respect to the ni input nodes u

(1) to u(n ) . In

other words we wish to compute ∂u
∂u

for all i ∈ {1 ,2, . . . , ni} . In the application
of back-propagation to computing gradients for gradient descent over parameters,
u( )n will be the cost associated with an example or a minibatch, while u(1) to u (n )

correspond to the parameters of the model.
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We will assume that the nodes of the graph have been ordered in such a way
that we can compute their output one after the other, starting at u(n +1) and
going up to u( )n . As defined in Algorithm , each node6.1 u( )i is associated with an
operation f ( )i and is computed by evaluating the function

u( )i = (f A
( )i ) (6.48)

where A( )i is the set of all nodes that are parents of u ( )i .

A procedure that performs the computations mapping ni inputs
u(1) tou(n ) to an output u ( )n . This defines a computational graph where each node
computes numerical value u( )i by applying a function f( )i to the set of arguments

A
( )i that comprises the values of previous nodes u( )j , j < i, with j Pa∈ (u( )i ). The

input to the computational graph is the vector x, and is set into the first ni nodes
u(1) to u(n ) . The output of the computational graph is read off the last (output)
node u( )n .

i , . . . , n= 1 i

u( )i ← xi

i n= i + 1, . . . , n
A
( )i ← {u( )j | ∈j Pa u( ( )i )}
u( )i ← f ( )i (A( )i )

u ( )n

That algorithm specifies the forward propagation computation, which we could
put in a graph G . In order to perform back-propagation, we can construct a

computational graph that depends on G and adds to it an extra set of nodes. These
form a subgraph B with one node per node of G. Computation in B proceeds in
exactly the reverse of the order of computation in G, and each node of B computes

the derivative ∂u
∂u

associated with the forward graph node u( )i . This is done

using the chain rule with respect to scalar output u( )n :

∂u( )n

∂u( )j
=

i j Pa u: ∈ ( )

∂u( )n

∂u( )i
∂u ( )i

∂u( )j
(6.49)

as specified by Algorithm . The subgraph6.2 B contains exactly one edge for each
edge from node u( )j to node u( )i of G. The edge from u( )j to u( )i is associated with

the computation of ∂u
∂u

. In addition, a dot product is performed for each node,

between the gradient already computed with respect to nodes u( )i that are children
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of u ( )j and the vector containing the partial derivatives ∂u
∂u

for the same children

nodes u( )i . To summarize, the amount of computation required for performing
the back-propagation scales linearly with the number of edges in G, where the
computation for each edge corresponds to computing a partial derivative (of one
node with respect to one of its parents) as well as performing one multiplication
and one addition. Below, we generalize this analysis to tensor-valued nodes, which
is just a way to group multiple scalar values in the same node and enable more
efficient implementations.

Simplified version of the back-propagation algorithm for computing
the derivatives of u( )n with respect to the variables in the graph. This example is
intended to further understanding by showing a simplified case where all variables
are scalars, and we wish to compute the derivatives with respect to u(1) , . . . , u(n ).
This simplified version computes the derivatives of all nodes in the graph. The
computational cost of this algorithm is proportional to the number of edges in
the graph, assuming that the partial derivative associated with each edge requires
a constant time. This is of the same order as the number of computations for

the forward propagation. Each ∂u
∂u

is a function of the parents u( )j of u( )i , thus

linking the nodes of the forward graph to those added for the back-propagation
graph.

Run forward propagation (Algorithm for this example) to obtain the activa-6.1
tions of the network
Initialize , a data structure that will store the derivatives that have
been computed. The entry _ [u( )i ] will store the computed value of
∂u
∂u

.

_ [∂u ( )n ] 1←
j n= − 1 down to 1

The next line computes ∂u
∂u

= i j Pa u: ∈ ( )
∂u
∂u

∂u
∂u

using stored values:

_ [u ( )j ] ← i j Pa u: ∈ ( ) _ [u ( )i ] ∂u
∂u

{ _ [u ( )i ] = 1| i , . . . , ni}

The back-propagation algorithm is designed to reduce the number of common
subexpressions without regard to memory. Specifically, it performs on the order
of one Jacobian product per node in the graph. This can be seen from the fact
in Algorithm that backprop visits each edge from node6.2 u( )j to node u( )i of

the graph exactly once in order to obtain the associated partial derivative ∂u
∂u

.
Back-propagation thus avoids the exponential explosion in repeated subexpressions.
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However, other algorithms may be able to avoid more subexpressions by performing
simplifications on the computational graph, or may be able to conserve memory by
recomputing rather than storing some subexpressions. We will revisit these ideas
after describing the back-propagation algorithm itself.

To clarify the above definition of the back-propagation computation, let us consider
the specific graph associated with a fully-connected multi-layer MLP.

Algorithm first shows the forward propagation, which maps parameters to6.3
the supervised loss L( ŷ y, ) associated with a single (input,target) training example
( )x y, , with ŷ the output of the neural network when is provided in input.x

Algorithm then shows the corresponding computation to be done for6.4
applying the back-propagation algorithm to this graph.

Algorithm and Algorithm are demonstrations that are chosen to be6.3 6.4
simple and straightforward to understand. However, they are specialized to one
specific problem.

Modern software implementations are based on the generalized form of back-
propagation described in Sec. below, which can accommodate any computa-6.5.6
tional graph by explicitly manipulating a data structure for representing symbolic
computation.

Algebraic expressions and computational graphs both operate on symbols, or

variables that do not have specific values. These algebraic and graph-based
representations are called symbolic representations. When we actually use or
train a neural network, we must assign specific values to these symbols. We
replace a symbolic input to the network x with a specific value, such asnumeric
[1 2 3 765 1 8]. , . ,− . > .

Some approaches to back-propagation take a computational graph and a set
of numerical values for the inputs to the graph, then return a set of numerical
values describing the gradient at those input values. We call this approach “symbol-
to-number” differentiation. This is the approach used by libraries such as Torch
( , ) and Caffe ( , ).Collobert et al. 2011b Jia 2013

Another approach is to take a computational graph and add additional nodes

to the graph that provide a symbolic description of the desired derivatives. This
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w ∈ R f : R R→
x = f(w) y = f(x) z = f(y)

∂z

∂w

=
∂z

∂y

∂y

∂x

∂x

∂w

=f ( )y f ( )x f ( )w

=f ( ( ( )))f f w f ( ( ))f w f ( )w

f (w)
x

f(w) f(w)
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Forward propagation through a typical deep neural network and
the computation of the cost function. The loss L(ŷ y, ) depends on the output ŷ
and on the target y (see Sec. for examples of loss functions). To obtain the6.2.1.1
total cost J, the loss may be added to a regularizer Ω(θ), where θ contains all the
parameters (weights and biases). Algorithm shows how to compute gradients6.4
of J with respect to parameters W and b. For simplicity, this demonstration uses
only a single input example x. Practical applications should use a minibatch. See
Sec. for a more realistic demonstration.6.5.7

Network depth, l
W ( )i , i , . . . , l ,∈ {1 } the weight matrices of the model

b ( )i , i , . . . , l ,∈ {1 } the bias parameters of the model

x, the input to process
y, the target output

h(0) = x

k , . . . , l= 1
a( )k = b( )k +W ( )k h( 1)k−

h( )k = (f a ( )k )

ŷ h= ( )l

J L= (ŷ y, ) + Ω( )λ θ

is the approach taken by Theano ( , ; , )Bergstra et al. 2010 Bastien et al. 2012
and TensorFlow ( , ). An example of how this approach worksAbadi et al. 2015
is illustrated in Fig. . The primary advantage of this approach is that6.10
the derivatives are described in the same language as the original expression.

Because the derivatives are just another computational graph, it is possible to run
back-propagation again, differentiating the derivatives in order to obtain higher
derivatives. Computation of higher-order derivatives is described in Sec. .6.5.10

We will use the latter approach and describe the back-propagation algorithm in
terms of constructing a computational graph for the derivatives. Any subset of the
graph may then be evaluated using specific numerical values at a later time. This
allows us to avoid specifying exactly when each operation should be computed.
Instead, a generic graph evaluation engine can evaluate every node as soon as its
parents’ values are available.

The description of the symbol-to-symbol based approach subsumes the symbol-
to-number approach. The symbol-to-number approach can be understood as

performing exactly the same computations as are done in the graph built by the
symbol-to-symbol approach. The key difference is that the symbol-to-number
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Backward computation for the deep neural network of Algo-
rithm , which uses in addition to the input6.3 x a target y. This computation
yields the gradients on the activations a( )k for each layer k, starting from the
output layer and going backwards to the first hidden layer. From these gradients,
which can be interpreted as an indication of how each layer’s output should change
to reduce error, one can obtain the gradient on the parameters of each layer. The
gradients on weights and biases can be immediately used as part of a stochas-
tic gradient update (performing the update right after the gradients have been
computed) or used with other gradient-based optimization methods.

After the forward computation, compute the gradient on the output layer:
g ← ∇ˆJ = ∇ˆL(ŷ, y)

k l, l , . . . ,= − 1 1
Convert the gradient on the layer’s output into a gradient into the pre-

nonlinearity activation (element-wise multiplication if is element-wise):f

g ← ∇ J f= g  0(a( )k )
Compute gradients on weights and biases (including the regularization term,
where needed):
∇ J λ= +g ∇ Ω( )θ
∇ J = g h( 1)k− > + λ∇ Ω( )θ
Propagate the gradients w.r.t. the next lower-level hidden layer’s activations:
g ← ∇ J = W ( )k > g
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z = f( f(f(w)))
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approach does not expose the graph.

The back-propagation algorithm is very simple. To compute the gradient of some
scalar z with respect to one of its ancestors x in the graph, we begin by observing
that the gradient with respect to z is given by dz

dz = 1. We can then compute
the gradient with respect to each parent of z in the graph by multiplying the
current gradient by the Jacobian of the operation that produced z . We continue
multiplying by Jacobians traveling backwards through the graph in this way until

we reach x. For any node that may be reached by going backwards from z through
two or more paths, we simply sum the gradients arriving from different paths at
that node.

More formally, each node in the graph G corresponds to a variable. To achieve
maximum generality, we describe this variable as being a tensor . Tensor can
in general have any number of dimensions, and subsume scalars, vectors, and
matrices.

We assume that each variable is associated with the following subroutines:

• _ ( ): This returns the operation that computes , repre-
sented by the edges coming into in the computational graph. For example,
there may be a Python or C++ class representing the matrix multiplication
operation, and the function. Suppose we have a variable that
is created by matrix multiplication, C = AB . Then _ ( )
returns a pointer to an instance of the corresponding C++ class.

• _ ( ,G): This returns the list of variables that are children of
in the computational graph .G

• G_ ( , ) : This returns the list of variables that are parents of
in the computational graph .G

Each operation is also associated with a operation. This
operation can compute a Jacobian-vector product as described by Eq. . This6.47
is how the back-propagation algorithm is able to achieve great generality. Each
operation is responsible for knowing how to back-propagate through the edges in
the graph that it participates in. For example, we might use a matrix multiplication
operation to create a variable C =AB. Suppose that the gradient of a scalar z with
respect to C is given by G. The matrix multiplication operation is responsible for
defining two back-propagation rules, one for each of its input arguments. If we call
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the method to request the gradient with respect to A given that the gradient
on the output isG , then the method of the matrix multiplication operation
must state that the gradient with respect to A is given by GB>. Likewise, if we
call the method to request the gradient with respect to B, then the matrix
operation is responsible for implementing the method and specifying that
the desired gradient is given by A>G. The back-propagation algorithm itself does
not need to know any differentiation rules. It only needs to call each operation’s

rules with the right arguments. Formally, . ( , , ) must
return

i

(∇ . ( ) i) i, (6.54)

which is just an implementation of the chain rule as expressed in Eq. .6.47
Here, is a list of inputs that are supplied to the operation, is the

mathematical function that the operation implements, is the input whose gradient
we wish to compute, and is the gradient on the output of the operation.

The method should always pretend that all of its inputs are distinct
from each other, even if they are not. For example, if the operator is passed
two copies of x to compute x2, the method should still return x as the
derivative with respect to both inputs. The back-propagation algorithm will later
add both of these arguments together to obtain 2x, which is the correct total
derivative on .x

Software implementations of back-propagation usually provide both the opera-
tions and their methods, so that users of deep learning software libraries are
able to back-propagate through graphs built using common operations like matrix

multiplication, exponents, logarithms, and so on. Software engineers who build a
new implementation of back-propagation or advanced users who need to add their
own operation to an existing library must usually derive the method for
any new operations manually.

The back-propagation algorithm is formally described in Algorithm .6.5

In Sec. , we motivated back-propagation as a strategy for avoiding comput-6.5.2
ing the same subexpression in the chain rule multiple times. The naive algorithm
could have exponential runtime due to these repeated subexpressions. Now that
we have specified the back-propagation algorithm, we can understand its com-
putational cost. If we assume that each operation evaluation has roughly the
same cost, then we may analyze the computational cost in terms of the number

of operations executed. Keep in mind here that we refer to an operation as the
fundamental unit of our computational graph, which might actually consist of very
many arithmetic operations (for example, we might have a graph that treats matrix
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The outermost skeleton of the back-propagation algorithm. This
portion does simple setup and cleanup work. Most of the important work happens

in the subroutine of Algorithm 6.6
.

T, the target set of variables whose gradients must be computed.
G, the computational graph

z, the variable to be differentiated
Let G0 be G pruned to contain only nodes that are ancestors of z and descendents
of nodes in .T
Initialize , a data structure associating tensors to their gradients

_ [ ] 1z ←
in T

_ ( , ,G G 0, _ )

Return restricted to T

multiplication as a single operation). Computing a gradient in a graph with n nodes
will never execute more than O(n2) operations or store the output of more than

O(n2) operations. Here we are counting operations in the computational graph, not
individual operations executed by the underlying hardware, so it is important to
remember that the runtime of each operation may be highly variable. For example,
multiplying two matrices that each contain millions of entries might correspond to
a single operation in the graph. We can see that computing the gradient requires as
most O(n2 ) operations because the forward propagation stage will at worst execute
all n nodes in the original graph (depending on which values we want to compute,
we may not need to execute the entire graph). The back-propagation algorithm
adds one Jacobian-vector product, which should be expressed with O(1) nodes, per
edge in the original graph. Because the computational graph is a directed acyclic
graph it has at most O(n2) edges. For the kinds of graphs that are commonly used
in practice, the situation is even better. Most neural network cost functions are

roughly chain-structured, causing back-propagation to have O(n) cost. This is far
better than the naive approach, which might need to execute exponentially many
nodes. This potentially exponential cost can be seen by expanding and rewriting
the recursive chain rule (Eq. ) non-recursively:6.49

∂u ( )n

∂u( )j
=

path (u ,u ,...,u ),
fromπ = toj π =n

t

k=2

∂u (π )

∂u(π )
. (6.55)

Since the number of paths from node j to node n can grow up to exponentially in the
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The inner loop subroutine _ ( , ,G G 0, _ ) of
the back-propagation algorithm, called by the back-propagation algorithm defined
in Algorithm .6.5

, the variable whose gradient should be added to and .G
G, the graph to modify.
G 0 , the restriction of to nodes that participate in the gradient.G

, a data structure mapping nodes to their gradients

is in
Return _ [ ]

i← 1

in _ ( ,G 0)
← _ ( )
← _ ( , ,G G 0 , _ )
( )i ← G. ( _ ( , 0 ) ), ,
i i← + 1

← i
( )i

_ [ ] = 
Insert and the operations creating it into G
Return

length of these paths, the number of terms in the above sum, which is the number
of such paths, can grow exponentially with the depth of the forward propagation
graph. This large cost would be incurred because the same computation for
∂u
∂u

would be redone many times. To avoid such recomputation, we can think
of back-propagation as a table-filling algorithm that takes advantage of storing

intermediate results ∂u
∂u

. Each node in the graph has a corresponding slot in a
table to store the gradient for that node. By filling in these table entries in order,
back-propagation avoids repeating many common subexpressions. This table-filling

strategy is sometimes called dynamic programming.

As an example, we walk through the back-propagation algorithm as it is used to
train a multilayer perceptron.

Here we develop a very simple multilayer perception with a single hidden
layer. To train this model, we will use minibatch stochastic gradient descent.

218



CHAPTER 6. DEEP FEEDFORWARD NETWORKS

The back-propagation algorithm is used to compute the gradient of the cost on a
single minibatch. Specifically, we use a minibatch of examples from the training
set formatted as a design matrix X and a vector of associated class labels y.
The network computes a layer of hidden features H = max{0 ,XW(1)}. To
simplify the presentation we do not use biases in this model. We assume that our
graph language includes a operation that can compute max{ 0,Z} element-
wise. The predictions of the unnormalized log probabilities over classes are then
given by HW (2). We assume that our graph language includes a
operation that computes the cross-entropy between the targets yand the probability

distribution defined by these unnormalized log probabilities. The resulting cross-
entropy defines the cost JMLE . Minimizing this cross-entropy performs maximum
likelihood estimation of the classifier. However, to make this example more realistic,
we also include a regularization term. The total cost

J J= MLE + λ
i,j

W
(1)
i,j

2
+

i,j

W
(2)
i,j

2
(6.56)

consists of the cross-entropy and a weight decay term with coefficient λ. The

computational graph is illustrated in Fig. .6.11

The computational graph for the gradient of this example is large enough that
it would be tedious to draw or to read. This demonstrates one of the benefits
of the back-propagation algorithm, which is that it can automatically generate
gradients that would be straightforward but tedious for a software engineer to
derive manually.

We can roughly trace out the behavior of the back-propagation algorithm
by looking at the forward propagation graph in Fig. . To train, we wish6.11
to compute both ∇ J and ∇ J . There are two different paths leading
backward from J to the weights: one through the cross-entropy cost, and one
through the weight decay cost. The weight decay cost is relatively simple; it will

always contribute 2λW ( )i to the gradient onW ( )i .

The other path through the cross-entropy cost is slightly more complicated.
Let G be the gradient on the unnormalized log probabilities U (2) provided by
the operation. The back-propagation algorithm now needs to
explore two different branches. On the shorter branch, it adds H>G to the
gradient on W (2), using the back-propagation rule for the second argument to
the matrix multiplication operation. The other branch corresponds to the longer
chain descending further along the network. First, the back-propagation algorithm
computes ∇ J =GW (2)> using the back-propagation rule for the first argument
to the matrix multiplication operation. Next, the operation uses its back-
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propagation rule to zero out components of the gradient corresponding to entries
of U (1) that were less than . Let the result be called0 G 0. The last step of the
back-propagation algorithm is to use the back-propagation rule for the second
argument of the operation to add X >G0 to the gradient onW (1).

After these gradients have been computed, it is the responsibility of the gradient
descent algorithm, or another optimization algorithm, to use these gradients to
update the parameters.

For the MLP, the computational cost is dominated by the cost of matrix
multiplication. During the forward propagation stage, we multiply by each weight

matrix, resulting in O(w) multiply-adds, where w is the number of weights. During
the backward propagation stage, we multiply by the transpose of each weight
matrix, which has the same computational cost. The main memory cost of the
algorithm is that we need to store the input to the nonlinearity of the hidden layer.
This value is stored from the time it is computed until the backward pass has
returned to the same point. The memory cost is thus O(mnh ), where m is the
number of examples in the minibatch and nh is the number of hidden units.
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Our description of the back-propagation algorithm here is simpler than the imple-
mentations actually used in practice.

As noted above, we have restricted the definition of an operation to be a
function that returns a single tensor. Most software implementations need to
support operations that can return more than one tensor. For example, if we wish
to compute both the maximum value in a tensor and the index of that value, it is
best to compute both in a single pass through memory, so it is most efficient to
implement this procedure as a single operation with two outputs.

We have not described how to control the memory consumption of back-
propagation. Back-propagation often involves summation of many tensors together.
In the naive approach, each of these tensors would be computed separately, then
all of them would be added in a second step. The naive approach has an overly
high memory bottleneck that can be avoided by maintaining a single buffer and

adding each value to that buffer as it is computed.

Real-world implementations of back-propagation also need to handle various
data types, such as 32-bit floating point, 64-bit floating point, and integer values.
The policy for handling each of these types takes special care to design.

Some operations have undefined gradients, and it is important to track these
cases and determine whether the gradient requested by the user is undefined.

Various other technicalities make real-world differentiation more complicated.
These technicalities are not insurmountable, and this chapter has described the key
intellectual tools needed to compute derivatives, but it is important to be aware
that many more subtleties exist.

The deep learning community has been somewhat isolated from the broader
computer science community and has largely developed its own cultural attitudes
concerning how to perform differentiation. More generally, the field of automatic
differentiation is concerned with how to compute derivatives algorithmically. The
back-propagation algorithm described here is only one approach to automatic
differentiation. It is a special case of a broader class of techniques called reverse

mode accumulation. Other approaches evaluate the subexpressions of the chain rule
in different orders. In general, determining the order of evaluation that results in
the lowest computational cost is a difficult problem. Finding the optimal sequence
of operations to compute the gradient is NP-complete ( , ), in theNaumann 2008
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sense that it may require simplifying algebraic expressions into their least expensive
form.

For example, suppose we have variables p1, p2, . . . , pn representing probabilities
and variables z1, z2 , . . . , zn representing unnormalized log probabilities. Suppose
we define

qi =
exp(zi)

i exp(zi)
, (6.57)

where we build the softmax function out of exponentiation, summation and division
operations, and construct a cross-entropy loss J = − i p i log qi. A human
mathematician can observe that the derivative of J with respect to zi takes a very
simple form: qi − pi. The back-propagation algorithm is not capable of simplifying
the gradient this way, and will instead explicitly propagate gradients through all of
the logarithm and exponentiation operations in the original graph. Some software
libraries such as Theano ( , ; , ) are able toBergstra et al. 2010 Bastien et al. 2012
perform some kinds of algebraic substitution to improve over the graph proposed
by the pure back-propagation algorithm.

When the forward graph G has a single output node and each partial derivative
∂u
∂u

can be computed with a constant amount of computation, back-propagation

guarantees that the number of computations for the gradient computation is of
the same order as the number of computations for the forward computation: this

can be seen in Algorithm because each local partial derivative6.2 ∂u
∂u

needs
to be computed only once along with an associated multiplication and addition
for the recursive chain-rule formulation (Eq. ). The overall computation is6.49
therefore O(# edges). However, it can potentially be reduced by simplifying the
computational graph constructed by back-propagation, and this is an NP-complete
task. Implementations such as Theano and TensorFlow use heuristics based on
matching known simplification patterns in order to iteratively attempt to simplify
the graph. We defined back-propagation only for the computation of a gradient of a

scalar output but back-propagation can be extended to compute a Jacobian (either
of k different scalar nodes in the graph, or of a tensor-valued node containing k
values). A naive implementation may then need k times more computation: for
each scalar internal node in the original forward graph, the naive implementation
computes k gradients instead of a single gradient. When the number of outputs
of the graph is larger than the number of inputs, it is sometimes preferable to
use another form of automatic differentiation called forward mode accumulation.
Forward mode computation has been proposed for obtaining real-time computation
of gradients in recurrent networks, for example ( , ). ThisWilliams and Zipser 1989
also avoids the need to store the values and gradients for the whole graph, trading
off computational efficiency for memory. The relationship between forward mode
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and backward mode is analogous to the relationship between left-multiplying versus
right-multiplying a sequence of matrices, such as

ABCD, (6.58)

where the matrices can be thought of as Jacobian matrices. For example, if D
is a column vector while A has many rows, this corresponds to a graph with a
single output and many inputs, and starting the multiplications from the end
and going backwards only requires matrix-vector products. This corresponds to
the backward mode. Instead, starting to multiply from the left would involve a
series of matrix-matrix products, which makes the whole computation much more
expensive. However, if A has fewer rows than D has columns, it is cheaper to run
the multiplications left-to-right, corresponding to the forward mode.

In many communities outside of machine learning, it is more common to

implement differentiation software that acts directly on traditional programming
language code, such as Python or C code, and automatically generates programs
that different functions written in these languages. In the deep learning community,
computational graphs are usually represented by explicit data structures created by
specialized libraries. The specialized approach has the drawback of requiring the
library developer to define the methods for every operation and limiting the
user of the library to only those operations that have been defined. However, the
specialized approach also has the benefit of allowing customized back-propagation
rules to be developed for each operation, allowing the developer to improve speed
or stability in non-obvious ways that an automatic procedure would presumably
be unable to replicate.

Back-propagation is therefore not the only way or the optimal way of computing

the gradient, but it is a very practical method that continues to serve the deep
learning community very well. In the future, differentiation technology for deep
networks may improve as deep learning practitioners become more aware of advances
in the broader field of automatic differentiation.

Some software frameworks support the use of higher-order derivatives. Among the
deep learning software frameworks, this includes at least Theano and TensorFlow.
These libraries use the same kind of data structure to describe the expressions for
derivatives as they use to describe the original function being differentiated. This
means that the symbolic differentiation machinery can be applied to derivatives.

In the context of deep learning, it is rare to compute a single second derivative
of a scalar function. Instead, we are usually interested in properties of the Hessian
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matrix. If we have a function f : Rn → R, then the Hessian matrix is of size n n× .
In typical deep learning applications, n will be the number of parameters in the
model, which could easily number in the billions. The entire Hessian matrix is
thus infeasible to even represent.

Instead of explicitly computing the Hessian, the typical deep learning approach
is to use Krylov methods. Krylov methods are a set of iterative techniques for
performing various operations like approximately inverting a matrix or finding
approximations to its eigenvectors or eigenvalues, without using any operation
other than matrix-vector products.

In order to use Krylov methods on the Hessian, we only need to be able to
compute the product between the Hessian matrix H and an arbitrary vector v. A
straightforward technique ( , ) for doing so is to computeChristianson 1992

Hv = ∇ (∇ f x( ))> v . (6.59)

Both of the gradient computations in this expression may be computed automati-
cally by the appropriate software library. Note that the outer gradient expression
takes the gradient of a function of the inner gradient expression.

If v is itself a vector produced by a computational graph, it is important to
specify that the automatic differentiation software should not differentiate through
the graph that produced .v

While computing the Hessian is usually not advisable, it is possible to do with
Hessian vector products. One simply computes He( )i for all i = 1, . . . , n, where

e( )i is the one-hot vector with e
( )i
i = 1 and all other entries equal to 0.

6.6 Historical Notes

Feedforward networks can be seen as efficient nonlinear function approximators

based on using gradient descent to minimize the error in a function approximation.
From this point of view, the modern feedforward network is the culmination of
centuries of progress on the general function approximation task.

The chain rule that underlies the back-propagation algorithm was invented
in the 17th century ( , ; , ). Calculus and algebra haveLeibniz 1676 L’Hôpital 1696
long been used to solve optimization problems in closed form, but gradient descent
was not introduced as a technique for iteratively approximating the solution to
optimization problems until the 19th century (Cauchy 1847, ).

Beginning in the 1940s, these function approximation techniques were used to
motivate machine learning models such as the perceptron. However, the earliest
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models were based on linear models. Critics including Marvin Minsky pointed
out several of the flaws of the linear model family, such as it inability to learn the
XOR function, which led to a backlash against the entire neural network approach.

Learning nonlinear functions required the development of a multilayer per-
ceptron and a means of computing the gradient through such a model. Efficient
applications of the chain rule based on dynamic programming began to appear in the
1960s and 1970s, mostly for control applications ( , ; ,Kelley 1960 Bryson and Denham
1961 Dreyfus 1962 Bryson and Ho 1969 Dreyfus 1973; , ; , ; , ) but also for sensitivity
analysis ( , ).Linnainmaa 1976 Werbos 1981( ) proposed applying these techniques

to training artificial neural networks. The idea was finally developed in practice
after being independently rediscovered in different ways ( , ;LeCun 1985 Parker,
1985 Rumelhart 1986a; et al., ). The book Parallel Distributed Processing presented
the results of some of the first successful experiments with back-propagation in a
chapter ( , ) that contributed greatly to the popularizationRumelhart et al. 1986b
of back-propagation and initiated a very active period of research in multi-layer
neural networks. However, the ideas put forward by the authors of that book
and in particular by Rumelhart and Hinton go much beyond back-propagation.
They include crucial ideas about the possible computational implementation of
several central aspects of cognition and learning, which came under the name of
“connectionism” because of the importance given the connections between neurons

as the locus of learning and memory. In particular, these ideas include the notion
of distributed representation (Hinton 1986et al., ).

Following the success of back-propagation, neural network research gained pop-
ularity and reached a peak in the early 1990s. Afterwards, other machine learning
techniques became more popular until the modern deep learning renaissance that
began in 2006.

The core ideas behind modern feedforward networks have not changed sub-
stantially since the 1980s. The same back-propagation algorithm and the same
approaches to gradient descent are still in use. Most of the improvement in neural
network performance from 1986 to 2015 can be attributed to two factors. First,
larger datasets have reduced the degree to which statistical generalization is a

challenge for neural networks. Second, neural networks have become much larger,
due to more powerful computers, and better software infrastructure. However, a
small number of algorithmic changes have improved the performance of neural
networks noticeably.

One of these algorithmic changes was the replacement of mean squared error
with the cross-entropy family of loss functions. Mean squared error was popular in
the 1980s and 1990s, but was gradually replaced by cross-entropy losses and the
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principle of maximum likelihood as ideas spread between the statistics community
and the machine learning community. The use of cross-entropy losses greatly
improved the performance of models with sigmoid and softmax outputs, which
had previously suffered from saturation and slow learning when using the mean
squared error loss.

The other major algorithmic change that has greatly improved the performance
of feedforward networks was the replacement of sigmoid hidden units with piecewise
linear hidden units, such as rectified linear units. Rectification using the max{0, z}
function was introduced in early neural network models and dates back at least

as far as the Cognitron and Neocognitron (Fukushima 1975 1980, , ). These early
models did not use rectified linear units, but instead applied rectification to
nonlinear functions. Despite the early popularity of rectification, rectification was
largely replaced by sigmoids in the 1980s, perhaps because sigmoids perform better
when neural networks are very small. As of the early 2000s, rectified linear units
were avoided due to a somewhat superstitious belief that activation functions with
non-differentiable points must be avoided. This began to change in about 2009.
Jarrett 2009et al. ( ) observed that “using a rectifying nonlinearity is the single most
important factor in improving the performance of a recognition system” among
several different factors of neural network architecture design.

For small datasets, ( ) observed that using rectifying non-Jarrett et al. 2009

linearities is even more important than learning the weights of the hidden layers.
Random weights are sufficient to propagate useful information through a rectified
linear network, allowing the classifier layer at the top to learn how to map different
feature vectors to class identities.

When more data is available, learning begins to extract enough useful knowledge
to exceed the performance of randomly chosen parameters. ( )Glorot et al. 2011a
showed that learning is far easier in deep rectified linear networks than in deep
networks that have curvature or two-sided saturation in their activation functions.

Rectified linear units are also of historical interest because they show that
neuroscience has continued to have an influence on the development of deep
learning algorithms. ( ) motivate rectified linear units fromGlorot et al. 2011a

biological considerations. The half-rectifying nonlinearity was intended to capture
these properties of biological neurons: 1) For some inputs, biological neurons are
completely inactive. 2) For some inputs, a biological neuron’s output is proportional
to its input. 3) Most of the time, biological neurons operate in the regime where
they are inactive (i.e., they should have sparse activations).

When the modern resurgence of deep learning began in 2006, feedforward
networks continued to have a bad reputation. From about 2006-2012, it was widely
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believed that feedforward networks would not perform well unless they were assisted
by other models, such as probabilistic models. Today, it is now known that with the
right resources and engineering practices, feedforward networks perform very well.
Today, gradient-based learning in feedforward networks is used as a tool to develop
probabilistic models, such as the variational autoencoder and generative adversarial
networks, described in Chapter . Rather than being viewed as an unreliable20
technology that must be supported by other techniques, gradient-based learning in
feedforward networks has been viewed since 2012 as a powerful technology that
may be applied to many other machine learning tasks. In 2006, the community

used unsupervised learning to support supervised learning, and now, ironically, it
is more common to use supervised learning to support unsupervised learning.

Feedforward networks continue to have unfulfilled potential. In the future, we
expect they will be applied to many more tasks, and that advances in optimization
algorithms and model design will improve their performance even further. This
chapter has primarily described the neural network family of models. In the
subsequent chapters, we turn to how to use these models—how to regularize and
train them.
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Chapter 7

Regularization for Deep Learning

A central problem in machine learning is how to make an algorithm that will
perform well not just on the training data, but also on new inputs. Many strategies
used in machine learning are explicitly designed to reduce the test error, possibly
at the expense of increased training error. These strategies are known collectively

as regularization. As we will see there are a great many forms of regularization
available to the deep learning practitioner. In fact, developing more effective
regularization strategies has been one of the major research efforts in the field.

Chapter introduced the basic concepts of generalization, underfitting, overfit-5
ting, bias, variance and regularization. If you are not already familiar with these
notions, please refer to that chapter before continuing with this one.

In this chapter, we describe regularization in more detail, focusing on regular-
ization strategies for deep models or models that may be used as building blocks
to form deep models.

Some sections of this chapter deal with standard concepts in machine learning.
If you are already familiar with these concepts, feel free to skip the relevant

sections. However, most of this chapter is concerned with the extension of these
basic concepts to the particular case of neural networks.

In Sec. , we defined regularization as “any modification we make to a5.2.2
learning algorithm that is intended to reduce its generalization error but not
its training error.” There are many regularization strategies. Some put extra
constraints on a machine learning model, such as adding restrictions on the
parameter values. Some add extra terms in the objective function that can be
thought of as corresponding to a soft constraint on the parameter values. If chosen
carefully, these extra constraints and penalties can lead to improved performance
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on the test set. Sometimes these constraints and penalties are designed to encode
specific kinds of prior knowledge. Other times, these constraints and penalties
are designed to express a generic preference for a simpler model class in order to
promote generalization. Sometimes penalties and constraints are necessary to make
an underdetermined problem determined. Other forms of regularization, known as
ensemble methods, combine multiple hypotheses that explain the training data.

In the context of deep learning, most regularization strategies are based on
regularizing estimators. Regularization of an estimator works by trading increased
bias for reduced variance. An effective regularizer is one that makes a profitable

trade, reducing variance significantly while not overly increasing the bias. When
we discussed generalization and overfitting in Chapter , we focused on three5
situations, where the model family being trained either (1) excluded the true
data generating process—corresponding to underfitting and inducing bias, or (2)
matched the true data generating process, or (3) included the generating process
but also many other possible generating processes—the overfitting regime where
variance rather than bias dominates the estimation error. The goal of regularization
is to take a model from the third regime into the second regime.

In practice, an overly complex model family does not necessarily include the
target function or the true data generating process, or even a close approximation
of either. We almost never have access to the true data generating process so

we can never know for sure if the model family being estimated includes the
generating process or not. However, most applications of deep learning algorithms
are to domains where the true data generating process is almost certainly outside
the model family. Deep learning algorithms are typically applied to extremely
complicated domains such as images, audio sequences and text, for which the true
generation process essentially involves simulating the entire universe. To some
extent, we are always trying to fit a square peg (the data generating process) into
a round hole (our model family).

What this means is that controlling the complexity of the model is not a
simple matter of finding the model of the right size, with the right number of
parameters. Instead, we might find—and indeed in practical deep learning scenarios,

we almost always do find—that the best fitting model (in the sense of minimizing
generalization error) is a large model that has been regularized appropriately.

We now review several strategies for how to create such a large, deep, regularized
model.
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7.1 Parameter Norm Penalties

Regularization has been used for decades prior to the advent of deep learning. Linear
models such as linear regression and logistic regression allow simple, straightforward,
and effective regularization strategies.

Many regularization approaches are based on limiting the capacity of models,
such as neural networks, linear regression, or logistic regression, by adding a pa-

rameter norm penalty Ω(θ) to the objective function J . We denote the regularized
objective function by J̃ :

J̃ , J , α( ;θ X y) = ( ;θ X y) + Ω( )θ (7.1)

where α ∈ [0,∞) is a hyperparameter that weights the relative contribution of
the norm penalty term, , relative to the standard objective functionΩ J(x; θ).
Setting α to 0 results in no regularization. Larger values of α correspond to more
regularization.

When our training algorithm minimizes the regularized objective function J̃ it
will decrease both the original objective J on the training data and some measure

of the size of the parameters θ (or some subset of the parameters). Different
choices for the parameter norm can result in different solutions being preferred.Ω

In this section, we discuss the effects of the various norms when used as penalties
on the model parameters.

Before delving into the regularization behavior of different norms, we note that
for neural networks, we typically choose to use a parameter norm penalty thatΩ
penalizes only the weights of the affine transformation at each layer and leaves
the biases unregularized. The biases typically require less data to fit accurately
than the weights. Each weight specifies how two variables interact. Fitting the
weight well requires observing both variables in a variety of conditions. Each
bias controls only a single variable. This means that we do not induce too much

variance by leaving the biases unregularized. Also, regularizing the bias parameters
can introduce a significant amount of underfitting. We therefore use the vector w
to indicate all of the weights that should be affected by a norm penalty, while the
vector θ denotes all of the parameters, including both w and the unregularized
parameters.

In the context of neural networks, it is sometimes desirable to use a separate
penalty with a different α coefficient for each layer of the network. Because it can
be expensive to search for the correct value of multiple hyperparameters, it is still
reasonable to use the same weight decay at all layers just to reduce the search
space.
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7.1.1 L
2 Parameter Regularization

We have already seen, in Sec. , one of the simplest and most common kinds5.2.2
of parameter norm penalty: the L2 parameter norm penalty commonly known as

weight decay. This regularization strategy drives the weights closer to the origin1

by adding a regularization term Ω(θ) = 1
2k kw 2

2 to the objective function. In
other academic communities, L2 regularization is also known as ridge regression or
Tikhonov regularization.

We can gain some insight into the behavior of weight decay regularization
by studying the gradient of the regularized objective function. To simplify the
presentation, we assume no bias parameter, so θ is just w. Such a model has the
following total objective function:

J̃ ,( ;w X y) =
α

2
w>w w X y+ (J ; , ), (7.2)

with the corresponding parameter gradient

∇w J̃ , α( ;w X y) = w + ∇wJ , .( ;w X y) (7.3)

To take a single gradient step to update the weights, we perform this update:

w w w← −  α( + ∇wJ , .( ;w X y)) (7.4)

Written another way, the update is:

w w← −(1 α) − ∇ wJ , .( ;w X y) (7.5)

We can see that the addition of the weight decay term has modified the learning
rule to multiplicatively shrink the weight vector by a constant factor on each step,

just before performing the usual gradient update. This describes what happens in
a single step. But what happens over the entire course of training?

We will further simplify the analysis by making a quadratic approximation
to the objective function in the neighborhood of the value of the weights that
obtains minimal unregularized training cost, w∗ = arg minw J(w). If the objective
function is truly quadratic, as in the case of fitting a linear regression model with
mean squared error, then the approximation is perfect.

Ĵ J( ) = θ (w∗) +
1

2
(w w− ∗)>H w w( − ∗) (7.6)

1More generally, we could regularize the parameters to be near any specific point in space
and, surprisingly, still get a regularization effect, but better results will be obtained for a value
closer to the true one, with zero being a default value that makes sense when we do not know if
the correct value should be positive or negative. Since it is far more common to regularize the
model parameters towards zero, we will focus on this special case in our exposition.
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whereH is the Hessian matrix of J with respect to w evaluated at w∗. There is
no first-order term in this quadratic approximation, because w∗ is defined to be a
minimum, where the gradient vanishes. Likewise, because w∗ is the location of a
minimum of , we can conclude that is positive semidefinite.J H

The minimum of Ĵ occurs where its gradient

∇wĴ( ) = (w H w w− ∗) (7.7)

is equal to .

To study the effect of weight decay, we modify Eq. by adding the weight7.7
decay gradient. We can now solve for the minimum of the regularized version of Ĵ.
We use the variable w̃ to represent the location of the minimum.

αw̃ H+ (w̃ w− ∗) = 0 (7.8)

( + )H αI w̃ Hw= ∗ (7.9)

w̃ H I= ( + α )−1Hw ∗. (7.10)

As α approaches 0, the regularized solution w̃ approaches w∗. But what
happens as α grows? Because H is real and symmetric, we can decompose it
into a diagonal matrix and an orthonormal basis of eigenvectors,Q, such that

H Q Q= >. Applying the decomposition to Eq. , we obtain:7.10

w̃ Q Q= ( > + )αI −1Q Q>w∗ (7.11)

= Q I Q( + α ) > −1
Q Q>w∗ (7.12)

= ( + )Q αI −1 Q>w∗. (7.13)

We see that the effect of weight decay is to rescalew ∗ along the axes defined by
the eigenvectors of H . Specifically, the component of w∗ that is aligned with the

i-th eigenvector of H is rescaled by a factor of
+

. (You may wish to review
how this kind of scaling works, first explained in Fig. ).2.3

Along the directions where the eigenvalues of H are relatively large, for example,
where λ  α, the effect of regularization is relatively small. However, components
with λ  α will be shrunk to have nearly zero magnitude. This effect is illustrated
in Fig. .7.1

Only directions along which the parameters contribute significantly to reducing
the objective function are preserved relatively intact. In directions that do not
contribute to reducing the objective function, a small eigenvalue of the Hessian
tells us that movement in this direction will not significantly increase the gradient.
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Components of the weight vector corresponding to such unimportant directions
are decayed away through the use of the regularization throughout training.

So far we have discussed weight decay in terms of its effect on the optimization
of an abstract, general, quadratic cost function. How do these effects relate to
machine learning in particular? We can find out by studying linear regression, a
model for which the true cost function is quadratic and therefore amenable to the
same kind of analysis we have used so far. Applying the analysis again, we will
be able to obtain a special case of the same results, but with the solution now
phrased in terms of the training data. For linear regression, the cost function is

the sum of squared errors:

( )Xw y− >( )Xw y− . (7.14)

When we add L2 regularization, the objective function changes to

( )Xw y− >( ) +Xw y− 1

2
αw>w. (7.15)

This changes the normal equations for the solution from

w X= ( >X)−1X>y (7.16)

to
w X= ( >X I+ α )−1X>y. (7.17)

The matrix X>X in Eq. is proportional to the covariance matrix7.16 1X>X.

Using L2 regularization replaces this matrix with X>X I+ α
−1

in Eq. .7.17
The new matrix is the same as the original one, but with the addition of α to the
diagonal. The diagonal entries of this matrix correspond to the variance of each
input feature. We can see that L2 regularization causes the learning algorithm
to “perceive” the input X as having higher variance, which makes it shrink the
weights on features whose covariance with the output target is low compared to
this added variance.

7.1.2 L
1 Regularization

While L2 weight decay is the most common form of weight decay, there are other
ways to penalize the size of the model parameters. Another option is to use L1

regularization.

Formally, L1 regularization on the model parameter is defined as:w

Ω( ) = θ || ||w 1 = |w |, (7.18)
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that is, as the sum of absolute values of the individual parameters.2 We will
now discuss the effect of L1 regularization on the simple linear regression model,
with no bias parameter, that we studied in our analysis of L2 regularization. In
particular, we are interested in delineating the differences between L1 and L2 forms
of regularization. As with L2 weight decay, L1 weight decay controls the strength
of the regularization by scaling the penalty using a positive hyperparameterΩ α.
Thus, the regularized objective function J̃ ,( ;w X y) is given by

J̃ , α( ;w X y) = || ||w 1 + ( ; )J w X y, , (7.19)

with the corresponding gradient (actually, sub-gradient):

∇w J̃ , α( ;w X y) = sign( ) +w ∇wJ ,(X y w; ) (7.20)

where is simply the sign of applied element-wise.sign( )w w

By inspecting Eq. , we can see immediately that the effect of7.20 L1 regu-
larization is quite different from that of L2 regularization. Specifically, we can
see that the regularization contribution to the gradient no longer scales linearly
with each w ; instead it is a constant factor with a sign equal to sign(w ). One
consequence of this form of the gradient is that we will not necessarily see clean
algebraic solutions to quadratic approximations of J(X y, ;w) as we did for L2

regularization.

Our simple linear model has a quadratic cost function that we can represent
via its Taylor series. Alternately, we could imagine that this is a truncated Taylor
series approximating the cost function of a more sophisticated model. The gradient

in this setting is given by

∇w Ĵ( ) = (w H w w− ∗), (7.21)

where, again, is the Hessian matrix of with respect to evaluated atH J w w∗.

Because the L1 penalty does not admit clean algebraic expressions in the case
of a fully general Hessian, we will also make the further simplifying assumption
that the Hessian is diagonal, H = diag([H1 1 , . . . , H ]), where each H > 0.
This assumption holds if the data for the linear regression problem has been
preprocessed to remove all correlation between the input features, which may be
accomplished using PCA.

2As with regularization, we could regularize the parameters towards a value that is not
zero, but instead towards some parameter value . In that case the regularization would

introduce the term .
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Our quadratic approximation of the L1 regularized objective function decom-
poses into a sum over the parameters:

Ĵ , J( ;w X y) = (w∗; ) +X y,
1

2
H (w −w∗ )2 + α|w | . (7.22)

The problem of minimizing this approximate cost function has an analytical solution
(for each dimension ), with the following form:i

w = sign(w∗ ) max |w∗ | − α

H
, 0 . (7.23)

Consider the situation where w∗ > i0 for all . There are two possible outcomes:

1. w∗ ≤ . Here the optimal value of w under the regularized objective is

simply w = 0. This occurs because the contribution of J(w ;X y, ) to the
regularized objective J̃ (w ;X y, ) is overwhelmed—in direction i—by the L1

regularization which pushes the value of w to zero.

2. w∗ > , here the regularization does not move the optimal value of w to

zero but instead it just shifts it in that direction by a distance equal to .

A similar process happens when w∗ < 0, but with the L1 penalty making w less
negative by , or 0.

In comparison to L2 regularization, L1 regularization results in a solution that
is more sparse. Sparsity in this context refers to the fact that some parameters
have an optimal value of zero. The sparsity of L1 regularization is a qualitatively

different behavior than arises with L2 regularization. Eq. gave the solution7.13 w̃
for L2 regularization. If we revisit that equation using the assumption of a diagonal
HessianH that we introduced for our analysis of L1 regularization, we find that
w̃ =

+
w∗ . If w∗ was nonzero, then w̃ remains nonzero. This demonstrates

that L2 regularization does not cause the parameters to become sparse, while L1

regularization may do so for large enough .α

The sparsity property induced by L1 regularization has been used extensively
as a feature selection mechanism. Feature selection simplifies a machine learning
problem by choosing which subset of the available features should be used. In
particular, the well known LASSO ( , ) (least absolute shrinkage andTibshirani 1995
selection operator) model integrates an L1 penalty with a linear model and a least
squares cost function. The L1 penalty causes a subset of the weights to become
zero, suggesting that the corresponding features may safely be discarded.
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In Sec. , we saw that many regularization strategies can be interpreted as5.6.1
MAP Bayesian inference, and that in particular, L2 regularization is equivalent
to MAP Bayesian inference with a Gaussian prior on the weights. For L1 regu-
larization, the penalty αΩ(w) = α |w | used to regularize a cost function is
equivalent to the log-prior term that is maximized by MAP Bayesian inference
when the prior is an isotropic Laplace distribution (Eq. ) over :3.26 w

log ( ) =p w log Laplace(w ; 0,
1

α
) = −α |w | −+ logα log 2 (7.24)

From the point of view of learning via minimization with respect to w, we can
ignore the terms because they do not depend on .log log 2α− w

7.2 Norm Penalties as Constrained Optimization

Consider the cost function regularized by a parameter norm penalty:

J̃ , J , α .( ;θ X y) = ( ;θ X y) + Ω( )θ (7.25)

Recall from Sec. that we can minimize a function subject to constraints by4.4

constructing a generalized Lagrange function, consisting of the original objective
function plus a set of penalties. Each penalty is a product between a coefficient,
called a Karush–Kuhn–Tucker (KKT) multiplier, and a function representing
whether the constraint is satisfied. If we wanted to constrain Ω(θ) to be less than
some constant , we could construct a generalized Lagrange functionk

L −( ; ) = ( ; ) + (Ω( )θ, α X y, J θ X y, α θ k .) (7.26)

The solution to the constrained problem is given by

θ∗ = arg min
θ

max
≥0

L( )θ, α . (7.27)

As described in Sec. , solving this problem requires modifying both4.4 θ and
α. Sec. provides a worked example of linear regression with an4.5 L2 constraint.
Many different procedures are possible—some may use gradient descent, while
others may use analytical solutions for where the gradient is zero—but in all
procedures α must increase whenever Ω(θ) > k and decrease whenever Ω(θ)< k .
All positive α encourage Ω(θ) to shrink. The optimal value α∗ will encourage Ω(θ)
to shrink, but not so strongly to make become less than .Ω( )θ k
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To gain some insight into the effect of the constraint, we can fix α∗ and view
the problem as just a function of :θ

θ∗= arg min
θ

L(θ, α∗) = arg min
θ

J , α( ;θ X y) + ∗Ω( )θ . (7.28)

This is exactly the same as the regularized training problem of minimizing J̃.

We can thus think of a parameter norm penalty as imposing a constraint on the
weights. If is theΩ L2 norm, then the weights are constrained to lie in a L2 ball.
If is theΩ L1 norm, then the weights are constrained to lie in a region of limited
L1 norm. Usually we do not know the size of the constraint region that we impose
by using weight decay with coefficient α∗ because the value of α∗ does not directly
tell us the value of k. In principle, one can solve for k , but the relationship between
k and α∗ depends on the form of J . While we do not know the exact size of the
constraint region, we can control it roughly by increasing or decreasing α in order
to grow or shrink the constraint region. Larger α will result in a smaller constraint
region. Smaller will result in a larger constraint region.α

Sometimes we may wish to use explicit constraints rather than penalties. As
described in Sec. , we can modify algorithms such as stochastic gradient descent4.4

to take a step downhill on J (θ) and then project θ back to the nearest point
that satisfies Ω(θ)< k. This can be useful if we have an idea of what value of k
is appropriate and do not want to spend time searching for the value of α that
corresponds to this .k

Another reason to use explicit constraints and reprojection rather than enforcing
constraints with penalties is that penalties can cause non-convex optimization
procedures to get stuck in local minima corresponding to small θ. When training
neural networks, this usually manifests as neural networks that train with several
“dead units.” These are units that do not contribute much to the behavior of the
function learned by the network because the weights going into or out of them are
all very small. When training with a penalty on the norm of the weights, these

configurations can be locally optimal, even if it is possible to significantly reduce
J by making the weights larger. Explicit constraints implemented by re-projection
can work much better in these cases because they do not encourage the weights
to approach the origin. Explicit constraints implemented by re-projection only
have an effect when the weights become large and attempt to leave the constraint
region.

Finally, explicit constraints with reprojection can be useful because they impose
some stability on the optimization procedure. When using high learning rates, it
is possible to encounter a positive feedback loop in which large weights induce
large gradients which then induce a large update to the weights. If these updates
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consistently increase the size of the weights, then θ rapidly moves away from
the origin until numerical overflow occurs. Explicit constraints with reprojection
allow us to terminate this feedback loop after the weights have reached a certain
magnitude. Hinton 2012cet al. ( ) recommend using constraints combined with a
high learning rate to allow rapid exploration of parameter space while maintaining
some stability.

In particular, Hinton 2012cet al. ( ) recommend constraining the norm of each
column of the weight matrix of a neural net layer, rather than constraining the
Frobenius norm of the entire weight matrix, a strategy introduced by Srebro and

Shraibman 2005( ). Constraining the norm of each column separately prevents any
one hidden unit from having very large weights. If we converted this constraint
into a penalty in a Lagrange function, it would be similar to L2 weight decay
but with a separate KKT multiplier for the weights of each hidden unit. Each of
these KKT multipliers would be dynamically updated separately to make each
hidden unit obey the constraint. In practice, column norm limitation is always
implemented as an explicit constraint with reprojection.

7.3 Regularization and Under-Constrained Problems

In some cases, regularization is necessary for machine learning problems to be
properly defined. Many linear models in machine learning, including linear re-
gression and PCA, depend on inverting the matrix X>X . This is not possible
whenever X >X is singular. This matrix can be singular whenever the data truly
has no variance in some direction, or when there are fewer examples (rows ofX)
than input features (columns of X). In this case, many forms of regularization
correspond to invertingX>X +αI instead. This regularized matrix is guaranteed
to be invertible.

These linear problems have closed form solutions when the relevant matrix
is invertible. It is also possible for a problem with no closed form solution to be
underdetermined. An example is logistic regression applied to a problem where

the classes are linearly separable. If a weight vector w is able to achieve perfect
classification, then 2w will also achieve perfect classification and higher likelihood.
An iterative optimization procedure like stochastic gradient descent will continually
increase the magnitude ofw and, in theory, will never halt. In practice, a numerical
implementation of gradient descent will eventually reach sufficiently large weights
to cause numerical overflow, at which point its behavior will depend on how the
programmer has decided to handle values that are not real numbers.

Most forms of regularization are able to guarantee the convergence of iterative

239



CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

methods applied to underdetermined problems. For example, weight decay will
cause gradient descent to quit increasing the magnitude of the weights when the
slope of the likelihood is equal to the weight decay coefficient.

The idea of using regularization to solve underdetermined problems extends
beyond machine learning. The same idea is useful for several basic linear algebra
problems.

As we saw in Sec. , we can solve underdetermined linear equations using2.9
the Moore-Penrose pseudoinverse. Recall that one definition of the pseudoinverse

X+ of a matrix isX

X+ = lim
&0

(X>X I+ α )−1X>. (7.29)

We can now recognize Eq. as performing linear regression with weight decay.7.29
Specifically, Eq. is the limit of Eq. as the regularization coefficient shrinks7.29 7.17
to zero. We can thus interpret the pseudoinverse as stabilizing underdetermined
problems using regularization.

7.4 Dataset Augmentation

The best way to make a machine learning model generalize better is to train it on
more data. Of course, in practice, the amount of data we have is limited. One way
to get around this problem is to create fake data and add it to the training set.
For some machine learning tasks, it is reasonably straightforward to create new
fake data.

This approach is easiest for classification. A classifier needs to take a compli-
cated, high dimensional input x and summarize it with a single category identity y.
This means that the main task facing a classifier is to be invariant to a wide variety
of transformations. We can generate new (x, y) pairs easily just by transforming

the inputs in our training set.x

This approach is not as readily applicable to many other tasks. For example, it
is difficult to generate new fake data for a density estimation task unless we have
already solved the density estimation problem.

Dataset augmentation has been a particularly effective technique for a specific
classification problem: object recognition. Images are high dimensional and include
an enormous variety of factors of variation, many of which can be easily simulated.
Operations like translating the training images a few pixels in each direction can
often greatly improve generalization, even if the model has already been designed to
be partially translation invariant by using the convolution and pooling techniques
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described in Chapter . Many other operations such as rotating the image or9
scaling the image have also proven quite effective.

One must be careful not to apply transformations that would change the correct
class. For example, optical character recognition tasks require recognizing the
difference between ’b’ and ’d’ and the difference between ’6’ and ’9’, so horizontal
flips and 180◦ rotations are not appropriate ways of augmenting datasets for these
tasks.

There are also transformations that we would like our classifiers to be invariant

to, but which are not easy to perform. For example, out-of-plane rotation can not
be implemented as a simple geometric operation on the input pixels.

Dataset augmentation is effect for speech recognition tasks as well (Jaitly and
Hinton 2013, ).

Injecting noise in the input to a neural network (Sietsma and Dow 1991, )
can also be seen as a form of data augmentation. For many classification and
even some regression tasks, the task should still be possible to solve even if small
random noise is added to the input. Neural networks prove not to be very robust
to noise, however (Tang and Eliasmith 2010, ). One way to improve the robustness
of neural networks is simply to train them with random noise applied to their
inputs. Input noise injection is part of some unsupervised learning algorithms such

as the denoising autoencoder (Vincent 2008et al., ). Noise injection also works
when the noise is applied to the hidden units, which can be seen as doing dataset
augmentation at multiple levels of abstraction. Poole 2014et al. ( ) recently showed
that this approach can be highly effective provided that the magnitude of the
noise is carefully tuned. Dropout, a powerful regularization strategy that will be
described in Sec. , can be seen as a process of constructing new inputs by7.12
multiplying by noise.

When comparing machine learning benchmark results, it is important to take
the effect of dataset augmentation into account. Often, hand-designed dataset
augmentation schemes can dramatically reduce the generalization error of a machine
learning technique. To compare the performance of one machine learning algorithm
to another, it is necessary to perform controlled experiments. When comparing

machine learning algorithm A and machine learning algorithm B, it is necessary
to make sure that both algorithms were evaluated using the same hand-designed
dataset augmentation schemes. Suppose that algorithm A performs poorly with
no dataset augmentation and algorithm B performs well when combined with
numerous synthetic transformations of the input. In such a case it is likely the
synthetic transformations caused the improved performance, rather than the use
of machine learning algorithm B. Sometimes deciding whether an experiment
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has been properly controlled requires subjective judgment. For example, machine
learning algorithms that inject noise into the input are performing a form of dataset
augmentation. Usually, operations that are generally applicable (such as adding
Gaussian noise to the input) are considered part of the machine learning algorithm,
while operations that are specific to one application domain (such as randomly
cropping an image) are considered to be separate pre-processing steps.

7.5 Noise Robustness

Sec. has motivated the use of noise applied to the inputs as a dataset aug-7.4

mentation strategy. For some models, the addition of noise with infinitesimal
variance at the input of the model is equivalent to imposing a penalty on the
norm of the weights ( , , ). In the general case, it is important toBishop 1995a b
remember that noise injection can be much more powerful than simply shrinking
the parameters, especially when the noise is added to the hidden units. Noise
applied to the hidden units is such an important topic as to merit its own separate
discussion; the dropout algorithm described in Sec. is the main development7.12
of that approach.

Another way that noise has been used in the service of regularizing models
is by adding it to the weights. This technique has been used primarily in the
context of recurrent neural networks ( , ;Jim et al. 1996 Graves 2011, ). This can

be interpreted as a stochastic implementation of a Bayesian inference over the
weights. The Bayesian treatment of learning would consider the model weights
to be uncertain and representable via a probability distribution that reflects this
uncertainty. Adding noise to the weights is a practical, stochastic way to reflect
this uncertainty (Graves 2011, ).

This can also be interpreted as equivalent (under some assumptions) to a
more traditional form of regularization. Adding noise to the weights has been
shown to be an effective regularization strategy in the context of recurrent neural
networks ( , ;Jim et al. 1996 Graves 2011, ). In the following, we will present an
analysis of the effect of weight noise on a standard feedforward neural network (as
introduced in Chapter ).6

We study the regression setting, where we wish to train a function ŷ(x) that
maps a set of features x to a scalar using the least-squares cost function between
the model predictions ŷ( )x and the true values :y

J = ( ) (ŷ( ) )x − y 2 . (7.30)

The training set consists of labeled examplesm {(x (1), y (1)) (, . . . , x ( ), y( ) )}.
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We now assume that with each input presentation we also include a random
perturbation W ∼ N (; , ηI ) of the network weights. Let us imagine that we
have a standard l-layer MLP. We denote the perturbed model as ŷ (x). Despite
the injection of noise, we are still interested in minimizing the squared error of the
output of the network. The objective function thus becomes:

J̃W = (x  ) (ŷ ( ) )x − y 2 (7.31)

= (x  ) ŷ
2
 ( ) 2 ˆx − yy ( ) +x y2 . (7.32)

For small η, the minimization of J with added weight noise (with covariance
ηI) is equivalent to minimization of J with an additional regularization term:
η (x ) k∇W ŷ( )x k2 . This form of regularization encourages the parameters to
go to regions of parameter space where small perturbations of the weights have
a relatively small influence on the output. In other words, it pushes the model
into regions where the model is relatively insensitive to small variations in the
weights, finding points that are not merely minima, but minima surrounded by

flat regions (Hochreiter and Schmidhuber 1995, ). In the simplified case of linear
regression (where, for instance, ŷ(x) = w>x+b ), this regularization term collapses
into η ( )x k kx 2 , which is not a function of parameters and therefore does not

contribute to the gradient of J̃W with respect to the model parameters.

7.5.1 Injecting Noise at the Output Targets

Most datasets have some amount of mistakes in the y labels. It can be harmful
to maximize log p(y | x) when y is a mistake. One way to prevent this is to
explicitly model the noise on the labels. For example, we can assume that for some
small constant , the training set label y is correct with probability 1 − , and
otherwise any of the other possible labels might be correct. This assumption is

easy to incorporate into the cost function analytically, rather than by explicitly
drawing noise samples. For example, label smoothing regularizes a model based
on a softmax with k output values by replacing the hard and classification0 1

targets with targets of and 1 − −1 , respectively. The standard cross-entropy
loss may then be used with these soft targets. Maximum likelihood learning with a
softmax classifier and hard targets may actually never converge—the softmax can
never predict a probability of exactly or exactly , so it will continue to learn0 1
larger and larger weights, making more extreme predictions forever. It is possible
to prevent this scenario using other regularization strategies like weight decay.
Label smoothing has the advantage of preventing the pursuit of hard probabilities
without discouraging correct classification. This strategy has been used since
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the 1980s and continues to be featured prominently in modern neural networks
( , ).Szegedy et al. 2015

7.6 Semi-Supervised Learning

In the paradigm of semi-supervised learning, both unlabeled examples from P ( )
and labeled examples from P( , ) are used to estimate P ( | ) or predict from

.

In the context of deep learning, semi-supervised learning usually refers to
learning a representation h = f(x). The goal is to learn a representation so
that examples from the same class have similar representations. Unsupervised
learning can provide useful cues for how to group examples in representation
space. Examples that cluster tightly in the input space should be mapped to
similar representations. A linear classifier in the new space may achieve better
generalization in many cases (Belkin and Niyogi 2002 Chapelle 2003, ; et al., ). A
long-standing variant of this approach is the application of principal components
analysis as a pre-processing step before applying a classifier (on the projected
data).

Instead of having separate unsupervised and supervised components in the

model, one can construct models in which a generative model of either P ( ) or
P( , ) shares parameters with a discriminative model of P( | ). One can
then trade-off the supervised criterion − logP ( | ) with the unsupervised or
generative one (such as − logP( ) or − logP( , )). The generative criterion then
expresses a particular form of prior belief about the solution to the supervised
learning problem ( , ), namely that the structure ofLasserre et al. 2006 P( ) is
connected to the structure of P ( | ) in a way that is captured by the shared
parametrization. By controlling how much of the generative criterion is included
in the total criterion, one can find a better trade-off than with a purely generative
or a purely discriminative training criterion ( , ;Lasserre et al. 2006 Larochelle and
Bengio 2008, ).

In the context of scarcity of labeled data (and abundance of unlabeled data),
deep architectures have shown promise as well. Salakhutdinov and Hinton 2008( )
describe a method for learning the kernel function of a kernel machine used for
regression, in which the usage of unlabeled examples for modeling P ( ) improves

P ( )| quite significantly.

See ( ) for more information about semi-supervised learning.Chapelle et al. 2006
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7.7 Multi-Task Learning

Multi-task learning ( , ) is a way to improve generalization by poolingCaruana 1993
the examples (which can be seen as soft constraints imposed on the parameters)
arising out of several tasks. In the same way that additional training examples
put more pressure on the parameters of the model towards values that generalize
well, when part of a model is shared across tasks, that part of the model is more

constrained towards good values (assuming the sharing is justified), often yielding
better generalization.

h h
h

h h
h

h

Fig. illustrates a very common form of multi-task learning, in which different7.2
supervised tasks (predicting ( ) given ) share the same input , as well as some
intermediate-level representation h(shared) capturing a common pool of factors. The
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model can generally be divided into two kinds of parts and associated parameters:

1. Task-specific parameters (which only benefit from the examples of their task
to achieve good generalization). These are the upper layers of the neural
network in Fig. .7.2

2. Generic parameters, shared across all the tasks (which benefit from the
pooled data of all the tasks). These are the lower layers of the neural network

in Fig. .7.2

Improved generalization and generalization error bounds ( , ) can beBaxter 1995
achieved because of the shared parameters, for which statistical strength can be
greatly improved (in proportion with the increased number of examples for the
shared parameters, compared to the scenario of single-task models). Of course this
will happen only if some assumptions about the statistical relationship between
the different tasks are valid, meaning that there is something shared across some
of the tasks.

From the point of view of deep learning, the underlying prior belief is the
following: among the factors that explain the variations observed in the
data associated with the different tasks, some are shared across two or
more tasks.

7.8 Early Stopping

When training large models with sufficient representational capacity to overfit
the task, we often observe that training error decreases steadily over time, but
validation set error begins to rise again. See Fig. for an example of this behavior.7.3
This behavior occurs very reliably.

This means we can obtain a model with better validation set error (and thus,

hopefully better test set error) by returning to the parameter setting at the point
in time with the lowest validation set error. Instead of running our optimization
algorithm until we reach a (local) minimum of validation error, we run it until the
error on the validation set has not improved for some amount of time. Every time
the error on the validation set improves, we store a copy of the model parameters.
When the training algorithm terminates, we return these parameters, rather than
the latest parameters. This procedure is specified more formally in Algorithm .7.1

This strategy is known as early stopping. It is probably the most commonly
used form of regularization in deep learning. Its popularity is due both to its
effectiveness and its simplicity.
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One way to think of early stopping is as a very efficient hyperparameter selection
algorithm. In this view, the number of training steps is just another hyperparameter.
We can see in Fig. that this hyperparameter has a U-shaped validation set7.3
performance curve. Most hyperparameters that control model capacity have such a
U-shaped validation set performance curve, as illustrated in Fig. . In the case of5.3
early stopping, we are controlling the effective capacity of the model by determining
how many steps it can take to fit the training set. Most hyperparameters must be
chosen using an expensive guess and check process, where we set a hyperparameter
at the start of training, then run training for several steps to see its effect. The
“training time” hyperparameter is unique in that by definition a single run of
training tries out many values of the hyperparameter. The only significant cost
to choosing this hyperparameter automatically via early stopping is running the

validation set evaluation periodically during training. Ideally, this is done in
parallel to the training process on a separate machine, separate CPU, or separate
GPU from the main training process. If such resources are not available, then the
cost of these periodic evaluations may be reduced by using a validation set that is
small compared to the training set or by evaluating the validation set error less
frequently and obtaining a lower resolution estimate of the optimal training time.

An additional cost to early stopping is the need to maintain a copy of the
best parameters. This cost is generally negligible, because it is acceptable to store
these parameters in a slower and larger form of memory (for example, training in
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GPU memory, but storing the optimal parameters in host memory or on a disk
drive). Since the best parameters are written to infrequently and never read during
training, these occasional slow writes have little effect on the total training time.

Early stopping is a very unobtrusive form of regularization, in that it requires
almost no change in the underlying training procedure, the objective function,
or the set of allowable parameter values. This means that it is easy to use early
stopping without damaging the learning dynamics. This is in contrast to weight
decay, where one must be careful not to use too much weight decay and trap the
network in a bad local minimum corresponding to a solution with pathologically

small weights.

Early stopping may be used either alone or in conjunction with other regulariza-
tion strategies. Even when using regularization strategies that modify the objective
function to encourage better generalization, it is rare for the best generalization to
occur at a local minimum of the training objective.

Early stopping requires a validation set, which means some training data is not
fed to the model. To best exploit this extra data, one can perform extra training
after the initial training with early stopping has completed. In the second, extra
training step, all of the training data is included. There are two basic strategies
one can use for this second training procedure.

One strategy (Algorithm ) is to initialize the model again and retrain on all7.2
of the data. In this second training pass, we train for the same number of steps as
the early stopping procedure determined was optimal in the first pass. There are
some subtleties associated with this procedure. For example, there is not a good
way of knowing whether to retrain for the same number of parameter updates or
the same number of passes through the dataset. On the second round of training,
each pass through the dataset will require more parameter updates because the
training set is bigger.

Another strategy for using all of the data is to keep the parameters obtained
from the first round of training and then continue training but now using all of
the data. At this stage, we now no longer have a guide for when to stop in terms
of a number of steps. Instead, we can monitor the average loss function on the

validation set, and continue training until it falls below the value of the training
set objective at which the early stopping procedure halted. This strategy avoids
the high cost of retraining the model from scratch, but is not as well-behaved. For
example, there is not any guarantee that the objective on the validation set will
ever reach the target value, so this strategy is not even guaranteed to terminate.
This procedure is presented more formally in Algorithm .7.3

Early stopping is also useful because it reduces the computational cost of the
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w
w̃ L

L

training procedure. Besides the obvious reduction in cost due to limiting the number
of training iterations, it also has the benefit of providing regularization without
requiring the addition of penalty terms to the cost function or the computation of
the gradients of such additional terms.

How early stopping acts as a regularizer: So far we have stated that early
stopping a regularization strategy, but we have supported this claim only byis
showing learning curves where the validation set error has a U-shaped curve. What
is the actual mechanism by which early stopping regularizes the model? Bishop
( ) and ( ) argued that early stopping has the effect of1995a Sjöberg and Ljung 1995
restricting the optimization procedure to a relatively small volume of parameter
space in the neighborhood of the initial parameter value θ . More specifically,
imagine taking τ optimization steps (corresponding to τ training iterations) and
with learning rate . We can view the product τ as a measure of effective capacity.
Assuming the gradient is bounded, restricting both the number of iterations and
the learning rate limits the volume of parameter space reachable from θ . In this
sense, τ behaves as if it were the reciprocal of the coefficient used for weight decay.

Indeed, we can show how—in the case of a simple linear model with a quadratic
error function and simple gradient descent—early stopping is equivalent to L2
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regularization.

In order to compare with classical L2 regularization, we examine a simple
setting where the only parameters are linear weights (θ = w). We can model
the cost function J with a quadratic approximation in the neighborhood of the
empirically optimal value of the weights w∗:

Ĵ J( ) = θ (w∗) +
1

2
(w w− ∗)>H w w( − ∗), (7.33)

where H is the Hessian matrix of J with respect to w evaluated atw∗ . Given the
assumption that w∗ is a minimum of J(w), we know thatH is positive semidefinite.
Under a local Taylor series approximation, the gradient is given by:

∇w Ĵ( ) = (w H w w− ∗). (7.34)

We are going to study the trajectory followed by the parameter vector during
training. For simplicity, let us set the initial parameter vector to the origin,3 that
is w(0) = . Let us suppose that we update the parameters via gradient descent:

w( ) = w( 1)− − ∇ wJ(w( 1)− ) (7.35)

= w( 1)− − H w( ( 1)− −w∗ ) (7.36)

w( ) −w∗ = ( )(I H−  w ( 1)− −w∗) (7.37)

Let us now rewrite this expression in the space of the eigenvectors ofH , exploiting

the eigendecomposition of H: H =Q Q> , where is a diagonal matrix and Q
is an orthonormal basis of eigenvectors.

w ( )−w∗ = (I Q Q−  >)(w ( 1)− −w∗) (7.38)

Q>(w( ) −w∗) = ( )I −  Q>(w( 1)− −w∗) (7.39)

Assuming that w(0) = 0 and that  is chosen to be small enough to guarantee
|1 − λ | < 1, the parameter trajectory during training after τ parameter updates
is as follows:

Q >w( ) = [ ( )I − I −  ]Q>w∗ . (7.40)

Now, the expression for Q>w̃ in Eq. for7.13 L2 regularization can be rearranged
as:

Q>w̃ I= ( + α )−1 Q>w∗ (7.41)

3For neural networks, to obtain symmetry breaking between hidden units, we cannot initialize
all the parameters to , as discussed in Sec. . However, the argument holds for any other6.2
initial value .
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Q>w̃ I I= [ − ( + α )−1α]Q>w∗ (7.42)

Comparing Eq. and Eq. , we see that if the hyperparameters7.40 7.42 , α, and τ
are chosen such that

( )I −  = ( + )αI −1α, (7.43)

then L2 regularization and early stopping can be seen to be equivalent (at least
under the quadratic approximation of the objective function). Going even further,
by taking logarithms and using the series expansion for log(1+ x), we can conclude
that if all λ are small (that is, λ  1 and λ /α 1) then

τ ≈ 1

α
, (7.44)

α ≈ 1

τ
. (7.45)

That is, under these assumptions, the number of training iterations τ plays a role
inversely proportional to the L2 regularization parameter, and the inverse of τ
plays the role of the weight decay coefficient.

Parameter values corresponding to directions of significant curvature (of the
objective function) are regularized less than directions of less curvature. Of course,
in the context of early stopping, this really means that parameters that correspond
to directions of significant curvature tend to learn early relative to parameters
corresponding to directions of less curvature.

The derivations in this section have shown that a trajectory of length τ ends
at a point that corresponds to a minimum of the L2-regularized objective. Early
stopping is of course more than the mere restriction of the trajectory length;
instead, early stopping typically involves monitoring the validation set error in
order to stop the trajectory at a particularly good point in space. Early stopping
therefore has the advantage over weight decay that early stopping automatically

determines the correct amount of regularization while weight decay requires many
training experiments with different values of its hyperparameter.

7.9 Parameter Tying and Parameter Sharing

Thus far, in this chapter, when we have discussed adding constraints or penalties
to the parameters, we have always done so with respect to a fixed region or point.
For example, L2 regularization (or weight decay) penalizes model parameters for
deviating from the fixed value of zero. However, sometimes we may need other
ways to express our prior knowledge about suitable values of the model parameters.
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Sometimes we might not know precisely what values the parameters should take
but we know, from knowledge of the domain and model architecture, that there
should be some dependencies between the model parameters.

A common type of dependency that we often want to express is that certain
parameters should be close to one another. Consider the following scenario: we
have two models performing the same classification task (with the same set of
classes) but with somewhat different input distributions. Formally, we have model
A with parameters w( ) and model B with parameters w( ) . The two models
map the input to two different, but related outputs: ŷ ( ) = f(w( ),x) and

ŷ ( ) = (g w ( ),x).

Let us imagine that the tasks are similar enough (perhaps with similar input
and output distributions) that we believe the model parameters should be close

to each other: ∀i, w( ) should be close to w( ) . We can leverage this information
through regularization. Specifically, we can use a parameter norm penalty of the
form: Ω(w ( ),w( )) = kw( ) −w( )k22. Here we used an L2 penalty, but other

choices are also possible.

This kind of approach was proposed by ( ), who regularizedLasserre et al. 2006
the parameters of one model, trained as a classifier in a supervised paradigm, to
be close to the parameters of another model, trained in an unsupervised paradigm
(to capture the distribution of the observed input data). The architectures were
constructed such that many of the parameters in the classifier model could be
paired to corresponding parameters in the unsupervised model.

While a parameter norm penalty is one way to regularize parameters to be
close to one another, the more popular way is to use constraints: to force sets of
parameters to be equal. This method of regularization is often referred to as
parameter sharing, where we interpret the various models or model components as

sharing a unique set of parameters. A significant advantage of parameter sharing
over regularizing the parameters to be close (via a norm penalty) is that only a
subset of the parameters (the unique set) need to be stored in memory. In certain
models—such as the convolutional neural network—this can lead to significant
reduction in the memory footprint of the model.

Convolutional Neural Networks By far the most popular and extensive use
of parameter sharing occurs in convolutional neural networks (CNNs) applied to
computer vision.

Natural images have many statistical properties that are invariant to translation.
For example, a photo of a cat remains a photo of a cat if it is translated one pixel
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to the right. CNNs take this property into account by sharing parameters across
multiple image locations. The same feature (a hidden unit with the same weights)
is computed over different locations in the input. This means that we can find a
cat with the same cat detector whether the cat appears at column i or column
i+ 1 in the image.

Parameter sharing has allowed CNNs to dramatically lower the number of unique
model parameters and to significantly increase network sizes without requiring a
corresponding increase in training data. It remains one of the best examples of
how to effectively incorporate domain knowledge into the network architecture.

CNNs will be discussed in more detail in Chapter .9

7.10 Sparse Representations

Weight decay acts by placing a penalty directly on the model parameters. Another
strategy is to place a penalty on the activations of the units in a neural network,
encouraging their activations to be sparse. This indirectly imposes a complicated
penalty on the model parameters.

We have already discussed (in Sec. ) how7.1.2 L1 penalization induces a sparse
parametrization—meaning that many of the parameters become zero (or close to
zero). Representational sparsity, on the other hand, describes a representation
where many of the elements of the representation are zero (or close to zero).
A simplified view of this distinction can be illustrated in the context of linear
regression:
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In the first expression, we have an example of a sparsely parametrized linear
regression model. In the second, we have linear regression with a sparse representa-
tion h of the data x. That is, h is a function of x that, in some sense, represents
the information present in , but does so with a sparse vector.x

Representational regularization is accomplished by the same sorts of mechanisms
that we have used in parameter regularization.

Norm penalty regularization of representations is performed by adding to the
loss function J a norm penalty on the representation, denoted Ω(h). As before, we

denote the regularized loss function by J̃ :

J̃ , J , α( ;θ X y) = ( ;θ X y) + Ω( )h (7.48)

where α ∈ [0,∞) weights the relative contribution of the norm penalty term, with
larger values of corresponding to more regularization.α

Just as an L1 penalty on the parameters induces parameter sparsity, an L1

penalty on the elements of the representation induces representational sparsity:
Ω(h) = || ||h 1 = |h |. Of course, the L1 penalty is only one choice of penalty
that can result in a sparse representation. Others include the penalty derived from
a Student-t prior on the representation ( , ; , )Olshausen and Field 1996 Bergstra 2011
and KL divergence penalties ( , ) that are especiallyLarochelle and Bengio 2008
useful for representations with elements constrained to lie on the unit interval.
Lee 2008 Goodfellow 2009et al. ( ) and et al. ( ) both provide examples of strategies

based on regularizing the average activation across several examples, 1 h( ) , to
be near some target value, such as a vector with .01 for each entry.

Other approaches obtain representational sparsity with a hard constraint on
the activation values. For example, orthogonal matching pursuit ( ,Pati et al.
1993) encodes an input x with the representation h that solves the constrained
optimization problem

arg min
h hk k

k − kx Wh 2, (7.49)

where k kh 0 is the number of non-zero entries of h . This problem can be solved
efficiently when W is constrained to be orthogonal. This method is often called
OMP-k with the value of k specified to indicate the number of non-zero features
allowed. ( ) demonstrated that OMP- can be a very effectiveCoates and Ng 2011 1
feature extractor for deep architectures.

Essentially any model that has hidden units can be made sparse. Throughout

this book, we will see many examples of sparsity regularization used in a variety of
contexts.
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7.11 Bagging and Other Ensemble Methods

Bagging bootstrap aggregating(short for ) is a technique for reducing generalization
error by combining several models ( , ). The idea is to train severalBreiman 1994
different models separately, then have all of the models vote on the output for test
examples. This is an example of a general strategy in machine learning called model
averaging. Techniques employing this strategy are known as ensemble methods.

The reason that model averaging works is that different models will usually
not make all the same errors on the test set.

Consider for example a set of k regression models. Suppose that each model
makes an error  on each example, with the errors drawn from a zero-mean
multivariate normal distribution with variances [2] = v and covariances [  ] =
c. Then the error made by the average prediction of all the ensemble models is
1  . The expected squared error of the ensemble predictor is

1

k


2

=
1

k2
2 +

6=
  (7.50)

=
1

k
v +

k − 1

k
c. (7.51)

In the case where the errors are perfectly correlated and c = v, the mean squared

error reduces to v, so the model averaging does not help at all. In the case where
the errors are perfectly uncorrelated and c = 0, the expected squared error of the
ensemble is only 1v. This means that the expected squared error of the ensemble
decreases linearly with the ensemble size. In other words, on average, the ensemble
will perform at least as well as any of its members, and if the members make
independent errors, the ensemble will perform significantly better than its members.

Different ensemble methods construct the ensemble of models in different ways.
For example, each member of the ensemble could be formed by training a completely
different kind of model using a different algorithm or objective function. Bagging
is a method that allows the same kind of model, training algorithm and objective
function to be reused several times.

Specifically, bagging involves constructing k different datasets. Each dataset
has the same number of examples as the original dataset, but each dataset is
constructed by sampling with replacement from the original dataset. This means
that, with high probability, each dataset is missing some of the examples from the
original dataset and also contains several duplicate examples (on average around
2/3 of the examples from the original dataset are found in the resulting training

255



CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

set, if it has the same size as the original). Model i is then trained on dataset
i. The differences between which examples are included in each dataset result in
differences between the trained models. See Fig. for an example.7.5

Neural networks reach a wide enough variety of solution points that they can
often benefit from model averaging even if all of the models are trained on the same
dataset. Differences in random initialization, random selection of minibatches,
differences in hyperparameters, or different outcomes of non-deterministic imple-
mentations of neural networks are often enough to cause different members of the

ensemble to make partially independent errors.

Model averaging is an extremely powerful and reliable method for reducing
generalization error. Its use is usually discouraged when benchmarking algorithms
for scientific papers, because any machine learning algorithm can benefit substan-
tially from model averaging at the price of increased computation and memory.
For this reason, benchmark comparisons are usually made using a single model.

Machine learning contests are usually won by methods using model averag-
ing over dozens of models. A recent prominent example is the Netflix Grand
Prize (Koren 2009, ).
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Not all techniques for constructing ensembles are designed to make the ensemble
more regularized than the individual models. For example, a technique called
boosting (Freund and Schapire 1996b a, , ) constructs an ensemble with higher capacity
than the individual models. Boosting has been applied to build ensembles of neural
networks (Schwenk and Bengio 1998, ) by incrementally adding neural networks to
the ensemble. Boosting has also been applied interpreting an individual neural
network as an ensemble ( , ), incrementally adding hidden unitsBengio et al. 2006a
to the neural network.

7.12 Dropout

Dropout (Srivastava 2014et al., ) provides a computationally inexpensive but
powerful method of regularizing a broad family of models. To a first approximation,
dropout can be thought of as a method of making bagging practical for ensembles
of very many large neural networks. Bagging involves training multiple models,
and evaluating multiple models on each test example. This seems impractical
when each model is a large neural network, since training and evaluating such
networks is costly in terms of runtime and memory. It is common to use ensembles
of five to ten neural networks— ( ) used six to win the ILSVRC—Szegedy et al. 2014a

but more than this rapidly becomes unwieldy. Dropout provides an inexpensive
approximation to training and evaluating a bagged ensemble of exponentially many
neural networks.

Specifically, dropout trains the ensemble consisting of all sub-networks that
can be formed by removing non-output units from an underlying base network,
as illustrated in Fig. . In most modern neural networks, based on a series of7.6
affine transformations and nonlinearities, we can effectively remove a unit from a
network by multiplying its output value by zero. This procedure requires some
slight modification for models such as radial basis function networks, which take
the difference between the unit’s state and some reference value. Here, we present
the dropout algorithm in terms of multiplication by zero for simplicity, but it can
be trivially modified to work with other operations that remove a unit from the

network.

Recall that to learn with bagging, we define k different models, construct k
different datasets by sampling from the training set with replacement, and then
train model i on dataset i. Dropout aims to approximate this process, but with an
exponentially large number of neural networks. Specifically, to train with dropout,
we use a minibatch-based learning algorithm that makes small steps, such as
stochastic gradient descent. Each time we load an example into a minibatch, we
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randomly sample a different binary mask to apply to all of the input and hidden
units in the network. The mask for each unit is sampled independently from all of
the others. The probability of sampling a mask value of one (causing a unit to be
included) is a hyperparameter fixed before training begins. It is not a function
of the current value of the model parameters or the input example. Typically,
an input unit is included with probability 0.8 and a hidden unit is included with
probability 0.5. We then run forward propagation, back-propagation, and the
learning update as usual. Fig. illustrates how to run forward propagation with7.7
dropout.

More formally, suppose that a mask vector µ specifies which units to include,
and J (θ µ, ) defines the cost of the model defined by parameters θ and mask µ.
Then dropout training consists in minimizing µJ(θ µ, ). The expectation contains
exponentially many terms but we can obtain an unbiased estimate of its gradient
by sampling values of .µ

Dropout training is not quite the same as bagging training. In the case of
bagging, the models are all independent. In the case of dropout, the models share
parameters, with each model inheriting a different subset of parameters from the
parent neural network. This parameter sharing makes it possible to represent an
exponential number of models with a tractable amount of memory. In the case of
bagging, each model is trained to convergence on its respective training set. In the

case of dropout, typically most models are not explicitly trained at all—usually,
the model is large enough that it would be infeasible to sample all possible sub-
networks within the lifetime of the universe. Instead, a tiny fraction of the possible
sub-networks are each trained for a single step, and the parameter sharing causes
the remaining sub-networks to arrive at good settings of the parameters. These
are the only differences. Beyond these, dropout follows the bagging algorithm. For
example, the training set encountered by each sub-network is indeed a subset of
the original training set sampled with replacement.

To make a prediction, a bagged ensemble must accumulate votes from all of
its members. We refer to this process as inference in this context. So far, our
description of bagging and dropout has not required that the model be explicitly

probabilistic. Now, we assume that the model’s role is to output a probability
distribution. In the case of bagging, each model i produces a probability distribution
p( )(y | x). The prediction of the ensemble is given by the arithmetic mean of all
of these distributions,

1

k
=1

p( ) ( )y | x . (7.52)

In the case of dropout, each sub-model defined by mask vector µ defines a prob-
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ability distribution p(y ,| x µ). The arithmetic mean over all masks is given
by

µ

p p y ,( )µ ( | x µ) (7.53)

where p(µ) is the probability distribution that was used to sample µ at training
time.

Because this sum includes an exponential number of terms, it is intractable
to evaluate except in cases where the structure of the model permits some form
of simplification. So far, deep neural nets are not known to permit any tractable
simplification. Instead, we can approximate the inference with sampling, by

averaging together the output from many masks. Even 10-20 masks are often
sufficient to obtain good performance.

However, there is an even better approach, that allows us to obtain a good
approximation to the predictions of the entire ensemble, at the cost of only one
forward propagation. To do so, we change to using the geometric mean rather than
the arithmetic mean of the ensemble members’ predicted distributions. Warde-
Farley 2014et al. ( ) present arguments and empirical evidence that the geometric
mean performs comparably to the arithmetic mean in this context.

The geometric mean of multiple probability distributions is not guaranteed to be
a probability distribution. To guarantee that the result is a probability distribution,
we impose the requirement that none of the sub-models assigns probability 0 to any

event, and we renormalize the resulting distribution. The unnormalized probability
distribution defined directly by the geometric mean is given by

p̃ensemble( ) =y | x
µ

p y ,( | x µ) (7.54)

where d is the number of units that may be dropped. Here we use a uniform
distribution over µ to simplify the presentation, but non-uniform distributions are
also possible. To make predictions we must re-normalize the ensemble:

pensemble( ) =y | x
p̃ensemble( )y | x
p̃ensemble(y0 | x)

. (7.55)

A key insight ( , ) involved in dropout is that we can approxi-Hinton et al. 2012c
mate pensemble by evaluating p(y | x) in one model: the model with all units, but
with the weights going out of unit i multiplied by the probability of including unit
i. The motivation for this modification is to capture the right expected value of
the output from that unit. We call this approach the weight scaling inference rule.
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There is not yet any theoretical argument for the accuracy of this approximate
inference rule in deep nonlinear networks, but empirically it performs very well.

Because we usually use an inclusion probability of 12 , the weight scaling rule
usually amounts to dividing the weights by at the end of training, and then using2 
the model as usual. Another way to achieve the same result is to multiply the
states of the units by during training. Either way, the goal is to make sure that2
the expected total input to a unit at test time is roughly the same as the expected
total input to that unit at train time, even though half the units at train time are
missing on average.

For many classes of models that do not have nonlinear hidden units, the weight
scaling inference rule is exact. For a simple example, consider a softmax regression

classifier with input variables represented by the vector :n

P y( = y | ) = softmax W> + b . (7.56)

We can index into the family of sub-models by element-wise multiplication of the
input with a binary vector :d

P y( = y | ; ) = d softmax W >( ) +d b . (7.57)

The ensemble predictor is defined by re-normalizing the geometric mean over all
ensemble members’ predictions:

Pensemble( = ) =y y |
P̃ensemble( = )y y |
P̃ensemble( = y y 0 | )

(7.58)

where

P̃ensemble( = ) =y y |
d∈{ }0 1

P y .( = y | ; )d (7.59)

To see that the weight scaling rule is exact, we can simplify P̃ensemble:

P̃ensemble ( = ) =y y |
d∈{ }0 1

P y( = y | ; )d (7.60)

=

d∈{ }0 1

softmax (W> ( ) + )d b (7.61)

=

d∈{ }0 1

exp W>
:( ) +d b

exp W>
:( ) +d b

(7.62)
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=
d∈{ }0 1 exp W>

: ( ) +d b

d∈{ }0 1 exp W>
:( ) +d b

(7.63)

Because P̃ will be normalized, we can safely ignore multiplication by factors that

are constant with respect to :y

P̃ensemble( = ) y y | ∝
d∈{ }0 1

exp W >
:( ) +d b (7.64)

= exp
1

2
d∈{ }0 1

W>
:( ) +d b (7.65)

= exp
1

2
W>

: + b (7.66)

Substituting this back into Eq. we obtain a softmax classifier with weights7.58
1
2W .

The weight scaling rule is also exact in other settings, including regression
networks with conditionally normal outputs, and deep networks that have hidden
layers without nonlinearities. However, the weight scaling rule is only an approxi-
mation for deep models that have nonlinearities. Though the approximation has
not been theoretically characterized, it often works well, empirically. Goodfellow
et al. ( ) found experimentally that the weight scaling approximation can work2013a
better (in terms of classification accuracy) than Monte Carlo approximations to the
ensemble predictor. This held true even when the Monte Carlo approximation was
allowed to sample up to 1,000 sub-networks. ( ) foundGal and Ghahramani 2015
that some models obtain better classification accuracy using twenty samples and
the Monte Carlo approximation. It appears that the optimal choice of inference

approximation is problem-dependent.

Srivastava 2014et al. ( ) showed that dropout is more effective than other
standard computationally inexpensive regularizers, such as weight decay, filter
norm constraints and sparse activity regularization. Dropout may also be combined
with other forms of regularization to yield a further improvement.

One advantage of dropout is that it is very computationally cheap. Using
dropout during training requires only O(n) computation per example per update,
to generate n random binary numbers and multiply them by the state. Depending
on the implementation, it may also require O(n) memory to store these binary
numbers until the back-propagation stage. Running inference in the trained model
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has the same cost per-example as if dropout were not used, though we must pay
the cost of dividing the weights by 2 once before beginning to run inference on
examples.

Another significant advantage of dropout is that it does not significantly limit
the type of model or training procedure that can be used. It works well with nearly
any model that uses a distributed representation and can be trained with stochastic
gradient descent. This includes feedforward neural networks, probabilistic models
such as restricted Boltzmann machines (Srivastava 2014et al., ), and recurrent
neural networks (Bayer and Osendorfer 2014 Pascanu 2014a, ; et al., ). Many other

regularization strategies of comparable power impose more severe restrictions on
the architecture of the model.

Though the cost per-step of applying dropout to a specific model is negligible,
the cost of using dropout in a complete system can be significant. Because dropout
is a regularization technique, it reduces the effective capacity of a model. To offset
this effect, we must increase the size of the model. Typically the optimal validation
set error is much lower when using dropout, but this comes at the cost of a much
larger model and many more iterations of the training algorithm. For very large
datasets, regularization confers little reduction in generalization error. In these
cases, the computational cost of using dropout and larger models may outweigh
the benefit of regularization.

When extremely few labeled training examples are available, dropout is less
effective. Bayesian neural networks ( , ) outperform dropout on theNeal 1996
Alternative Splicing Dataset ( , ) where fewer than 5,000 examplesXiong et al. 2011
are available (Srivastava 2014et al., ). When additional unlabeled data is available,
unsupervised feature learning can gain an advantage over dropout.

Wager 2013et al. ( ) showed that, when applied to linear regression, dropout
is equivalent to L2 weight decay, with a different weight decay coefficient for
each input feature. The magnitude of each feature’s weight decay coefficient is
determined by its variance. Similar results hold for other linear models. For deep
models, dropout is not equivalent to weight decay.

The stochasticity used while training with dropout is not necessary for the

approach’s success. It is just a means of approximating the sum over all sub-
models. Wang and Manning 2013( ) derived analytical approximations to this
marginalization. Their approximation, known as fast dropout resulted in faster
convergence time due to the reduced stochasticity in the computation of the
gradient. This method can also be applied at test time, as a more principled
(but also more computationally expensive) approximation to the average over all
sub-networks than the weight scaling approximation. Fast dropout has been used
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to nearly match the performance of standard dropout on small neural network
problems, but has not yet yielded a significant improvement or been applied to a
large problem.

Just as stochasticity is not necessary to achieve the regularizing effect of
dropout, it is also not sufficient. To demonstrate this, Warde-Farley 2014et al. ( )
designed control experiments using a method called dropout boosting that they
designed to use exactly the same mask noise as traditional dropout but lack
its regularizing effect. Dropout boosting trains the entire ensemble to jointly
maximize the log-likelihood on the training set. In the same sense that traditional

dropout is analogous to bagging, this approach is analogous to boosting. As
intended, experiments with dropout boosting show almost no regularization effect
compared to training the entire network as a single model. This demonstrates that
the interpretation of dropout as bagging has value beyond the interpretation of
dropout as robustness to noise. The regularization effect of the bagged ensemble is
only achieved when the stochastically sampled ensemble members are trained to
perform well independently of each other.

Dropout has inspired other stochastic approaches to training exponentially
large ensembles of models that share weights. DropConnect is a special case of
dropout where each product between a single scalar weight and a single hidden
unit state is considered a unit that can be dropped (Wan 2013et al., ). Stochastic

pooling is a form of randomized pooling (see Sec. ) for building ensembles9.3
of convolutional networks with each convolutional network attending to different
spatial locations of each feature map. So far, dropout remains the most widely
used implicit ensemble method.

One of the key insights of dropout is that training a network with stochastic
behavior and making predictions by averaging over multiple stochastic decisions
implements a form of bagging with parameter sharing. Earlier, we described
dropout as bagging an ensemble of models formed by including or excluding
units. However, there is no need for this model averaging strategy to be based on
inclusion and exclusion. In principle, any kind of random modification is admissible.
In practice, we must choose modification families that neural networks are able

to learn to resist. Ideally, we should also use model families that allow a fast
approximate inference rule. We can think of any form of modification parametrized
by a vector µ as training an ensemble consisting of p(y ,| x µ) for all possible
values of µ. There is no requirement that µ have a finite number of values. For
example,µ can be real-valued. Srivastava 2014et al. ( ) showed that multiplying the
weights by µ ∼ N ( , I ) can outperform dropout based on binary masks. Because

[µ] = the standard network automatically implements approximate inference
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in the ensemble, without needing any weight scaling.

So far we have described dropout purely as a means of performing efficient,
approximate bagging. However, there is another view of dropout that goes further
than this. Dropout trains not just a bagged ensemble of models, but an ensemble
of models that share hidden units. This means each hidden unit must be able to
perform well regardless of which other hidden units are in the model. Hidden units
must be prepared to be swapped and interchanged between models. Hinton et al.
( ) were inspired by an idea from biology: sexual reproduction, which involves2012c
swapping genes between two different organisms, creates evolutionary pressure for

genes to become not just good, but to become readily swapped between different
organisms. Such genes and such features are very robust to changes in their
environment because they are not able to incorrectly adapt to unusual features
of any one organism or model. Dropout thus regularizes each hidden unit to be
not merely a good feature but a feature that is good in many contexts. Warde-
Farley 2014et al. ( ) compared dropout training to training of large ensembles and
concluded that dropout offers additional improvements to generalization error
beyond those obtained by ensembles of independent models.

It is important to understand that a large portion of the power of dropout
arises from the fact that the masking noise is applied to the hidden units. This
can be seen as a form of highly intelligent, adaptive destruction of the information

content of the input rather than destruction of the raw values of the input. For
example, if the model learns a hidden unit h that detects a face by finding the nose,
then dropping h corresponds to erasing the information that there is a nose in
the image. The model must learn another h , either that redundantly encodes the
presence of a nose, or that detects the face by another feature, such as the mouth.
Traditional noise injection techniques that add unstructured noise at the input are
not able to randomly erase the information about a nose from an image of a face
unless the magnitude of the noise is so great that nearly all of the information in
the image is removed. Destroying extracted features rather than original values
allows the destruction process to make use of all of the knowledge about the input
distribution that the model has acquired so far.

Another important aspect of dropout is that the noise is multiplicative. If the
noise were additive with fixed scale, then a rectified linear hidden unit h with
added noise  could simply learn to have h become very large in order to make
the added noise  insignificant by comparison. Multiplicative noise does not allow
such a pathological solution to the noise robustness problem.

Another deep learning algorithm, batch normalization, reparametrizes the
model in a way that introduces both additive and multiplicative noise on the
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hidden units at training time. The primary purpose of batch normalization is to
improve optimization, but the noise can have a regularizing effect, and sometimes

makes dropout unnecessary. Batch normalization is described further in Sec. .8.7.1

7.13 Adversarial Training

In many cases, neural networks have begun to reach human performance when
evaluated on an i.i.d. test set. It is natural therefore to wonder whether these
models have obtained a true human-level understanding of these tasks. In order
to probe the level of understanding a network has of the underlying task, we can
search for examples that the model misclassifies. ( ) found thatSzegedy et al. 2014b
even neural networks that perform at human level accuracy have a nearly 100%

error rate on examples that are intentionally constructed by using an optimization
procedure to search for an input x0 near a data point x such that the model output
is very different at x0. In many cases, x0 can be so similar to x that a human
observer cannot tell the difference between the original example and the adversarial
example, but the network can make highly different predictions. See Fig. for7.8
an example.

Adversarial examples have many implications, for example, in computer security,
that are beyond the scope of this chapter. However, they are interesting in the
context of regularization because one can reduce the error rate on the original i.i.d.
test set via adversarial training—training on adversarially perturbed examples
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from the training set ( , ;Szegedy et al. 2014b Goodfellow 2014bet al., ).

Goodfellow 2014bet al. ( ) showed that one of the primary causes of these
adversarial examples is excessive linearity. Neural networks are built out of
primarily linear building blocks. In some experiments the overall function they
implement proves to be highly linear as a result. These linear functions are easy
to optimize. Unfortunately, the value of a linear function can change very rapidly
if it has numerous inputs. If we change each input by , then a linear function
with weights w can change by as much as || ||w 1, which can be a very large
amount if w is high-dimensional. Adversarial training discourages this highly

sensitive locally linear behavior by encouraging the network to be locally constant
in the neighborhood of the training data. This can be seen as a way of explicitly
introducing a local constancy prior into supervised neural nets.

Adversarial training helps to illustrate the power of using a large function
family in combination with aggressive regularization. Purely linear models, like
logistic regression, are not able to resist adversarial examples because they are
forced to be linear. Neural networks are able to represent functions that can range
from nearly linear to nearly locally constant and thus have the flexibility to capture
linear trends in the training data while still learning to resist local perturbation.

Adversarial examples also provide a means of accomplishing semi-supervised
learning. At a point x that is not associated with a label in the dataset, the

model itself assigns some label ŷ. The model’s label ŷ may not be the true label,
but if the model is high quality, then ŷ has a high probability of providing the
true label. We can seek an adversarial example x0 that causes the classifier to
output a label y0 with y0 6= ŷ. Adversarial examples generated using not the
true label but a label provided by a trained model are called virtual adversarial
examples (Miyato 2015et al., ). The classifier may then be trained to assign the
same label to x and x0. This encourages the classifier to learn a function that is
robust to small changes anywhere along the manifold where the unlabeled data
lies. The assumption motivating this approach is that different classes usually lie
on disconnected manifolds, and a small perturbation should not be able to jump
from one class manifold to another class manifold.

7.14 Tangent Distance, Tangent Prop, and Manifold
Tangent Classifier

Many machine learning algorithms aim to overcome the curse of dimensionality
by assuming that the data lies near a low-dimensional manifold, as described in
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Sec. .5.11.3

One of the early attempts to take advantage of the manifold hypothesis is the
tangent distance algorithm ( , , ). It is a non-parametricSimard et al. 1993 1998
nearest-neighbor algorithm in which the metric used is not the generic Euclidean
distance but one that is derived from knowledge of the manifolds near which
probability concentrates. It is assumed that we are trying to classify examples and
that examples on the same manifold share the same category. Since the classifier
should be invariant to the local factors of variation that correspond to movement
on the manifold, it would make sense to use as nearest-neighbor distance between

points x1 and x2 the distance between the manifoldsM 1 andM2 to which they
respectively belong. Although that may be computationally difficult (it would
require solving an optimization problem, to find the nearest pair of points on M1

andM2), a cheap alternative that makes sense locally is to approximate M by its
tangent plane at x and measure the distance between the two tangents, or between
a tangent plane and a point. That can be achieved by solving a low-dimensional
linear system (in the dimension of the manifolds). Of course, this algorithm requires
one to specify the tangent vectors.

In a related spirit, the tangent prop algorithm ( , ) (Fig. )Simard et al. 1992 7.9
trains a neural net classifier with an extra penalty to make each output f (x) of
the neural net locally invariant to known factors of variation. These factors of

variation correspond to movement along the manifold near which examples of the
same class concentrate. Local invariance is achieved by requiring ∇xf (x) to be
orthogonal to the known manifold tangent vectors v ( ) at x, or equivalently that
the directional derivative of f at x in the directions v( ) be small by adding a
regularization penalty :Ω

Ω( ) =f (∇xf( ))x > v ( )
2
. (7.67)

This regularizer can of course by scaled by an appropriate hyperparameter, and, for
most neural networks, we would need to sum over many outputs rather than the lone
output f(x) described here for simplicity. As with the tangent distance algorithm,
the tangent vectors are derived a priori, usually from the formal knowledge of
the effect of transformations such as translation, rotation, and scaling in images.
Tangent prop has been used not just for supervised learning ( , )Simard et al. 1992
but also in the context of reinforcement learning ( , ).Thrun 1995

Tangent propagation is closely related to dataset augmentation. In both
cases, the user of the algorithm encodes his or her prior knowledge of the task
by specifying a set of transformations that should not alter the output of the
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network. The difference is that in the case of dataset augmentation, the network is
explicitly trained to correctly classify distinct inputs that were created by applying
more than an infinitesimal amount of these transformations. Tangent propagation
does not require explicitly visiting a new input point. Instead, it analytically
regularizes the model to resist perturbation in the directions corresponding to
the specified transformation. While this analytical approach is intellectually
elegant, it has two major drawbacks. First, it only regularizes the model to resist
infinitesimal perturbation. Explicit dataset augmentation confers resistance to
larger perturbations. Second, the infinitesimal approach poses difficulties for models

based on rectified linear units. These models can only shrink their derivatives
by turning units off or shrinking their weights. They are not able to shrink their
derivatives by saturating at a high value with large weights, as sigmoid or tanh
units can. Dataset augmentation works well with rectified linear units because
different subsets of rectified units can activate for different transformed versions of
each original input.

Tangent propagation is also related to double backprop (Drucker and LeCun,
1992) and adversarial training ( , ; , ).Szegedy et al. 2014b Goodfellow et al. 2014b
Double backprop regularizes the Jacobian to be small, while adversarial training
finds inputs near the original inputs and trains the model to produce the same
output on these as on the original inputs. Tangent propagation and dataset

augmentation using manually specified transformations both require that the
model should be invariant to certain specified directions of change in the input.
Double backprop and adversarial training both require that the model should be
invariant to directions of change in the input so long as the change is small. Justall
as dataset augmentation is the non-infinitesimal version of tangent propagation,
adversarial training is the non-infinitesimal version of double backprop.

The manifold tangent classifier ( , ), eliminates the need toRifai et al. 2011c
know the tangent vectors a priori. As we will see in Chapter , autoencoders can14
estimate the manifold tangent vectors. The manifold tangent classifier makes use
of this technique to avoid needing user-specified tangent vectors. As illustrated
in Fig. , these estimated tangent vectors go beyond the classical invariants14.10

that arise out of the geometry of images (such as translation, rotation and scaling)
and include factors that must be learned because they are object-specific (such as
moving body parts). The algorithm proposed with the manifold tangent classifier
is therefore simple: (1) use an autoencoder to learn the manifold structure by
unsupervised learning, and (2) use these tangents to regularize a neural net classifier
as in tangent prop (Eq. ).7.67

This chapter has described most of the general strategies used to regularize
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f (x)

f (x) x

neural networks. Regularization is a central theme of machine learning and as such
will be revisited periodically by most of the remaining chapters. Another central
theme of machine learning is optimization, described next.
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Algorithm 7.1 The early stopping meta-algorithm for determining the best
amount of time to train. This meta-algorithm is a general strategy that works
well with a variety of training algorithms and ways of quantifying error on the
validation set.

Let be the number of steps between evaluations.n
Let p be the “patience,” the number of times to observe worsening validation set
error before giving up.
Let θ be the initial parameters.

θ θ←
i← 0
j ← 0
v← ∞
θ∗ ← θ
i∗ ← i
while doj < p
Update by running the training algorithm for steps.θ n
i i n← +
v0 ← ValidationSetError( )θ
if v0 < v then
j ← 0
θ∗← θ
i∗ ← i
v v← 0

else
j j← + 1

end if
end while
Best parameters are θ∗ , best number of training steps is i∗
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Algorithm 7.2 A meta-algorithm for using early stopping to determine how long

to train, then retraining on all the data.

Let X( )train and y( )train be the training set.
Split X( )train and y( )train into (X( )subtrain , X(valid)) (and y( )subtrain , y(valid))
respectively.
Run early stopping (Algorithm ) starting from random7.1 θ using X( )subtrain

and y( )subtrain for training data andX (valid) and y(valid) for validation data. This
returns i∗, the optimal number of steps.
Set to random values again.θ
Train on X( )train and y( )train for i∗ steps.

Algorithm 7.3 Meta-algorithm using early stopping to determine at what objec-
tive value we start to overfit, then continue training until that value is reached.

Let X( )train and y( )train be the training set.
Split X( )train and y( )train into (X( )subtrain , X(valid)) (and y( )subtrain , y(valid))
respectively.
Run early stopping (Algorithm ) starting from random7.1 θ using X( )subtrain

and y( )subtrain for training data andX (valid) and y(valid) for validation data. This
updates .θ
 J ,← (θ X( )subtrain ,y( )subtrain )
while J ,(θ X(valid),y (valid)) >  do
Train on X( )train and y( )train for steps.n

end while
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Chapter 8

Optimization for Training Deep

Models

Deep learning algorithms involve optimization in many contexts. For example,
performing inference in models such as PCA involves solving an optimization
problem. We often use analytical optimization to write proofs or design algorithms.

Of all of the many optimization problems involved in deep learning, the most
difficult is neural network training. It is quite common to invest days to months of
time on hundreds of machines in order to solve even a single instance of the neural
network training problem. Because this problem is so important and so expensive,
a specialized set of optimization techniques have been developed for solving it.
This chapter presents these optimization techniques for neural network training.

If you are unfamiliar with the basic principles of gradient-based optimization,
we suggest reviewing Chapter . That chapter includes a brief overview of numerical4
optimization in general.

This chapter focuses on one particular case of optimization: finding the param-
eters θ of a neural network that significantly reduce a cost function J(θ), which

typically includes a performance measure evaluated on the entire training set as
well as additional regularization terms.

We begin with a description of how optimization used as a training algorithm
for a machine learning task differs from pure optimization. Next, we present several
of the concrete challenges that make optimization of neural networks difficult. We
then define several practical algorithms, including both optimization algorithms
themselves and strategies for initializing the parameters. More advanced algorithms
adapt their learning rates during training or leverage information contained in
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the second derivatives of the cost function. Finally, we conclude with a review of
several optimization strategies that are formed by combining simple optimization
algorithms into higher-level procedures.

8.1 How Learning Differs from Pure Optimization

Optimization algorithms used for training of deep models differ from traditional
optimization algorithms in several ways. Machine learning usually acts indirectly.
In most machine learning scenarios, we care about some performance measure
P , that is defined with respect to the test set and may also be intractable. We
therefore optimize P only indirectly. We reduce a different cost function J(θ) in
the hope that doing so will improve P . This is in contrast to pure optimization,

where minimizing J is a goal in and of itself. Optimization algorithms for training
deep models also typically include some specialization on the specific structure of
machine learning objective functions.

Typically, the cost function can be written as an average over the training set,
such as

J( ) = θ E( ) ˆx,y ∼pdataL f , y ,( ( ; )x θ ) (8.1)

where L is the per-example loss function, f (x; θ) is the predicted output when
the input is x, p̂data is the empirical distribution. In the supervised learning case,
y is the target output. Throughout this chapter, we develop the unregularized
supervised case, where the arguments to L are f(x; θ) and y. However, it is trivial
to extend this development, for example, to include θ or x as arguments, or to
exclude y as arguments, in order to develop various forms of regularization or
unsupervised learning.

Eq. defines an objective function with respect to the training set. We8.1
would usually prefer to minimize the corresponding objective function where the
expectation is taken across the data generating distribution pdata rather than
just over the finite training set:

J∗( ) = θ E( )x,y ∼pdataL f , y .( ( ; )x θ ) (8.2)

8.1.1 Empirical Risk Minimization

The goal of a machine learning algorithm is to reduce the expected generalization
error given by Eq. . This quantity is known as the . We emphasize here that8.2 risk
the expectation is taken over the true underlying distribution pdata. If we knew
the true distribution pdata(x, y), risk minimization would be an optimization task
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solvable by an optimization algorithm. However, when we do not know pdata(x, y)
but only have a training set of samples, we have a machine learning problem.

The simplest way to convert a machine learning problem back into an op-
timization problem is to minimize the expected loss on the training set. This
means replacing the true distribution p(x, y) with the empirical distribution p̂(x, y)
defined by the training set. We now minimize the empirical risk

Ex,y∼p̂data( )x,y [ ( ( ; ) )] =L f x θ , y
1

m

mX
i=1

L f( (x( )i ; )θ , y ( )i ) (8.3)

where is the number of training examples.m

The training process based on minimizing this average training error is known
as empirical risk minimization. In this setting, machine learning is still very similar
to straightforward optimization. Rather than optimizing the risk directly, we
optimize the empirical risk, and hope that the risk decreases significantly as well.
A variety of theoretical results establish conditions under which the true risk can
be expected to decrease by various amounts.

However, empirical risk minimization is prone to overfitting. Models with
high capacity can simply memorize the training set. In many cases, empirical
risk minimization is not really feasible. The most effective modern optimization
algorithms are based on gradient descent, but many useful loss functions, such
as 0-1 loss, have no useful derivatives (the derivative is either zero or undefined
everywhere). These two problems mean that, in the context of deep learning, we
rarely use empirical risk minimization. Instead, we must use a slightly different
approach, in which the quantity that we actually optimize is even more different
from the quantity that we truly want to optimize.

8.1.2 Surrogate Loss Functions and Early Stopping

Sometimes, the loss function we actually care about (say classification error) is not
one that can be optimized efficiently. For example, exactly minimizing expected 0-1
loss is typically intractable (exponential in the input dimension), even for a linear
classifier (Marcotte and Savard 1992, ). In such situations, one typically optimizes
a surrogate loss function instead, which acts as a proxy but has advantages. For
example, the negative log-likelihood of the correct class is typically used as a
surrogate for the 0-1 loss. The negative log-likelihood allows the model to estimate
the conditional probability of the classes, given the input, and if the model can
do that well, then it can pick the classes that yield the least classification error in
expectation.
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In some cases, a surrogate loss function actually results in being able to learn
more. For example, the test set 0-1 loss often continues to decrease for a long
time after the training set 0-1 loss has reached zero, when training using the
log-likelihood surrogate. This is because even when the expected 0-1 loss is zero,
one can improve the robustness of the classifier by further pushing the classes apart
from each other, obtaining a more confident and reliable classifier, thus extracting
more information from the training data than would have been possible by simply
minimizing the average 0-1 loss on the training set.

A very important difference between optimization in general and optimization

as we use it for training algorithms is that training algorithms do not usually halt
at a local minimum. Instead, a machine learning algorithm usually minimizes
a surrogate loss function but halts when a convergence criterion based on early
stopping (Sec. ) is satisfied. Typically the early stopping criterion is based on7.8
the true underlying loss function, such as 0-1 loss measured on a validation set,
and is designed to cause the algorithm to halt whenever overfitting begins to occur.
Training often halts while the surrogate loss function still has large derivatives,
which is very different from the pure optimization setting, where an optimization
algorithm is considered to have converged when the gradient becomes very small.

8.1.3 Batch and Minibatch Algorithms

One aspect of machine learning algorithms that separates them from general
optimization algorithms is that the objective function usually decomposes as a sum
over the training examples. Optimization algorithms for machine learning typically
compute each update to the parameters based on an expected value of the cost
function estimated using only a subset of the terms of the full cost function.

For example, maximum likelihood estimation problems, when viewed in log
space, decompose into a sum over each example:

θML = arg max
θ

mX
i=1

log pmodel(x
( )i , y( )i ; )θ . (8.4)

Maximizing this sum is equivalent to maximizing the expectation over the
empirical distribution defined by the training set:

J( ) = θ Ex,y∼p̂data log pmodel ( ; )x, y θ . (8.5)

Most of the properties of the objective function J used by most of our opti-
mization algorithms are also expectations over the training set. For example, the
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most commonly used property is the gradient:

θJ( ) = θ Ex,y∼p̂data θ log pmodel ( ; )x, y θ . (8.6)

Computing this expectation exactly is very expensive because it requires
evaluating the model on every example in the entire dataset. In practice, we can
compute these expectations by randomly sampling a small number of examples

from the dataset, then taking the average over only those examples.

Recall that the standard error of the mean (Eq. ) estimated from5.46 n samples
is given by σ/ n, whereσ is the true standard deviation of the value of the samples.
The denominator of n shows that there are less than linear returns to using
more examples to estimate the gradient. Compare two hypothetical estimates of
the gradient, one based on 100 examples and another based on 10,000 examples.
The latter requires 100 times more computation than the former, but reduces the
standard error of the mean only by a factor of 10. Most optimization algorithms
converge much faster (in terms of total computation, not in terms of number of
updates) if they are allowed to rapidly compute approximate estimates of the
gradient rather than slowly computing the exact gradient.

Another consideration motivating statistical estimation of the gradient from a
small number of samples is redundancy in the training set. In the worst case, all
m samples in the training set could be identical copies of each other. A sampling-
based estimate of the gradient could compute the correct gradient with a single
sample, using m times less computation than the naive approach. In practice, we
are unlikely to truly encounter this worst-case situation, but we may find large
numbers of examples that all make very similar contributions to the gradient.

Optimization algorithms that use the entire training set are called batch or
deterministic gradient methods, because they process all of the training examples
simultaneously in a large batch. This terminology can be somewhat confusing
because the word “batch” is also often used to describe the minibatch used by

minibatch stochastic gradient descent. Typically the term “batch gradient descent”
implies the use of the full training set, while the use of the term “batch” to describe
a group of examples does not. For example, it is very common to use the term
“batch size” to describe the size of a minibatch.

Optimization algorithms that use only a single example at a time are sometimes
called stochastic onlineor sometimes methods. The term online is usually reserved
for the case where the examples are drawn from a stream of continually created
examples rather than from a fixed-size training set over which several passes are
made.

Most algorithms used for deep learning fall somewhere in between, using more
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than one but less than all of the training examples. These were traditionally called
minibatch minibatch stochasticor methods and it is now common to simply call
them stochastic methods.

The canonical example of a stochastic method is stochastic gradient descent,
presented in detail in Sec. .8.3.1

Minibatch sizes are generally driven by the following factors:

Larger batches provide a more accurate estimate of the gradient, but with
less than linear returns.

Multicore architectures are usually underutilized by extremely small batches.
This motivates using some absolute minimum batch size, below which there
is no reduction in the time to process a minibatch.

If all examples in the batch are to be processed in parallel (as is typically
the case), then the amount of memory scales with the batch size. For many
hardware setups this is the limiting factor in batch size.

Some kinds of hardware achieve better runtime with specific sizes of arrays.
Especially when using GPUs, it is common for power of 2 batch sizes to offer
better runtime. Typical power of 2 batch sizes range from 32 to 256, with 16
sometimes being attempted for large models.

Small batches can offer a regularizing effect ( , ),Wilson and Martinez 2003
perhaps due to the noise they add to the learning process. Generalization
error is often best for a batch size of 1. Training with such a small batch

size might require a small learning rate to maintain stability due to the high
variance in the estimate of the gradient. The total runtime can be very high
due to the need to make more steps, both because of the reduced learning
rate and because it takes more steps to observe the entire training set.

Different kinds of algorithms use different kinds of information from the mini-
batch in different ways. Some algorithms are more sensitive to sampling error than
others, either because they use information that is difficult to estimate accurately
with few samples, or because they use information in ways that amplify sampling
errors more. Methods that compute updates based only on the gradient g are
usually relatively robust and can handle smaller batch sizes like 100. Second-order
methods, which use also the Hessian matrix H and compute updates such as
H−1g, typically require much larger batch sizes like 10,000. These large batch
sizes are required to minimize fluctuations in the estimates of H−1g. Suppose
that H is estimated perfectly but has a poor condition number. Multiplication by
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H or its inverse amplifies pre-existing errors, in this case, estimation errors in g.
Very small changes in the estimate of g can thus cause large changes in the update
H−1g, even if H were estimated perfectly. Of course, H will be estimated only
approximately, so the update H−1g will contain even more error than we would
predict from applying a poorly conditioned operation to the estimate of .g

It is also crucial that the minibatches be selected randomly. Computing an
unbiased estimate of the expected gradient from a set of samples requires that those
samples be independent. We also wish for two subsequent gradient estimates to be
independent from each other, so two subsequent minibatches of examples should

also be independent from each other. Many datasets are most naturally arranged
in a way where successive examples are highly correlated. For example, we might
have a dataset of medical data with a long list of blood sample test results. This
list might be arranged so that first we have five blood samples taken at different
times from the first patient, then we have three blood samples taken from the
second patient, then the blood samples from the third patient, and so on. If we
were to draw examples in order from this list, then each of our minibatches would
be extremely biased, because it would represent primarily one patient out of the
many patients in the dataset. In cases such as these where the order of the dataset
holds some significance, it is necessary to shuffle the examples before selecting
minibatches. For very large datasets, for example datasets containing billions of

examples in a data center, it can be impractical to sample examples truly uniformly
at random every time we want to construct a minibatch. Fortunately, in practice
it is usually sufficient to shuffle the order of the dataset once and then store it in
shuffled fashion. This will impose a fixed set of possible minibatches of consecutive
examples that all models trained thereafter will use, and each individual model
will be forced to reuse this ordering every time it passes through the training
data. However, this deviation from true random selection does not seem to have a
significant detrimental effect. Failing to ever shuffle the examples in any way can
seriously reduce the effectiveness of the algorithm.

Many optimization problems in machine learning decompose over examples
well enough that we can compute entire separate updates over different examples

in parallel. In other words, we can compute the update that minimizes J(X) for
one minibatch of examples X at the same time that we compute the update for
several other minibatches. Such asynchronous parallel distributed approaches are
discussed further in Sec. .12.1.3

An interesting motivation for minibatch stochastic gradient descent is that it
follows the gradient of the true generalization error (Eq. ) so long as no8.2
examples are repeated. Most implementations of minibatch stochastic gradient
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descent shuffle the dataset once and then pass through it multiple times. On the
first pass, each minibatch is used to compute an unbiased estimate of the true
generalization error. On the second pass, the estimate becomes biased because it is
formed by re-sampling values that have already been used, rather than obtaining
new fair samples from the data generating distribution.

The fact that stochastic gradient descent minimizes generalization error is
easiest to see in the online learning case, where examples or minibatches are drawn
from a stream of data. In other words, instead of receiving a fixed-size training
set, the learner is similar to a living being who sees a new example at each instant,

with every example (x, y) coming from the data generating distribution pdata(x, y).
In this scenario, examples are never repeated; every experience is a fair sample
from pdata.

The equivalence is easiest to derive when both x and y are discrete. In this
case, the generalization error (Eq. ) can be written as a sum8.2

J ∗( ) =θ
X
x

X
y

pdata( ) ( ( ; ) )x, y L f x θ , y , (8.7)

with the exact gradient

g = θJ
∗( ) =θ

X
x

X
y

pdata( )x, y xL f , y .( ( ; )x θ ) (8.8)

We have already seen the same fact demonstrated for the log-likelihood in Eq. 8.5
and Eq. ; we observe now that this holds for other functions8.6 L besides the
likelihood. A similar result can be derived when x and y are continuous, under
mild assumptions regarding pdata and .L

Hence, we can obtain an unbiased estimator of the exact gradient of the
generalization error by sampling a minibatch of examples x

(1) , . . .x( )m with cor-

responding targets y( )i from the data generating distribution pdata, and computing
the gradient of the loss with respect to the parameters for that minibatch:

ĝ =
1

m
θ

X
i

L f( (x( )i ; )θ , y ( )i ). (8.9)

Updating in the direction ofθ ĝ performs SGD on the generalization error.

Of course, this interpretation only applies when examples are not reused.
Nonetheless, it is usually best to make several passes through the training set,
unless the training set is extremely large. When multiple such epochs are used,
only the first epoch follows the unbiased gradient of the generalization error, but
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of course, the additional epochs usually provide enough benefit due to decreased
training error to offset the harm they cause by increasing the gap between training
error and test error.

With some datasets growing rapidly in size, faster than computing power, it
is becoming more common for machine learning applications to use each training
example only once or even to make an incomplete pass through the training
set. When using an extremely large training set, overfitting is not an issue, so
underfitting and computational efficiency become the predominant concerns. See
also ( ) for a discussion of the effect of computationalBottou and Bousquet 2008

bottlenecks on generalization error, as the number of training examples grows.

8.2 Challenges in Neural Network Optimization

Optimization in general is an extremely difficult task. Traditionally, machine

learning has avoided the difficulty of general optimization by carefully designing
the objective function and constraints to ensure that the optimization problem is
convex. When training neural networks, we must confront the general non-convex
case. Even convex optimization is not without its complications. In this section,
we summarize several of the most prominent challenges involved in optimization
for training deep models.

8.2.1 Ill-Conditioning

Some challenges arise even when optimizing convex functions. Of these, the most
prominent is ill-conditioning of the Hessian matrix H. This is a very general
problem in most numerical optimization, convex or otherwise, and is described in
more detail in Sec. .4.3.1

The ill-conditioning problem is generally believed to be present in neural
network training problems. Ill-conditioning can manifest by causing SGD to get
“stuck” in the sense that even very small steps increase the cost function.

Recall from Eq. that a second-order Taylor series expansion of the cost4.9

function predicts that a gradient descent step of will addg

1

2
2g>Hg g

>g (8.10)

to the cost. Ill-conditioning of the gradient becomes a problem when 1
2
2g>Hg

exceeds g>g. To determine whether ill-conditioning is detrimental to a neural
network training task, one can monitor the squared gradient norm g>g and the
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g>Hg term. In many cases, the gradient norm does not shrink significantly
throughout learning, but the g>Hg term grows by more than order of magnitude.
The result is that learning becomes very slow despite the presence of a strong
gradient because the learning rate must be shrunk to compensate for even stronger
curvature. Fig. shows an example of the gradient increasing significantly during8.1
the successful training of a neural network.

Though ill-conditioning is present in other settings besides neural network
training, some of the techniques used to combat it in other contexts are less
applicable to neural networks. For example, Newton’s method is an excellent tool
for minimizing convex functions with poorly conditioned Hessian matrices, but in
the subsequent sections we will argue that Newton’s method requires significant
modification before it can be applied to neural networks.

8.2.2 Local Minima

One of the most prominent features of a convex optimization problem is that it
can be reduced to the problem of finding a local minimum. Any local minimum is
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guaranteed to be a global minimum. Some convex functions have a flat region at
the bottom rather than a single global minimum point, but any point within such
a flat region is an acceptable solution. When optimizing a convex function, we
know that we have reached a good solution if we find a critical point of any kind.

With non-convex functions, such as neural nets, it is possible to have many
local minima. Indeed, nearly any deep model is essentially guaranteed to have
an extremely large number of local minima. However, as we will see, this is not
necessarily a major problem.

Neural networks and any models with multiple equivalently parametrized latent
variables all have multiple local minima because of the model identifiability problem.
A model is said to be identifiable if a sufficiently large training set can rule out all
but one setting of the model’s parameters. Models with latent variables are often
not identifiable because we can obtain equivalent models by exchanging latent
variables with each other. For example, we could take a neural network and modify
layer 1 by swapping the incoming weight vector for unit i with the incoming weight
vector for unit j, then doing the same for the outgoing weight vectors. If we have
m layers with n units each, then there are n!m ways of arranging the hidden units.
This kind of non-identifiability is known as weight space symmetry.

In addition to weight space symmetry, many kinds of neural networks have
additional causes of non-identifiability. For example, in any rectified linear or

maxout network, we can scale all of the incoming weights and biases of a unit by
α if we also scale all of its outgoing weights by 1

α. This means that—if the cost
function does not include terms such as weight decay that depend directly on the
weights rather than the models’ outputs—every local minimum of a rectified linear
or maxout network lies on an (m n )-dimensional hyperbola of equivalent local
minima.

These model identifiability issues mean that there can be an extremely large
or even uncountably infinite amount of local minima in a neural network cost
function. However, all of these local minima arising from non-identifiability are
equivalent to each other in cost function value. As a result, these local minima are
not a problematic form of non-convexity.

Local minima can be problematic if they have high cost in comparison to the
global minimum. One can construct small neural networks, even without hidden
units, that have local minima with higher cost than the global minimum (Sontag
and Sussman 1989 Brady 1989 Gori and Tesi 1992, ; et al., ; , ). If local minima
with high cost are common, this could pose a serious problem for gradient-based
optimization algorithms.

It remains an open question whether there are many local minima of high cost
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for networks of practical interest and whether optimization algorithms encounter
them. For many years, most practitioners believed that local minima were a
common problem plaguing neural network optimization. Today, that does not
appear to be the case. The problem remains an active area of research, but experts
now suspect that, for sufficiently large neural networks, most local minima have a
low cost function value, and that it is not important to find a true global minimum
rather than to find a point in parameter space that has low but not minimal cost
( , ; , ; , ;Saxe et al. 2013 Dauphin et al. 2014 Goodfellow et al. 2015 Choromanska
et al., ).2014

Many practitioners attribute nearly all difficulty with neural network optimiza-
tion to local minima. We encourage practitioners to carefully test for specific
problems. A test that can rule out local minima as the problem is to plot the
norm of the gradient over time. If the norm of the gradient does not shrink to
insignificant size, the problem is neither local minima nor any other kind of critical
point. This kind of negative test can rule out local minima. In high dimensional
spaces, it can be very difficult to positively establish that local minima are the
problem. Many structures other than local minima also have small gradients.

8.2.3 Plateaus, Saddle Points and Other Flat Regions

For many high-dimensional non-convex functions, local minima (and maxima)
are in fact rare compared to another kind of point with zero gradient: a saddle
point. Some points around a saddle point have greater cost than the saddle point,
while others have a lower cost. At a saddle point, the Hessian matrix has both
positive and negative eigenvalues. Points lying along eigenvectors associated with
positive eigenvalues have greater cost than the saddle point, while points lying
along negative eigenvalues have lower value. We can think of a saddle point as
being a local minimum along one cross-section of the cost function and a local
maximum along another cross-section. See Fig. for an illustration.4.5

Many classes of random functions exhibit the following behavior: in low-
dimensional spaces, local minima are common. In higher dimensional spaces, local
minima are rare and saddle points are more common. For a function f : Rn

R
of

this type, the expected ratio of the number of saddle points to local minima grows
exponentially with n. To understand the intuition behind this behavior, observe
that the Hessian matrix at a local minimum has only positive eigenvalues. The
Hessian matrix at a saddle point has a mixture of positive and negative eigenvalues.
Imagine that the sign of each eigenvalue is generated by flipping a coin. In a single
dimension, it is easy to obtain a local minimum by tossing a coin and getting heads
once. In n-dimensional space, it is exponentially unlikely that all n coin tosses will

285



CHAPTER 8. OPTIMIZATION FOR TRAINING DEEP MODELS

be heads. See ( ) for a review of the relevant theoretical work.Dauphin et al. 2014

An amazing property of many random functions is that the eigenvalues of the
Hessian become more likely to be positive as we reach regions of lower cost. In
our coin tossing analogy, this means we are more likely to have our coin come up
heads n times if we are at a critical point with low cost. This means that local
minima are much more likely to have low cost than high cost. Critical points with
high cost are far more likely to be saddle points. Critical points with extremely
high cost are more likely to be local maxima.

This happens for many classes of random functions. Does it happen for neural
networks? ( ) showed theoretically that shallow autoencodersBaldi and Hornik 1989
(feedforward networks trained to copy their input to their output, described in
Chapter ) with no nonlinearities have global minima and saddle points but no14
local minima with higher cost than the global minimum. They observed without
proof that these results extend to deeper networks without nonlinearities. The
output of such networks is a linear function of their input, but they are useful
to study as a model of nonlinear neural networks because their loss function is
a non-convex function of their parameters. Such networks are essentially just
multiple matrices composed together. ( ) provided exact solutionsSaxe et al. 2013
to the complete learning dynamics in such networks and showed that learning in
these models captures many of the qualitative features observed in the training of

deep models with nonlinear activation functions. ( ) showedDauphin et al. 2014
experimentally that real neural networks also have loss functions that contain very
many high-cost saddle points. Choromanska 2014et al. ( ) provided additional
theoretical arguments, showing that another class of high-dimensional random
functions related to neural networks does so as well.

What are the implications of the proliferation of saddle points for training algo-
rithms? For first-order optimization algorithms that use only gradient information,
the situation is unclear. The gradient can often become very small near a saddle
point. On the other hand, gradient descent empirically seems to be able to escape
saddle points in many cases. ( ) provided visualizations ofGoodfellow et al. 2015
several learning trajectories of state-of-the-art neural networks, with an example

given in Fig. . These visualizations show a flattening of the cost function near8.2
a prominent saddle point where the weights are all zero, but they also show the
gradient descent trajectory rapidly escaping this region. ( )Goodfellow et al. 2015
also argue that continuous-time gradient descent may be shown analytically to be
repelled from, rather than attracted to, a nearby saddle point, but the situation
may be different for more realistic uses of gradient descent.

For Newton’s method, it is clear that saddle points constitute a problem.
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Gradient descent is designed to move “downhill” and is not explicitly designed
to seek a critical point. Newton’s method, however, is designed to solve for a
point where the gradient is zero. Without appropriate modification, it can jump
to a saddle point. The proliferation of saddle points in high dimensional spaces
presumably explains why second-order methods have not succeeded in replacing
gradient descent for neural network training. ( ) introducedDauphin et al. 2014
a saddle-free Newton method for second-order optimization and showed that it
improves significantly over the traditional version. Second-order methods remain
difficult to scale to large neural networks, but this saddle-free approach holds

promise if it could be scaled.

There are other kinds of points with zero gradient besides minima and saddle
points. There are also maxima, which are much like saddle points from the
perspective of optimization—many algorithms are not attracted to them, but
unmodified Newton’s method is. Maxima become exponentially rare in high
dimensional space, just like minima do.

There may also be wide, flat regions of constant value. In these locations, the
gradient and also the Hessian are all zero. Such degenerate locations pose major
problems for all numerical optimization algorithms. In a convex problem, a wide,
flat region must consist entirely of global minima, but in a general optimization
problem, such a region could correspond to a high value of the objective function.

8.2.4 Cliffs and Exploding Gradients

Neural networks with many layers often have extremely steep regions resembling
cliffs, as illustrated in Fig. . These result from the multiplication of several large8.3
weights together. On the face of an extremely steep cliff structure, the gradient
update step can move the parameters extremely far, usually jumping off of the
cliff structure altogether.
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The cliff can be dangerous whether we approach it from above or from below,

but fortunately its most serious consequences can be avoided using the gradient
clipping heuristic described in Sec. . The basic idea is to recall that the10.11.1
gradient does not specify the optimal step size, but only the optimal direction
within an infinitesimal region. When the traditional gradient descent algorithm
proposes to make a very large step, the gradient clipping heuristic intervenes to
reduce the step size to be small enough that it is less likely to go outside the region
where the gradient indicates the direction of approximately steepest descent. Cliff
structures are most common in the cost functions for recurrent neural networks,
because such models involve a multiplication of many factors, with one factor
for each time step. Long temporal sequences thus incur an extreme amount of
multiplication.

8.2.5 Long-Term Dependencies

Another difficulty that neural network optimization algorithms must overcome arises
when the computational graph becomes extremely deep. Feedforward networks
with many layers have such deep computational graphs. So do recurrent networks,
described in Chapter , which construct very deep computational graphs by10
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repeatedly applying the same operation at each time step of a long temporal
sequence. Repeated application of the same parameters gives rise to especially
pronounced difficulties.

For example, suppose that a computational graph contains a path that consists
of repeatedly multiplying by a matrix W . After t steps, this is equivalent to mul-
tiplying byW t. Suppose thatW has an eigendecomposition W = V diag(λ)V −1.
In this simple case, it is straightforward to see that

W t =

V λ Vdiag( ) −1t = ( )V diag λ tV −1. (8.11)

Any eigenvalues λi that are not near an absolute value of will either explode if1
they are greater than in magnitude or vanish if they are less than in magnitude.1 1
The vanishing and exploding gradient problem refers to the fact that gradients

through such a graph are also scaled according to diag(λ)t. Vanishing gradients
make it difficult to know which direction the parameters should move to improve
the cost function, while exploding gradients can make learning unstable. The cliff
structures described earlier that motivate gradient clipping are an example of the
exploding gradient phenomenon.

The repeated multiplication byW at each time step described here is very
similar to the power method algorithm used to find the largest eigenvalue of a matrix
W and the corresponding eigenvector. From this point of view it is not surprising
that x>Wt will eventually discard all components of x that are orthogonal to the
principal eigenvector of .W

Recurrent networks use the same matrixW at each time step, but feedforward
networks do not, so even very deep feedforward networks can largely avoid the
vanishing and exploding gradient problem ( , ).Sussillo 2014

We defer a further discussion of the challenges of training recurrent networks
until Sec. , after recurrent networks have been described in more detail.10.7

8.2.6 Inexact Gradients

Most optimization algorithms are primarily motivated by the case where we have
exact knowledge of the gradient or Hessian matrix. In practice, we usually only
have a noisy or even biased estimate of these quantities. Nearly every deep learning
algorithm relies on sampling-based estimates at least insofar as using a minibatch
of training examples to compute the gradient.

In other cases, the objective function we want to minimize is actually intractable.
When the objective function is intractable, typically its gradient is intractable as
well. In such cases we can only approximate the gradient. These issues mostly arise
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with the more advanced models in Part . For example, contrastive divergenceIII
gives a technique for approximating the gradient of the intractable log-likelihood
of a Boltzmann machine.

Various neural network optimization algorithms are designed to account for
imperfections in the gradient estimate. One can also avoid the problem by choosing
a surrogate loss function that is easier to approximate than the true loss.

8.2.7 Poor Correspondence between Local and Global Structure

Many of the problems we have discussed so far correspond to properties of the
loss function at a single point—it can be difficult to make a single step if J(θ ) is
poorly conditioned at the current point θ, or if θ lies on a cliff, or if θ is a saddle
point hiding the opportunity to make progress downhill from the gradient.

It is possible to overcome all of these problems at a single point and still
perform poorly if the direction that results in the most improvement locally does
not point toward distant regions of much lower cost.

Goodfellow 2015et al. ( ) argue that much of the runtime of training is due to

the length of the trajectory needed to arrive at the solution. Fig. shows that8.2
the learning trajectory spends most of its time tracing out a wide arc around a
mountain-shaped structure.

Much of research into the difficulties of optimization has focused on whether
training arrives at a global minimum, a local minimum, or a saddle point, but in
practice neural networks do not arrive at a critical point of any kind. Fig. 8.1
shows that neural networks often do not arrive at a region of small gradient. Indeed,
such critical points do not even necessarily exist. For example, the loss function

log p (y x; θ) can lack a global minimum point and instead asymptotically
approach some value as the model becomes more confident. For a classifier with
discrete y and p(y x) provided by a softmax, the negative log-likelihood can

become arbitrarily close to zero if the model is able to correctly classify every
example in the training set, but it is impossible to actually reach the value of
zero. Likewise, a model of real values p(y x) = (y;f (θ), β−1) can have negative
log-likelihood that asymptotes to negative infinity—if f(θ) is able to correctly
predict the value of all training set y targets, the learning algorithm will increase
β without bound. See Fig. for an example of a failure of local optimization to8.4
find a good cost function value even in the absence of any local minima or saddle
points.

Future research will need to develop further understanding of the factors that
influence the length of the learning trajectory and better characterize the outcome
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of the process.

Many existing research directions are aimed at finding good initial points for
problems that have difficult global structure, rather than developing algorithms

that use non-local moves.

Gradient descent and essentially all learning algorithms that are effective for
training neural networks are based on making small, local moves. The previous
sections have primarily focused on how the correct direction of these local moves
can be difficult to compute. We may be able to compute some properties of the
objective function, such as its gradient, only approximately, with bias or variance
in our estimate of the correct direction. In these cases, local descent may or may
not define a reasonably short path to a valid solution, but we are not actually
able to follow the local descent path. The objective function may have issues
such as poor conditioning or discontinuous gradients, causing the region where
the gradient provides a good model of the objective function to be very small. In

these cases, local descent with steps of size  may define a reasonably short path
to the solution, but we are only able to compute the local descent direction with
steps of size δ  . In these cases, local descent may or may not define a path
to the solution, but the path contains many steps, so following the path incurs a
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high computational cost. Sometimes local information provides us no guide, when
the function has a wide flat region, or if we manage to land exactly on a critical
point (usually this latter scenario only happens to methods that solve explicitly
for critical points, such as Newton’s method). In these cases, local descent does
not define a path to a solution at all. In other cases, local moves can be too greedy
and lead us along a path that moves downhill but away from any solution, as in
Fig. , or along an unnecessarily long trajectory to the solution, as in Fig. .8.4 8.2
Currently, we do not understand which of these problems are most relevant to
making neural network optimization difficult, and this is an active area of research.

Regardless of which of these problems are most significant, all of them might be
avoided if there exists a region of space connected reasonably directly to a solution
by a path that local descent can follow, and if we are able to initialize learning
within that well-behaved region. This last view suggests research into choosing
good initial points for traditional optimization algorithms to use.

8.2.8 Theoretical Limits of Optimization

Several theoretical results show that there are limits on the performance of any
optimization algorithm we might design for neural networks ( ,Blum and Rivest
1992 Judd 1989 Wolpert and MacReady 1997; , ; , ). Typically these results have
little bearing on the use of neural networks in practice.

Some theoretical results apply only to the case where the units of a neural
network output discrete values. However, most neural network units output
smoothly increasing values that make optimization via local search feasible. Some
theoretical results show that there exist problem classes that are intractable, but
it can be difficult to tell whether a particular problem falls into that class. Other
results show that finding a solution for a network of a given size is intractable, but
in practice we can find a solution easily by using a larger network for which many
more parameter settings correspond to an acceptable solution. Moreover, in the

context of neural network training, we usually do not care about finding the exact
minimum of a function, but only in reducing its value sufficiently to obtain good
generalization error. Theoretical analysis of whether an optimization algorithm
can accomplish this goal is extremely difficult. Developing more realistic bounds
on the performance of optimization algorithms therefore remains an important
goal for machine learning research.
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8.3 Basic Algorithms

We have previously introduced the gradient descent (Sec. ) algorithm that4.3
follows the gradient of an entire training set downhill. This may be accelerated
considerably by using stochastic gradient descent to follow the gradient of randomly
selected minibatches downhill, as discussed in Sec. and Sec. .5.9 8.1.3

8.3.1 Stochastic Gradient Descent

Stochastic gradient descent (SGD) and its variants are probably the most used
optimization algorithms for machine learning in general and for deep learning in

particular. As discussed in Sec. , it is possible to obtain an unbiased estimate8.1.3
of the gradient by taking the average gradient on a minibatch of m examples drawn
i.i.d from the data generating distribution.

Algorithm shows how to follow this estimate of the gradient downhill.8.1

Algorithm 8.1 Stochastic gradient descent (SGD) update at training iteration k

Require: Learning rate k.
Require: Initial parameter θ
while dostopping criterion not met
Sample a minibatch ofm examples from the training set x

(1), . . . ,x ( )m with
corresponding targets y( )i .
Compute gradient estimate: ĝ +

1
m θ

P
i L f( (x( )i ; )θ , y( )i )

Apply update: θ θ  ĝ

end while

A crucial parameter for the SGD algorithm is the learning rate. Previously, we
have described SGD as using a fixed learning rate . In practice, it is necessary to
gradually decrease the learning rate over time, so we now denote the learning rate
at iteration ask k.

This is because the SGD gradient estimator introduces a source of noise (the
random sampling ofm training examples) that does not vanish even when we arrive

at a minimum. By comparison, the true gradient of the total cost function becomes
small and then when we approach and reach a minimum using batch gradient
descent, so batch gradient descent can use a fixed learning rate. A sufficient
condition to guarantee convergence of SGD is that

∞

Xk=1
k = and, (8.12)
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∞X
k=1

2k < . (8.13)

In practice, it is common to decay the learning rate linearly until iteration :τ

k = (1 )α  0 + ατ (8.14)

with α = k
τ. After iteration , it is common to leave constant.τ 

The learning rate may be chosen by trial and error, but it is usually best
to choose it by monitoring learning curves that plot the objective function as a
function of time. This is more of an art than a science, and most guidance on this
subject should be regarded with some skepticism. When using the linear schedule,
the parameters to choose are 0, τ , and τ. Usually τ may be set to the number of

iterations required to make a few hundred passes through the training set. Usually
τ should be set to roughly the value of1% 0. The main question is how to set 0.
If it is too large, the learning curve will show violent oscillations, with the cost
function often increasing significantly. Gentle oscillations are fine, especially if
training with a stochastic cost function such as the cost function arising from the
use of dropout. If the learning rate is too low, learning proceeds slowly, and if the
initial learning rate is too low, learning may become stuck with a high cost value.
Typically, the optimal initial learning rate, in terms of total training time and the
final cost value, is higher than the learning rate that yields the best performance
after the first 100 iterations or so. Therefore, it is usually best to monitor the first
several iterations and use a learning rate that is higher than the best-performing

learning rate at this time, but not so high that it causes severe instability.

The most important property of SGD and related minibatch or online gradient-
based optimization is that computation time per update does not grow with the
number of training examples. This allows convergence even when the number
of training examples becomes very large. For a large enough dataset, SGD may
converge to within some fixed tolerance of its final test set error before it has
processed the entire training set.

To study the convergence rate of an optimization algorithm it is common to
measure the excess error J(θ) min θ J (θ), which is the amount that the current
cost function exceeds the minimum possible cost. When SGD is applied to a convex
problem, the excess error is O ( 1√

k
) after k iterations, while in the strongly convex

case it is O( 1k). These bounds cannot be improved unless extra conditions are
assumed. Batch gradient descent enjoys better convergence rates than stochastic
gradient descent in theory. However, the Cramér-Rao bound ( , ; ,Cramér 1946 Rao
1945) states that generalization error cannot decrease faster than O (1k ). Bottou
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and Bousquet 2008( ) argue that it therefore may not be worthwhile to pursue
an optimization algorithm that converges faster than O (1k ) for machine learning
tasks—faster convergence presumably corresponds to overfitting. Moreover, the
asymptotic analysis obscures many advantages that stochastic gradient descent
has after a small number of steps. With large datasets, the ability of SGD to make
rapid initial progress while evaluating the gradient for only very few examples
outweighs its slow asymptotic convergence. Most of the algorithms described in
the remainder of this chapter achieve benefits that matter in practice but are lost
in the constant factors obscured by the O( 1k) asymptotic analysis. One can also

trade off the benefits of both batch and stochastic gradient descent by gradually
increasing the minibatch size during the course of learning.

For more information on SGD, see ( ).Bottou 1998

8.3.2 Momentum

While stochastic gradient descent remains a very popular optimization strategy,
learning with it can sometimes be slow. The method of momentum (Polyak 1964, )
is designed to accelerate learning, especially in the face of high curvature, small but
consistent gradients, or noisy gradients. The momentum algorithm accumulates
an exponentially decaying moving average of past gradients and continues to move
in their direction. The effect of momentum is illustrated in Fig. .8.5

Formally, the momentum algorithm introduces a variable v that plays the role
of velocity—it is the direction and speed at which the parameters move through
parameter space. The velocity is set to an exponentially decaying average of
the negative gradient. The name derives from a physical analogy, inmomentum
which the negative gradient is a force moving a particle through parameter space,

according to Newton’s laws of motion. Momentum in physics is mass times velocity.
In the momentum learning algorithm, we assume unit mass, so the velocity vector v
may also be regarded as the momentum of the particle. A hyperparameter α [0 ,1)
determines how quickly the contributions of previous gradients exponentially decay.
The update rule is given by:

v vα  θ

 
1

m

mX
i=1

L( (f x ( )i ; )θ , y( )i )

!
, (8.15)

θ θ v+ . (8.16)

The velocity v accumulates the gradient elements θ


1
m

P
m
i=1 L( (f x( )i ; )θ , y( )i )


.

The larger α is relative to , the more previous gradients affect the current direction.
The SGD algorithm with momentum is given in Algorithm .8.2
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Previously, the size of the step was simply the norm of the gradient multiplied
by the learning rate. Now, the size of the step depends on how large and how
aligned a sequence of gradients are. The step size is largest when many successive
gradients point in exactly the same direction. If the momentum algorithm always
observes gradient g, then it will accelerate in the direction of g , until reaching a
terminal velocity where the size of each step is

 g

1 α
. (8.17)

It is thus helpful to think of the momentum hyperparameter in terms of 1
1−α. For

example, α = .9 corresponds to multiplying the maximum speed by relative to10
the gradient descent algorithm.

Common values of α used in practice include .5, .9, and .99. Like the learning
rate, α may also be adapted over time. Typically it begins with a small value and
is later raised. It is less important to adapt α over time than to shrink  over time.

Algorithm 8.2 Stochastic gradient descent (SGD) with momentum

Require: Learning rate , momentum parameter . α
Require: Initial parameter , initial velocity .θ v
while dostopping criterion not met
Sample a minibatch ofm examples from the training set x

(1), . . . ,x ( )m with
corresponding targets y( )i .

Compute gradient estimate: g
1
m θ

P
i L f( (x( )i ; )θ , y( )i )

Compute velocity update: v v gα 

Apply update: θ θ v+
end while

We can view the momentum algorithm as simulating a particle subject to
continuous-time Newtonian dynamics. The physical analogy can help to build
intuition for how the momentum and gradient descent algorithms behave.

The position of the particle at any point in time is given by θ(t ). The particle
experiences net force . This force causes the particle to accelerate:f ( )t

f( ) =t
∂2

∂t2
θ( )t . (8.18)

Rather than viewing this as a second-order differential equation of the position,

we can introduce the variable v(t) representing the velocity of the particle at time
t and rewrite the Newtonian dynamics as a first-order differential equation:

v( ) =t
∂

∂t
θ( )t , (8.19)
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f( ) =t
∂

∂t
v( )t . (8.20)

The momentum algorithm then consists of solving the differential equations via
numerical simulation. A simple numerical method for solving differential equations
is Euler’s method, which simply consists of simulating the dynamics defined by
the equation by taking small, finite steps in the direction of each gradient.

This explains the basic form of the momentum update, but what specifically are
the forces? One force is proportional to the negative gradient of the cost function:

θJ(θ). This force pushes the particle downhill along the cost function surface.
The gradient descent algorithm would simply take a single step based on each
gradient, but the Newtonian scenario used by the momentum algorithm instead
uses this force to alter the velocity of the particle. We can think of the particle
as being like a hockey puck sliding down an icy surface. Whenever it descends a
steep part of the surface, it gathers speed and continues sliding in that direction
until it begins to go uphill again.

One other force is necessary. If the only force is the gradient of the cost function,
then the particle might never come to rest. Imagine a hockey puck sliding down

one side of a valley and straight up the other side, oscillating back and forth forever,
assuming the ice is perfectly frictionless. To resolve this problem, we add one
other force, proportional to v (t). In physics terminology, this force corresponds
to viscous drag, as if the particle must push through a resistant medium such as
syrup. This causes the particle to gradually lose energy over time and eventually
converge to a local minimum.

Why do we use v (t) and viscous drag in particular? Part of the reason to
use v (t) is mathematical convenience—an integer power of the velocity is easy
to work with. However, other physical systems have other kinds of drag based
on other integer powers of the velocity. For example, a particle traveling through
the air experiences turbulent drag, with force proportional to the square of the

velocity, while a particle moving along the ground experiences dry friction, with a
force of constant magnitude. We can reject each of these options. Turbulent drag,
proportional to the square of the velocity, becomes very weak when the velocity is
small. It is not powerful enough to force the particle to come to rest. A particle
with a non-zero initial velocity that experiences only the force of turbulent drag
will move away from its initial position forever, with the distance from the starting
point growing like O(log t). We must therefore use a lower power of the velocity.
If we use a power of zero, representing dry friction, then the force is too strong.
When the force due to the gradient of the cost function is small but non-zero, the
constant force due to friction can cause the particle to come to rest before reaching
a local minimum. Viscous drag avoids both of these problems—it is weak enough
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that the gradient can continue to cause motion until a minimum is reached, but
strong enough to prevent motion if the gradient does not justify moving.

8.3.3 Nesterov Momentum

Sutskever 2013et al. ( ) introduced a variant of the momentum algorithm that was

inspired by Nesterov’s accelerated gradient method ( , , ). TheNesterov 1983 2004
update rules in this case are given by:

v vα  θ

"
1

m

mX
i=1

L

f x( ( )i ; + )θ αv ,y ( )i

#
, (8.21)

θ θ v+ , (8.22)

where the parameters α and  play a similar role as in the standard momentum
method. The difference between Nesterov momentum and standard momentum is
where the gradient is evaluated. With Nesterov momentum the gradient is evaluated

after the current velocity is applied. Thus one can interpret Nesterov momentum
as attempting to add a correction factor to the standard method of momentum.
The complete Nesterov momentum algorithm is presented in Algorithm .8.3

In the convex batch gradient case, Nesterov momentum brings the rate of
convergence of the excess error from O(1/k) (after k steps) to O(1/k2) as shown
by Nesterov 1983( ). Unfortunately, in the stochastic gradient case, Nesterov
momentum does not improve the rate of convergence.

Algorithm 8.3 Stochastic gradient descent (SGD) with Nesterov momentum

Require: Learning rate , momentum parameter . α
Require: Initial parameter , initial velocity .θ v
while dostopping criterion not met
Sample a minibatch ofm examples from the training set x

(1), . . . ,x ( )m with
corresponding labels y( )i .
Apply interim update: ˜

θ θ v+ α
Compute gradient (at interim point): g

1
m θ̃

P
iL f( (x( )i ; θ̃ y), ( )i )

Compute velocity update: v v gα 
Apply update: θ θ v+

end while
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8.4 Parameter Initialization Strategies

Some optimization algorithms are not iterative by nature and simply solve for a
solution point. Other optimization algorithms are iterative by nature but, when
applied to the right class of optimization problems, converge to acceptable solutions
in an acceptable amount of time regardless of initialization. Deep learning training
algorithms usually do not have either of these luxuries. Training algorithms for deep

learning models are usually iterative in nature and thus require the user to specify
some initial point from which to begin the iterations. Moreover, training deep
models is a sufficiently difficult task that most algorithms are strongly affected by
the choice of initialization. The initial point can determine whether the algorithm
converges at all, with some initial points being so unstable that the algorithm
encounters numerical difficulties and fails altogether. When learning does converge,
the initial point can determine how quickly learning converges and whether it
converges to a point with high or low cost. Also, points of comparable cost
can have wildly varying generalization error, and the initial point can affect the
generalization as well.

Modern initialization strategies are simple and heuristic. Designing improved
initialization strategies is a difficult task because neural network optimization is

not yet well understood. Most initialization strategies are based on achieving some
nice properties when the network is initialized. However, we do not have a good
understanding of which of these properties are preserved under which circumstances
after learning begins to proceed. A further difficulty is that some initial points
may be beneficial from the viewpoint of optimization but detrimental from the
viewpoint of generalization. Our understanding of how the initial point affects
generalization is especially primitive, offering little to no guidance for how to select
the initial point.

Perhaps the only property known with complete certainty is that the initial
parameters need to “break symmetry” between different units. If two hidden
units with the same activation function are connected to the same inputs, then

these units must have different initial parameters. If they have the same initial
parameters, then a deterministic learning algorithm applied to a deterministic cost
and model will constantly update both of these units in the same way. Even if the
model or training algorithm is capable of using stochasticity to compute different
updates for different units (for example, if one trains with dropout), it is usually
best to initialize each unit to compute a different function from all of the other
units. This may help to make sure that no input patterns are lost in the null
space of forward propagation and no gradient patterns are lost in the null space
of back-propagation. The goal of having each unit compute a different function
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motivates random initialization of the parameters. We could explicitly search
for a large set of basis functions that are all mutually different from each other,
but this often incurs a noticeable computational cost. For example, if we have at
most as many outputs as inputs, we could use Gram-Schmidt orthogonalization
on an initial weight matrix, and be guaranteed that each unit computes a very
different function from each other unit. Random initialization from a high-entropy
distribution over a high-dimensional space is computationally cheaper and unlikely
to assign any units to compute the same function as each other.

Typically, we set the biases for each unit to heuristically chosen constants, and

initialize only the weights randomly. Extra parameters, for example, parameters
encoding the conditional variance of a prediction, are usually set to heuristically
chosen constants much like the biases are.

We almost always initialize all the weights in the model to values drawn
randomly from a Gaussian or uniform distribution. The choice of Gaussian
or uniform distribution does not seem to matter very much, but has not been
exhaustively studied. The scale of the initial distribution, however, does have a
large effect on both the outcome of the optimization procedure and on the ability
of the network to generalize.

Larger initial weights will yield a stronger symmetry breaking effect, helping
to avoid redundant units. They also help to avoid losing signal during forward or

back-propagation through the linear component of each layer—larger values in the
matrix result in larger outputs of matrix multiplication. Initial weights that are
too large may, however, result in exploding values during forward propagation or
back-propagation. In recurrent networks, large weights can also result in chaos
(such extreme sensitivity to small perturbations of the input that the behavior
of the deterministic forward propagation procedure appears random). To some
extent, the exploding gradient problem can be mitigated by gradient clipping
(thresholding the values of the gradients before performing a gradient descent step).
Large weights may also result in extreme values that cause the activation function
to saturate, causing complete loss of gradient through saturated units. These
competing factors determine the ideal initial scale of the weights.

The perspectives of regularization and optimization can give very different
insights into how we should initialize a network. The optimization perspective
suggests that the weights should be large enough to propagate information success-
fully, but some regularization concerns encourage making them smaller. The use
of an optimization algorithm such as stochastic gradient descent that makes small
incremental changes to the weights and tends to halt in areas that are nearer to
the initial parameters (whether due to getting stuck in a region of low gradient, or
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due to triggering some early stopping criterion based on overfitting) expresses a
prior that the final parameters should be close to the initial parameters. Recall
from Sec. that gradient descent with early stopping is equivalent to weight7.8
decay for some models. In the general case, gradient descent with early stopping is
not the same as weight decay, but does provide a loose analogy for thinking about
the effect of initialization. We can think of initializing the parameters θ to θ0 as
being similar to imposing a Gaussian prior p(θ) with mean θ0. From this point
of view, it makes sense to choose θ0 to be near 0. This prior says that it is more
likely that units do not interact with each other than that they do interact. Units

interact only if the likelihood term of the objective function expresses a strong
preference for them to interact. On the other hand, if we initialize θ0 to large
values, then our prior specifies which units should interact with each other, and
how they should interact.

Some heuristics are available for choosing the initial scale of the weights. One
heuristic is to initialize the weights of a fully connected layer with m inputs and
n outputs by sampling each weight from U( 1√

m
, 1√
m

), while Glorot and Bengio

( ) suggest using the2010 normalized initialization

Wi,j U(
6

m n+
,

6

m n+
). (8.23)

This latter heuristic is designed to compromise between the goal of initializing
all layers to have the same activation variance and the goal of initializing all
layers to have the same gradient variance. The formula is derived using the
assumption that the network consists only of a chain of matrix multiplications,
with no nonlinearities. Real neural networks obviously violate this assumption,
but many strategies designed for the linear model perform reasonably well on its
nonlinear counterparts.

Saxe 2013et al. ( ) recommend initializing to random orthogonal matrices, with
a carefully chosen scaling or factorgain g that accounts for the nonlinearity applied

at each layer. They derive specific values of the scaling factor for different types of
nonlinear activation functions. This initialization scheme is also motivated by a
model of a deep network as a sequence of matrix multiplies without nonlinearities.
Under such a model, this initialization scheme guarantees that the total number of
training iterations required to reach convergence is independent of depth.

Increasing the scaling factor g pushes the network toward the regime where
activations increase in norm as they propagate forward through the network and
gradients increase in norm as they propagate backward. ( ) showedSussillo 2014
that setting the gain factor correctly is sufficient to train networks as deep as
1,000 layers, without needing to use orthogonal initializations. A key insight of
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this approach is that in feedforward networks, activations and gradients can grow
or shrink on each step of forward or back-propagation, following a random walk
behavior. This is because feedforward networks use a different weight matrix at
each layer. If this random walk is tuned to preserve norms, then feedforward
networks can mostly avoid the vanishing and exploding gradients problem that
arises when the same weight matrix is used at each step, described in Sec. .8.2.5

Unfortunately, these optimal criteria for initial weights often do not lead to
optimal performance. This may be for three different reasons. First, we may
be using the wrong criteria—it may not actually be beneficial to preserve the

norm of a signal throughout the entire network. Second, the properties imposed
at initialization may not persist after learning has begun to proceed. Third, the
criteria might succeed at improving the speed of optimization but inadvertently
increase generalization error. In practice, we usually need to treat the scale of the
weights as a hyperparameter whose optimal value lies somewhere roughly near but
not exactly equal to the theoretical predictions.

One drawback to scaling rules that set all of the initial weights to have the same
standard deviation, such as 1√

m
, is that every individual weight becomes extremely

small when the layers become large. ( ) introduced an alternativeMartens 2010
initialization scheme called sparse initialization in which each unit is initialized to
have exactly k non-zero weights. The idea is to keep the total amount of input to
the unit independent from the number of inputs m without making the magnitude
of individual weight elements shrink with m. Sparse initialization helps to achieve
more diversity among the units at initialization time. However, it also imposes
a very strong prior on the weights that are chosen to have large Gaussian values.
Because it takes a long time for gradient descent to shrink “incorrect” large values,
this initialization scheme can cause problems for units such as maxout units that
have several filters that must be carefully coordinated with each other.

When computational resources allow it, it is usually a good idea to treat the
initial scale of the weights for each layer as a hyperparameter, and to choose these
scales using a hyperparameter search algorithm described in Sec. , such11.4.2
as random search. The choice of whether to use dense or sparse initialization
can also be made a hyperparameter. Alternately, one can manually search for
the best initial scales. A good rule of thumb for choosing the initial scales is to
look at the range or standard deviation of activations or gradients on a single
minibatch of data. If the weights are too small, the range of activations across the
minibatch will shrink as the activations propagate forward through the network.
By repeatedly identifying the first layer with unacceptably small activations and
increasing its weights, it is possible to eventually obtain a network with reasonable
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initial activations throughout. If learning is still too slow at this point, it can be
useful to look at the range or standard deviation of the gradients as well as the
activations. This procedure can in principle be automated and is generally less
computationally costly than hyperparameter optimization based on validation set
error because it is based on feedback from the behavior of the initial model on a
single batch of data, rather than on feedback from a trained model on the validation
set. While long used heuristically, this protocol has recently been specified more
formally and studied by ( ).Mishkin and Matas 2015

So far we have focused on the initialization of the weights. Fortunately,

initialization of other parameters is typically easier.

The approach for setting the biases must be coordinated with the approach
for settings the weights. Setting the biases to zero is compatible with most weight
initialization schemes. There are a few situations where we may set some biases to
non-zero values:

If a bias is for an output unit, then it is often beneficial to initialize the bias to
obtain the right marginal statistics of the output. To do this, we assume that
the initial weights are small enough that the output of the unit is determined
only by the bias. This justifies setting the bias to the inverse of the activation
function applied to the marginal statistics of the output in the training set.
For example, if the output is a distribution over classes and this distribution
is a highly skewed distribution with the marginal probability of class i given
by element ci of some vector c, then we can set the bias vector b by solving
the equation softmax(b) = c . This applies not only to classifiers but also to
models we will encounter in Part , such as autoencoders and BoltzmannIII

machines. These models have layers whose output should resemble the input
data x, and it can be very helpful to initialize the biases of such layers to
match the marginal distribution over .x

Sometimes we may want to choose the bias to avoid causing too much
saturation at initialization. For example, we may set the bias of a ReLU
hidden unit to 0.1 rather than 0 to avoid saturating the ReLU at initialization.
This approach is not compatible with weight initialization schemes that do

not expect strong input from the biases though. For example, it is not
recommended for use with random walk initialization ( , ).Sussillo 2014

Sometimes a unit controls whether other units are able to participate in a
function. In such situations, we have a unit with output u and another unit

h [0,1], then we can view h as a gate that determines whether uh 1 or

uh 0. In these situations, we want to set the bias for h so that h 1 most
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of the time at initialization. Otherwise u does not have a chance to learn.
For example, ( ) advocate setting the bias to for theJozefowicz et al. 2015 1
forget gate of the LSTM model, described in Sec. .10.10

Another common type of parameter is a variance or precision parameter. For
example, we can perform linear regression with a conditional variance estimate
using the model

p y y( x) = ( w
T x+ 1 )b, /β (8.24)

where β is a precision parameter. We can usually initialize variance or precision
parameters to 1 safely. Another approach is to assume the initial weights are close
enough to zero that the biases may be set while ignoring the effect of the weights,
then set the biases to produce the correct marginal mean of the output, and set
the variance parameters to the marginal variance of the output in the training set.

Besides these simple constant or random methods of initializing model parame-
ters, it is possible to initialize model parameters using machine learning. A common
strategy discussed in Part of this book is to initialize a supervised model withIII

the parameters learned by an unsupervised model trained on the same inputs.
One can also perform supervised training on a related task. Even performing
supervised training on an unrelated task can sometimes yield an initialization that
offers faster convergence than a random initialization. Some of these initialization
strategies may yield faster convergence and better generalization because they
encode information about the distribution in the initial parameters of the model.
Others apparently perform well primarily because they set the parameters to have
the right scale or set different units to compute different functions from each other.

8.5 Algorithms with Adaptive Learning Rates

Neural network researchers have long realized that the learning rate was reliably one
of the hyperparameters that is the most difficult to set because it has a significant
impact on model performance. As we have discussed in Sec. and Sec. , the4.3 8.2
cost is often highly sensitive to some directions in parameter space and insensitive
to others. The momentum algorithm can mitigate these issues somewhat, but
does so at the expense of introducing another hyperparameter. In the face of this,
it is natural to ask if there is another way. If we believe that the directions of
sensitivity are somewhat axis-aligned, it can make sense to use a separate learning
rate for each parameter, and automatically adapt these learning rates throughout
the course of learning.
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The delta-bar-delta algorithm ( , ) is an early heuristic approachJacobs 1988
to adapting individual learning rates for model parameters during training. The
approach is based on a simple idea: if the partial derivative of the loss, with respect
to a given model parameter, remains the same sign, then the learning rate should
increase. If the partial derivative with respect to that parameter changes sign,
then the learning rate should decrease. Of course, this kind of rule can only be
applied to full batch optimization.

More recently, a number of incremental (or mini-batch-based) methods have
been introduced that adapt the learning rates of model parameters. This section

will briefly review a few of these algorithms.

8.5.1 AdaGrad

The AdaGrad algorithm, shown in Algorithm , individually adapts the learning8.4
rates of all model parameters by scaling them inversely proportional to the square
root of the sum of all of their historical squared values (Duchi 2011et al., ). The
parameters with the largest partial derivative of the loss have a correspondingly

rapid decrease in their learning rate, while parameters with small partial derivatives
have a relatively small decrease in their learning rate. The net effect is greater
progress in the more gently sloped directions of parameter space.

In the context of convex optimization, the AdaGrad algorithm enjoys some
desirable theoretical properties. However, empirically it has been found that—for
training deep neural network models—the accumulation of squared gradients from
the beginning of training can result in a premature and excessive decrease
in the effective learning rate. AdaGrad performs well for some but not all deep
learning models.

8.5.2 RMSProp

The RMSProp algorithm (Hinton 2012, ) modifies AdaGrad to perform better in the
non-convex setting by changing the gradient accumulation into an exponentially
weighted moving average. AdaGrad is designed to converge rapidly when applied
to a convex function. When applied to a non-convex function to train a neural
network, the learning trajectory may pass through many different structures and
eventually arrive at a region that is a locally convex bowl. AdaGrad shrinks the
learning rate according to the entire history of the squared gradient and may
have made the learning rate too small before arriving at such a convex structure.

RMSProp uses an exponentially decaying average to discard history from the
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Algorithm 8.4 The AdaGrad algorithm

Require: Global learning rate 

Require: Initial parameter θ
Require: Small constant , perhapsδ 10−7, for numerical stability

Initialize gradient accumulation variable r = 
while dostopping criterion not met
Sample a minibatch ofm examples from the training set x

(1), . . . ,x ( )m with
corresponding targets y( )i .

Compute gradient: g
1
m θ

P
i L f( (x( )i ; )θ , y( )i )

Accumulate squared gradient: r r g g+
Compute update: ∆θ


δ+

√
r g . (Division and square root applied

element-wise)

Apply update: θ θ θ+ ∆
end while

extreme past so that it can converge rapidly after finding a convex bowl, as if it
were an instance of the AdaGrad algorithm initialized within that bowl.

RMSProp is shown in its standard form in Algorithm and combined with8.5
Nesterov momentum in Algorithm . Compared to AdaGrad, the use of the8.6
moving average introduces a new hyperparameter, ρ, that controls the length scale
of the moving average.

Empirically, RMSProp has been shown to be an effective and practical op-
timization algorithm for deep neural networks. It is currently one of the go-to

optimization methods being employed routinely by deep learning practitioners.

8.5.3 Adam

Adam ( , ) is yet another adaptive learning rate optimizationKingma and Ba 2014
algorithm and is presented in Algorithm . The name “Adam” derives from8.7
the phrase “adaptive moments.” In the context of the earlier algorithms, it is
perhaps best seen as a variant on the combination of RMSProp and momentum

with a few important distinctions. First, in Adam, momentum is incorporated
directly as an estimate of the first order moment (with exponential weighting) of
the gradient. The most straightforward way to add momentum to RMSProp is to
apply momentum to the rescaled gradients. The use of momentum in combination
with rescaling does not have a clear theoretical motivation. Second, Adam includes
bias corrections to the estimates of both the first-order moments (the momentum
term) and the (uncentered) second-order moments to account for their initialization
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Algorithm 8.5 The RMSProp algorithm

Require: Global learning rate , decay rate . ρ

Require: Initial parameter θ
Require: Small constant δ, usually 10−6 , used to stabilize division by small

numbers.
Initialize accumulation variables r = 0
while dostopping criterion not met
Sample a minibatch ofm examples from the training set x

(1), . . . ,x ( )m with
corresponding targets y( )i .

Compute gradient: g
1
m θ

P
i L f( (x( )i ; )θ , y( )i )

Accumulate squared gradient: r r g gρ + (1 )ρ
Compute parameter update: ∆θ = √

δ+r g . ( 1√
δ+r

applied element-wise)

Apply update: θ θ θ+ ∆
end while

at the origin (see Algorithm ). RMSProp also incorporates an estimate of the8.7
(uncentered) second-order moment, however it lacks the correction factor. Thus,
unlike in Adam, the RMSProp second-order moment estimate may have high bias
early in training. Adam is generally regarded as being fairly robust to the choice
of hyperparameters, though the learning rate sometimes needs to be changed from
the suggested default.

8.5.4 Choosing the Right Optimization Algorithm

In this section, we discussed a series of related algorithms that each seek to address
the challenge of optimizing deep models by adapting the learning rate for each
model parameter. At this point, a natural question is: which algorithm should one
choose?

Unfortunately, there is currently no consensus on this point. ( )Schaul et al. 2014
presented a valuable comparison of a large number of optimization algorithms
across a wide range of learning tasks. While the results suggest that the family of
algorithms with adaptive learning rates (represented by RMSProp and AdaDelta)

performed fairly robustly, no single best algorithm has emerged.

Currently, the most popular optimization algorithms actively in use include
SGD, SGD with momentum, RMSProp, RMSProp with momentum, AdaDelta
and Adam. The choice of which algorithm to use, at this point, seems to depend
largely on the user’s familiarity with the algorithm (for ease of hyperparameter
tuning).
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Algorithm 8.6 RMSProp algorithm with Nesterov momentum

Require: Global learning rate , decay rate , momentum coefficient . ρ α

Require: Initial parameter , initial velocity .θ v

Initialize accumulation variable r = 
while dostopping criterion not met
Sample a minibatch ofm examples from the training set x

(1), . . . ,x ( )m with
corresponding targets y( )i .
Compute interim update: ˜

θ θ v+ α
Compute gradient: g

1
m θ̃

P
i L f( (x( )i ; θ̃ y), ( )i )

Accumulate gradient: r r g gρ + (1 )ρ
Compute velocity update: v vα

√
r g. (

1√
r
applied element-wise)

Apply update: θ θ v+
end while

8.6 Approximate Second-Order Methods

In this section we discuss the application of second-order methods to the training
of deep networks. See ( ) for an earlier treatment of this subject.LeCun et al. 1998a
For simplicity of exposition, the only objective function we examine is the empirical
risk:

J( ) = θ Ex,y∼p̂data ( )x,y [ ( ( ; ) )] =L f x θ , y
1

m

mX
i=1

L f( (x( )i ; )θ , y( )i ). (8.25)

However the methods we discuss here extend readily to more general objective
functions that, for instance, include parameter regularization terms such as those
discussed in Chapter .7

8.6.1 Newton’s Method

In Sec. , we introduced second-order gradient methods. In contrast to first-4.3
order methods, second-order methods make use of second derivatives to improve

optimization. The most widely used second-order method is Newton’s method. We
now describe Newton’s method in more detail, with emphasis on its application to
neural network training.

Newton’s method is an optimization scheme based on using a second-order Tay-
lor series expansion to approximate J(θ) near some point θ0, ignoring derivatives
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Algorithm 8.7 The Adam algorithm

Require: Step size (Suggested default: ) 0 001.
Require: Exponential decay rates for moment estimates, ρ1 and ρ2 in [0 ,1).
(Suggested defaults: and respectively)0 9. 0 999.

Require: Small constant δ used for numerical stabilization. (Suggested default:
10−8)

Require: Initial parameters θ

Initialize 1st and 2nd moment variables ,s = r = 
Initialize time step t = 0
while dostopping criterion not met
Sample a minibatch ofm examples from the training set x

(1), . . . ,x ( )m with
corresponding targets y( )i .

Compute gradient: g
1
m θ

P
i L f( (x( )i ; )θ , y( )i )

t t + 1
Update biased first moment estimate: s ρ1s+ (1 ρ 1)g

Update biased second moment estimate: r ρ2r + (1 ρ 2 )g g
Correct bias in first moment: ŝ

s
1−ρ1

Correct bias in second moment: r̂
r

1−ρ2

Compute update: ∆ = θ 
ŝ√
r̂+δ

(operations applied element-wise)

Apply update: θ θ θ+ ∆
end while

of higher order:

J J( ) θ (θ 0) + (θ θ 0)
>

θJ(θ0) +
1

2(θ θ 0)
>
H θ θ( 0 ), (8.26)

where H is the Hessian of J with respect to θ evaluated at θ0. If we then solve for
the critical point of this function, we obtain the Newton parameter update rule:

θ∗ = θ0 H
−1

θJ(θ0) (8.27)

Thus for a locally quadratic function (with positive definite H), by rescaling
the gradient byH −1, Newton’s method jumps directly to the minimum. If the
objective function is convex but not quadratic (there are higher-order terms), this
update can be iterated, yielding the training algorithm associated with Newton’s
method, given in Algorithm .8.8

For surfaces that are not quadratic, as long as the Hessian remains positive

definite, Newton’s method can be applied iteratively. This implies a two-step
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Algorithm 8.8 Newton’s method with objective J(θ) =
1
m

Pm
i=1L f( (x ( )i ; )θ , y( )i ).

Require: Initial parameter θ0
Require: Training set of examplesm
while dostopping criterion not met

Compute gradient: g
1
m θ

P
i L f( (x( )i ; )θ , y( )i )

Compute Hessian: H
1
m

2
θ

P
i L f( (x( )i ; )θ , y( )i )

Compute Hessian inverse: H−1

Compute update: ∆ = θ H
−1g

Apply update: θ θ θ= + ∆
end while

iterative procedure. First, update or compute the inverse Hessian (i.e. by updating
the quadratic approximation). Second, update the parameters according to Eq.

8.27.

In Sec. , we discussed how Newton’s method is appropriate only when8.2.3
the Hessian is positive definite. In deep learning, the surface of the objective
function is typically non-convex with many features, such as saddle points, that
are problematic for Newton’s method. If the eigenvalues of the Hessian are not
all positive, for example, near a saddle point, then Newton’s method can actually
cause updates to move in the wrong direction. This situation can be avoided
by regularizing the Hessian. Common regularization strategies include adding a
constant, , along the diagonal of the Hessian. The regularized update becomesα

θ∗ = θ0 [ ( (H f θ 0)) + ]αI −1
θf(θ0). (8.28)

This regularization strategy is used in approximations to Newton’s method, such
as the Levenberg–Marquardt algorithm (Levenberg 1944 Marquardt 1963, ; , ), and
works fairly well as long as the negative eigenvalues of the Hessian are still relatively

close to zero. In cases where there are more extreme directions of curvature, the
value of α would have to be sufficiently large to offset the negative eigenvalues.
However, as α increases in size, the Hessian becomes dominated by the αI diagonal
and the direction chosen by Newton’s method converges to the standard gradient
divided by α. When strong negative curvature is present, α may need to be so
large that Newton’s method would make smaller steps than gradient descent with
a properly chosen learning rate.

Beyond the challenges created by certain features of the objective function,
such as saddle points, the application of Newton’s method for training large neural
networks is limited by the significant computational burden it imposes. The
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number of elements in the Hessian is squared in the number of parameters, so with
k parameters (and for even very small neural networks the number of parameters
k can be in the millions), Newton’s method would require the inversion of a k k
matrix—with computational complexity of O(k3). Also, since the parameters
will change with every update, the inverse Hessian has to be computed at every
training iteration. As a consequence, only networks a with very small number
of parameters can be practically trained via Newton’s method. In the remainder
of this section, we will discuss alternatives that attempt to gain some of the
advantages of Newton’s method while side-stepping the computational hurdles.

8.6.2 Conjugate Gradients

Conjugate gradients is a method to efficiently avoid the calculation of the inverse
Hessian by iteratively descending conjugate directions. The inspiration for this
approach follows from a careful study of the weakness of the method of steepest
descent (see Sec. for details), where line searches are applied iteratively in4.3
the direction associated with the gradient. Fig. illustrates how the method of8.6
steepest descent, when applied in a quadratic bowl, progresses in a rather ineffective

back-and-forth, zig-zag pattern. This happens because each line search direction,
when given by the gradient, is guaranteed to be orthogonal to the previous line
search direction.

Let the previous search direction be dt−1. At the minimum, where the line
search terminates, the directional derivative is zero in direction dt−1: θJ(θ)
dt−1 = 0. Since the gradient at this point defines the current search direction,
dt = θJ (θ) will have no contribution in the direction dt−1. Thus dt is orthogonal
to dt−1. This relationship between dt−1 and dt is illustrated in Fig. for8.6
multiple iterations of steepest descent. As demonstrated in the figure, the choice of
orthogonal directions of descent do not preserve the minimum along the previous
search directions. This gives rise to the zig-zag pattern of progress, where by

descending to the minimum in the current gradient direction, we must re-minimize
the objective in the previous gradient direction. Thus, by following the gradient at
the end of each line search we are, in a sense, undoing progress we have already
made in the direction of the previous line search. The method of conjugate gradients
seeks to address this problem.

In the method of conjugate gradients, we seek to find a search direction that is
conjugate to the previous line search direction, i.e. it will not undo progress made
in that direction. At training iteration t, the next search direction dt takes the
form:

dt = θJ β( ) +θ tdt−1 (8.29)
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were βt is a coefficient whose magnitude controls how much of the direction, d t−1,
we should add back to the current search direction.

Two directions, dt and dt−1, are defined as conjugate if d>
t H d( )J t−1 = 0.

d>t Hd t−1 = 0 (8.30)

The straightforward way to impose conjugacy would involve calculation of the
eigenvectors of H to choose βt, which would not satisfy our goal of developing
a method that is more computationally viable than Newton’s method for large
problems. Can we calculate the conjugate directions without resorting to these
calculations? Fortunately the answer to that is yes.

Two popular methods for computing the βt are:

1. Fletcher-Reeves:

βt =
θJ(θt)

>
θJ(θt)

θJ(θt−1 )> θJ(θt−1)
(8.31)

2. Polak-Ribière:

βt = ( θJ(θt) θJ(θt−1))
>

θJ(θt)

θJ(θt−1 )> θJ(θt−1)
(8.32)
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For a quadratic surface, the conjugate directions ensure that the gradient along
the previous direction does not increase in magnitude. We therefore stay at the
minimum along the previous directions. As a consequence, in a k-dimensional
parameter space, conjugate gradients only requires k line searches to achieve the
minimum. The conjugate gradient algorithm is given in Algorithm .8.9

Algorithm 8.9 Conjugate gradient method

Require: Initial parameters θ0
Require: Training set of examplesm

Initialize ρ0 = 
Initialize g0 = 0
Initialize t = 1
while dostopping criterion not met

Initialize the gradient gt = 
Compute gradient: gt

1
m θ

P
iL f( (x( )i ; )θ , y( )i )

Compute βt=
(g −g

1
) g

g
1
g

1

(Polak-Ribière)

(Nonlinear conjugate gradient: optionally reset βt to zero, for example if t is
a multiple of some constant , such as )k k = 5
Compute search direction: ρt = g t + βtρt−1
Perform line search to find: ∗ = argmin

1
m

Pm
i=1L f( (x ( )i ;θt + ρt ),y( )i )

(On a truly quadratic cost function, analytically solve for ∗ rather than
explicitly searching for it)
Apply update: θt+1 = θt+ ∗ρt

t t + 1
end while

Nonlinear Conjugate Gradients: So far we have discussed the method of
conjugate gradients as it is applied to quadratic objective functions. Of course,

our primary interest in this chapter is to explore optimization methods for training
neural networks and other related deep learning models where the corresponding
objective function is far from quadratic. Perhaps surprisingly, the method of
conjugate gradients is still applicable in this setting, though with some modification.
Without any assurance that the objective is quadratic, the conjugate directions are
no longer assured to remain at the minimum of the objective for previous directions.
As a result, the nonlinear conjugate gradients algorithm includes occasional resets
where the method of conjugate gradients is restarted with line search along the
unaltered gradient.

Practitioners report reasonable results in applications of the nonlinear conjugate
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gradients algorithm to training neural networks, though it is often beneficial to
initialize the optimization with a few iterations of stochastic gradient descent before
commencing nonlinear conjugate gradients. Also, while the (nonlinear) conjugate
gradients algorithm has traditionally been cast as a batch method, minibatch
versions have been used successfully for the training of neural networks ( ,Le et al.
2011). Adaptations of conjugate gradients specifically for neural networks have
been proposed earlier, such as the scaled conjugate gradients algorithm ( ,Moller
1993).

8.6.3 BFGS

The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm attempts to bring some
of the advantages of Newton’s method without the computational burden. In that
respect, BFGS is similar to CG. However, BFGS takes a more direct approach to
the approximation of Newton’s update. Recall that Newton’s update is given by

θ∗ = θ0 H
−1

θJ(θ0), (8.33)

where H is the Hessian of J with respect to θ evaluated at θ0. The primary
computational difficulty in applying Newton’s update is the calculation of the

inverse Hessian H−1. The approach adopted by quasi-Newton methods (of which
the BFGS algorithm is the most prominent) is to approximate the inverse with
a matrixM t that is iteratively refined by low rank updates to become a better
approximation of H−1.

From Newton’s update, in Eq. , we can see that the parameters at learning8.33
steps t are related via the secant condition (also known as the quasi-Newton
condition):

θt+1 θ t = H
−1

( θJ(θt+1) θJ(θt)) (8.34)

Eq. holds precisely in the quadratic case, or approximately otherwise. The8.34
approximation to the Hessian inverse used in the BFGS procedure is constructed
so as to satisfy this condition, withM in place of H−1. Specifically, M is updated
according to:

Mt = Mt−1 +


1 +
φ>Mt−1φ

>φ


φ>φ

>φ


φ >Mt−1 +Mt−1φ >

>φ


, (8.35)

where gt= θJ (θt), φ= gt g t−1 and = θt θ t−1. Eq. shows that the8.35
BFGS procedure iteratively refines the approximation of the inverse of the Hessian
with rank updates of rank one. This mean that if θ R

n, then the computational
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complexity of the update is O(n2). The derivation of the BFGS approximation is
given in many textbooks on optimization, including ( ).Luenberger 1984

Once the inverse Hessian approximationMt is updated, the direction of descent
ρt is determined by ρt = Mtgt. A line search is performed in this direction to
determine the size of the step, ∗ , taken in this direction. The final update to the
parameters is given by:

θt+1 = θt + ∗ρt . (8.36)

The complete BFGS algorithm is presented in Algorithm .8.10

Algorithm 8.10 BFGS method

Require: Initial parameters θ0
Initialize inverse HessianM0 = I
while dostopping criterion not met
Compute gradient: gt = θJ(θt)

Compute φ g= t g t−1, = θ t θ t−1

Approx H−1 : Mt = Mt−1 +


1 + φ M
1
φ

∆ φ


φ φ

∆ φ


∆φ M

1
+M

1
φ∆

∆ φ


Compute search direction: ρt = Mtgt
Perform line search to find: ∗ = argmin J(θt + ρt)
Apply update: θt+1 = θt+ ∗ρt

end while*

Like the method of conjugate gradients, the BFGS algorithm iterates a series of
line searches with the direction incorporating second-order information. However
unlike conjugate gradients, the success of the approach is not heavily dependent
on the line search finding a point very close to the true minimum along the line.
Thus, relative to conjugate gradients, BFGS has the advantage that it can spend
less time refining each line search. On the other hand, the BFGS algorithm must
store the inverse Hessian matrix,M , that requires O(n2) memory, making BFGS
impractical for most modern deep learning models that typically have millions of
parameters.

Limited Memory BFGS (or L-BFGS) The memory costs of the BFGS
algorithm can be significantly decreased by avoiding storing the complete inverse
Hessian approximationM . Alternatively, by replacing theMt−1 in Eq. with8.35
an identity matrix, the BFGS search direction update formula becomes:

ρt = g t + +b a ,φ (8.37)
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where the scalars and are given by:a b

a = 


1 +

φ>φ
>φ

 >gt
>φ

+
φ>gt

>φ
(8.38)

b =
>gt
>φ

(8.39)

with φ and as defined above. If used with exact line searches, the directions
defined by Eq. are mutually conjugate. However, unlike the method of8.37
conjugate gradients, this procedure remains well behaved when the minimum of
the line search is reached only approximately. This strategy can be generalized to
include more information about the Hessian by storing previous values of φ and

.

8.7 Optimization Strategies and Meta-Algorithms

Many optimization techniques are not exactly algorithms, but rather general
templates that can be specialized to yield algorithms, or subroutines that can be
incorporated into many different algorithms.

8.7.1 Batch Normalization

Batch normalization ( , ) is one of the most exciting recentIoffe and Szegedy 2015
innovations in optimizing deep neural networks and it is actually not an optimization
algorithm at all. Instead, it is a method of adaptive reparametrization, motivated
by the difficulty of training very deep models.

Very deep models involve the composition of several functions or layers. The
gradient tells how to update each parameter, under the assumption that the other

layers do not change. In practice, we update all of the layers simultaneously.
When we make the update, unexpected results can happen because many functions
composed together are changed simultaneously, using updates that were computed
under the assumption that the other functions remain constant. As a simple
example, suppose we have a deep neural network that has only one unit per layer
and does not use an activation function at each hidden layer: ŷ = xw1w2w3 . . . wl.
Here, wi provides the weight used by layer i. The output of layer i is h i =h i−1wi .
The output ŷ is a linear function of the input x, but a nonlinear function of the
weights wi . Suppose our cost function has put a gradient of on1 ŷ, so we wish to
decrease ŷ slightly. The back-propagation algorithm can then compute a gradient
g = wŷ. Consider what happens when we make an update w w g . The
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first-order Taylor series approximation of ŷ predicts that the value of ŷ will decrease
by g>g. If we wanted to decrease ŷ by .1, this first-order information available in
the gradient suggests we could set the learning rate  to .1

g g
. However, the actual

update will include second-order and third-order effects, on up to effects of order l.
The new value of ŷ is given by

x w( 1 g 1 )(w2 g 2) (. . . wl g l ). (8.40)

An example of one second-order term arising from this update is 2g1 g2
Ql
i=3wi .

This term might be negligible if
Ql
i=3 wi is small, or might be exponentially large

if the weights on layers through3 l are greater than . This makes it very hard1
to choose an appropriate learning rate, because the effects of an update to the
parameters for one layer depends so strongly on all of the other layers. Second-order
optimization algorithms address this issue by computing an update that takes these
second-order interactions into account, but we can see that in very deep networks,
even higher-order interactions can be significant. Even second-order optimization
algorithms are expensive and usually require numerous approximations that prevent
them from truly accounting for all significant second-order interactions. Building
an n-th order optimization algorithm for n > 2 thus seems hopeless. What can we
do instead?

Batch normalization provides an elegant way of reparametrizing almost any deep
network. The reparametrization significantly reduces the problem of coordinating
updates across many layers. Batch normalization can be applied to any input
or hidden layer in a network. Let H be a minibatch of activations of the layer
to normalize, arranged as a design matrix, with the activations for each example
appearing in a row of the matrix. To normalize , we replace it withH

H 0 = H µ
σ

, (8.41)

where µ is a vector containing the mean of each unit and σ is a vector containing
the standard deviation of each unit. The arithmetic here is based on broadcasting
the vector µ and the vector σ to be applied to every row of the matrixH . Within

each row, the arithmetic is element-wise, so Hi,j is normalized by subtracting µj
and dividing by σj . The rest of the network then operates on H0 in exactly the
same way that the original network operated on .H

At training time,

µ =
1

mXi
Hi,: (8.42)
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and

σ =

s
δ +

1

m

X
i

( )H µ
2
i , (8.43)

where δ is a small positive value such as 10−8 imposed to avoid encountering the
undefined gradient of z at z = 0. Crucially, we back-propagate through
these operations for computing the mean and the standard deviation, and for
applying them to normalizeH . This means that the gradient will never propose
an operation that acts simply to increase the standard deviation or mean of
hi; the normalization operations remove the effect of such an action and zero
out its component in the gradient. This was a major innovation of the batch

normalization approach. Previous approaches had involved adding penalties to
the cost function to encourage units to have normalized activation statistics or
involved intervening to renormalize unit statistics after each gradient descent step.
The former approach usually resulted in imperfect normalization and the latter
usually resulted in significant wasted time as the learning algorithm repeatedly
proposed changing the mean and variance and the normalization step repeatedly
undid this change. Batch normalization reparametrizes the model to make some
units always be standardized by definition, deftly sidestepping both problems.

At test time, µ and σ may be replaced by running averages that were collected
during training time. This allows the model to be evaluated on a single example,
without needing to use definitions of µ and σ that depend on an entire minibatch.

Revisiting the ŷ = xw1w2 . . . wl example, we see that we can mostly resolve the
difficulties in learning this model by normalizing hl−1. Suppose that x is drawn
from a unit Gaussian. Then hl−1 will also come from a Gaussian, because the
transformation from x to hl is linear. However, hl−1 will no longer have zero mean
and unit variance. After applying batch normalization, we obtain the normalized
ĥl−1 that restores the zero mean and unit variance properties. For almost any
update to the lower layers, ĥl−1 will remain a unit Gaussian. The output ŷ may
then be learned as a simple linear function ŷ = wlĥ l−1. Learning in this model is
now very simple because the parameters at the lower layers simply do not have an
effect in most cases; their output is always renormalized to a unit Gaussian. In
some corner cases, the lower layers can have an effect. Changing one of the lower

layer weights to can make the output become degenerate, and changing the sign0
of one of the lower weights can flip the relationship between ĥl−1 and y. These
situations are very rare. Without normalization, nearly every update would have
an extreme effect on the statistics of hl−1. Batch normalization has thus made
this model significantly easier to learn. In this example, the ease of learning of
course came at the cost of making the lower layers useless. In our linear example,
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the lower layers no longer have any harmful effect, but they also no longer have
any beneficial effect. This is because we have normalized out the first and second
order statistics, which is all that a linear network can influence. In a deep neural
network with nonlinear activation functions, the lower layers can perform nonlinear
transformations of the data, so they remain useful. Batch normalization acts to
standardize only the mean and variance of each unit in order to stabilize learning,
but allows the relationships between units and the nonlinear statistics of a single
unit to change.

Because the final layer of the network is able to learn a linear transformation,

we may actually wish to remove all linear relationships between units within a
layer. Indeed, this is the approach taken by ( ), who providedDesjardins et al. 2015
the inspiration for batch normalization. Unfortunately, eliminating all linear
interactions is much more expensive than standardizing the mean and standard
deviation of each individual unit, and so far batch normalization remains the most
practical approach.

Normalizing the mean and standard deviation of a unit can reduce the expressive
power of the neural network containing that unit. In order to maintain the
expressive power of the network, it is common to replace the batch of hidden unit
activationsH with γH 0 +β rather than simply the normalized H0. The variables
γ and β are learned parameters that allow the new variable to have any mean

and standard deviation. At first glance, this may seem useless—why did we set
the mean to , and then introduce a parameter that allows it to be set back to
any arbitrary value β? The answer is that the new parametrization can represent
the same family of functions of the input as the old parametrization, but the new
parametrization has different learning dynamics. In the old parametrization, the
mean ofH was determined by a complicated interaction between the parameters
in the layers below H. In the new parametrization, the mean of γH 0 + β is
determined solely by β . The new parametrization is much easier to learn with
gradient descent.

Most neural network layers take the form of φ(XW + b) where φ is some
fixed nonlinear activation function such as the rectified linear transformation. It

is natural to wonder whether we should apply batch normalization to the input
X , or to the transformed value XW + b . ( ) recommendIoffe and Szegedy 2015
the latter. More specifically, XW + b should be replaced by a normalized version
of XW . The bias term should be omitted because it becomes redundant with
the β parameter applied by the batch normalization reparametrization. The input
to a layer is usually the output of a nonlinear activation function such as the
rectified linear function in a previous layer. The statistics of the input are thus

321



CHAPTER 8. OPTIMIZATION FOR TRAINING DEEP MODELS

more non-Gaussian and less amenable to standardization by linear operations.

In convolutional networks, described in Chapter , it is important to apply the9
same normalizing µ and σ at every spatial location within a feature map, so that
the statistics of the feature map remain the same regardless of spatial location.

8.7.2 Coordinate Descent

In some cases, it may be possible to solve an optimization problem quickly by
breaking it into separate pieces. If we minimize f (x) with respect to a single variable
xi, then minimize it with respect to another variable xj and so on, repeatedly
cycling through all variables, we are guaranteed to arrive at a (local) minimum.

This practice is known as coordinate descent, because we optimize one coordinate
at a time. More generally, block coordinate descent refers to minimizing with
respect to a subset of the variables simultaneously. The term “coordinate descent”
is often used to refer to block coordinate descent as well as the strictly individual
coordinate descent.

Coordinate descent makes the most sense when the different variables in the
optimization problem can be clearly separated into groups that play relatively
isolated roles, or when optimization with respect to one group of variables is
significantly more efficient than optimization with respect to all of the variables.
For example, consider the cost function

J ,(H W ) =
X
i,j
Hi,j +

X
i,j


X W

>H
2
i,j
. (8.44)

This function describes a learning problem called sparse coding, where the goal is
to find a weight matrixW that can linearly decode a matrix of activation values
H to reconstruct the training set X . Most applications of sparse coding also
involve weight decay or a constraint on the norms of the columns of W , in order

to prevent the pathological solution with extremely small and large .H W

The function J is not convex. However, we can divide the inputs to the
training algorithm into two sets: the dictionary parameters W and the code
representationsH . Minimizing the objective function with respect to either one of
these sets of variables is a convex problem. Block coordinate descent thus gives
us an optimization strategy that allows us to use efficient convex optimization
algorithms, by alternating between optimizingW withH fixed, then optimizing
H Wwith fixed.

Coordinate descent is not a very good strategy when the value of one variable
strongly influences the optimal value of another variable, as in the function f(x) =
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(x1 x 2)
2 + α


x21 + x22


where α is a positive constant. The first term encourages

the two variables to have similar value, while the second term encourages them
to be near zero. The solution is to set both to zero. Newton’s method can solve
the problem in a single step because it is a positive definite quadratic problem.
However, for small α, coordinate descent will make very slow progress because the
first term does not allow a single variable to be changed to a value that differs
significantly from the current value of the other variable.

8.7.3 Polyak Averaging

Polyak averaging (Polyak and Juditsky 1992, ) consists of averaging together several
points in the trajectory through parameter space visited by an optimization
algorithm. If t iterations of gradient descent visit points θ(1), . . . ,θ ( )t , then the
output of the Polyak averaging algorithm is θ̂( )t = 1

t

P
i θ
( )i . On some problem

classes, such as gradient descent applied to convex problems, this approach has
strong convergence guarantees. When applied to neural networks, its justification
is more heuristic, but it performs well in practice. The basic idea is that the
optimization algorithm may leap back and forth across a valley several times

without ever visiting a point near the bottom of the valley. The average of all of
the locations on either side should be close to the bottom of the valley though.

In non-convex problems, the path taken by the optimization trajectory can be
very complicated and visit many different regions. Including points in parameter
space from the distant past that may be separated from the current point by large
barriers in the cost function does not seem like a useful behavior. As a result,
when applying Polyak averaging to non-convex problems, it is typical to use an
exponentially decaying running average:

θ̂( )t = αθ̂ ( 1)t−
+ (1 )α θ

( )t . (8.45)

The running average approach is used in numerous applications. See Szegedy
et al. ( ) for a recent example.2015

8.7.4 Supervised Pretraining

Sometimes, directly training a model to solve a specific task can be too ambitious
if the model is complex and hard to optimize or if the task is very difficult. It is
sometimes more effective to train a simpler model to solve the task, then make the
model more complex. It can also be more effective to train the model to solve a
simpler task, then move on to confront the final task. These strategies that involve
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training simple models on simple tasks before confronting the challenge of training
the desired model to perform the desired task are collectively known as pretraining.

Greedy algorithms break a problem into many components, then solve for the
optimal version of each component in isolation. Unfortunately, combining the
individually optimal components is not guaranteed to yield an optimal complete
solution. However, greedy algorithms can be computationally much cheaper than
algorithms that solve for the best joint solution, and the quality of a greedy solution
is often acceptable if not optimal. Greedy algorithms may also be followed by a

fine-tuning stage in which a joint optimization algorithm searches for an optimal
solution to the full problem. Initializing the joint optimization algorithm with a
greedy solution can greatly speed it up and improve the quality of the solution it
finds.

Pretraining, and especially greedy pretraining, algorithms are ubiquitous in
deep learning. In this section, we describe specifically those pretraining algorithms
that break supervised learning problems into other simpler supervised learning
problems. This approach is known as greedy supervised pretraining.

In the original ( , ) version of greedy supervised pretraining,Bengio et al. 2007
each stage consists of a supervised learning training task involving only a subset of
the layers in the final neural network. An example of greedy supervised pretraining

is illustrated in Fig. , in which each added hidden layer is pretrained as part of8.7
a shallow supervised MLP, taking as input the output of the previously trained
hidden layer. Instead of pretraining one layer at a time, Simonyan and Zisserman
( ) pretrain a deep convolutional network (eleven weight layers) and then use2015
the first four and last three layers from this network to initialize even deeper
networks (with up to nineteen layers of weights). The middle layers of the new,
very deep network are initialized randomly. The new network is then jointly trained.
Another option, explored by Yu 2010et al. ( ) is to use the of the previouslyoutputs
trained MLPs, as well as the raw input, as inputs for each added stage.

Why would greedy supervised pretraining help? The hypothesis initially
discussed by ( ) is that it helps to provide better guidance to theBengio et al. 2007

intermediate levels of a deep hierarchy. In general, pretraining may help both in
terms of optimization and in terms of generalization.

An approach related to supervised pretraining extends the idea to the context
of transfer learning: Yosinski 2014et al. ( ) pretrain a deep convolutional net with 8
layers of weights on a set of tasks (a subset of the 1000 ImageNet object categories)
and then initialize a same-size network with the first k layers of the first net. All
the layers of the second network (with the upper layers initialized randomly) are

324



CHAPTER 8. OPTIMIZATION FOR TRAINING DEEP MODELS

325



CHAPTER 8. OPTIMIZATION FOR TRAINING DEEP MODELS

then jointly trained to perform a different set of tasks (another subset of the 1000
ImageNet object categories), with fewer training examples than for the first set of
tasks. Other approaches to transfer learning with neural networks are discussed in
Sec. .15.2

Another related line of work is the ( , ) approach. ThisFitNets Romero et al. 2015
approach begins by training a network that has low enough depth and great enough
width (number of units per layer) to be easy to train. This network then becomes
a teacher for a second network, designated the . The student network isstudent
much deeper and thinner (eleven to nineteen layers) and would be difficult to train

with SGD under normal circumstances. The training of the student network is
made easier by training the student network not only to predict the output for
the original task, but also to predict the value of the middle layer of the teacher
network. This extra task provides a set of hints about how the hidden layers
should be used and can simplify the optimization problem. Additional parameters
are introduced to regress the middle layer of the 5-layer teacher network from
the middle layer of the deeper student network. However, instead of predicting
the final classification target, the objective is to predict the middle hidden layer
of the teacher network. The lower layers of the student networks thus have two
objectives: to help the outputs of the student network accomplish their task, as
well as to predict the intermediate layer of the teacher network. Although a thin

and deep network appears to be more difficult to train than a wide and shallow
network, the thin and deep network may generalize better and certainly has lower
computational cost if it is thin enough to have far fewer parameters. Without
the hints on the hidden layer, the student network performs very poorly in the
experiments, both on the training and test set. Hints on middle layers may thus
be one of the tools to help train neural networks that otherwise seem difficult to
train, but other optimization techniques or changes in the architecture may also
solve the problem.

8.7.5 Designing Models to Aid Optimization

To improve optimization, the best strategy is not always to improve the optimization
algorithm. Instead, many improvements in the optimization of deep models have
come from designing the models to be easier to optimize.

In principle, we could use activation functions that increase and decrease in
jagged non-monotonic patterns. However, this would make optimization extremely
difficult. In practice, it is more important to choose a model family that
is easy to optimize than to use a powerful optimization algorithm. Most
of the advances in neural network learning over the past 30 years have been
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obtained by changing the model family rather than changing the optimization
procedure. Stochastic gradient descent with momentum, which was used to train
neural networks in the 1980s, remains in use in modern state of the art neural
network applications.

Specifically, modern neural networks reflect a design choice to use linear trans-
formations between layers and activation functions that are differentiable almost
everywhere and have significant slope in large portions of their domain. In par-
ticular, model innovations like the LSTM, rectified linear units and maxout units
have all moved toward using more linear functions than previous models like deep

networks based on sigmoidal units. These models have nice properties that make
optimization easier. The gradient flows through many layers provided that the
Jacobian of the linear transformation has reasonable singular values. Moreover,
linear functions consistently increase in a single direction, so even if the model’s
output is very far from correct, it is clear simply from computing the gradient
which direction its output should move to reduce the loss function. In other words,
modern neural nets have been designed so that their local gradient information
corresponds reasonably well to moving toward a distant solution.

Other model design strategies can help to make optimization easier. For
example, linear paths or skip connections between layers reduce the length of
the shortest path from the lower layer’s parameters to the output, and thus

mitigate the vanishing gradient problem (Srivastava 2015et al., ). A related idea
to skip connections is adding extra copies of the output that are attached to the
intermediate hidden layers of the network, as in GoogLeNet ( , )Szegedy et al. 2014a
and deeply-supervised nets ( , ). These “auxiliary heads” are trainedLee et al. 2014
to perform the same task as the primary output at the top of the network in order
to ensure that the lower layers receive a large gradient. When training is complete
the auxiliary heads may be discarded. This is an alternative to the pretraining
strategies, which were introduced in the previous section. In this way, one can
train jointly all the layers in a single phase but change the architecture, so that
intermediate layers (especially the lower ones) can get some hints about what they
should do, via a shorter path. These hints provide an error signal to lower layers.

8.7.6 Continuation Methods and Curriculum Learning

As argued in Sec. , many of the challenges in optimization arise from the global8.2.7
structure of the cost function and cannot be resolved merely by making better
estimates of local update directions. The predominant strategy for overcoming this
problem is to attempt to initialize the parameters in a region that is connected
to the solution by a short path through parameter space that local descent can

327



CHAPTER 8. OPTIMIZATION FOR TRAINING DEEP MODELS

discover.

Continuation methods are a family of strategies that can make optimization
easier by choosing initial points to ensure that local optimization spends most of
its time in well-behaved regions of space. The idea behind continuation methods is
to construct a series of objective functions over the same parameters. In order to
minimize a cost function J (θ), we will construct new cost functions J

(0), . . . , J ( )n .
These cost functions are designed to be increasingly difficult, with J(0) being fairly
easy to minimize, and J ( )n , the most difficult, being J(θ), the true cost function
motivating the entire process. When we say that J ( )i is easier than J( +1)i , we

mean that it is well behaved over more of θ space. A random initialization is more
likely to land in the region where local descent can minimize the cost function
successfully because this region is larger. The series of cost functions are designed
so that a solution to one is a good initial point of the next. We thus begin by
solving an easy problem then refine the solution to solve incrementally harder
problems until we arrive at a solution to the true underlying problem.

Traditional continuation methods (predating the use of continuation methods
for neural network training) are usually based on smoothing the objective function.
See Wu 1997( ) for an example of such a method and a review of some related
methods. Continuation methods are also closely related to simulated annealing,
which adds noise to the parameters (Kirkpatrick 1983et al., ). Continuation

methods have been extremely successful in recent years. See Mobahi and Fisher
( ) for an overview of recent literature, especially for AI applications.2015

Continuation methods traditionally were mostly designed with the goal of
overcoming the challenge of local minima. Specifically, they were designed to
reach a global minimum despite the presence of many local minima. To do so,
these continuation methods would construct easier cost functions by “blurring” the
original cost function. This blurring operation can be done by approximating

J ( )i ( ) = θ Eθ ∼N (θ ;θ,σ( )2 )J(θ0) (8.46)

via sampling. The intuition for this approach is that some non-convex functions
become approximately convex when blurred. In many cases, this blurring preserves
enough information about the location of a global minimum that we can find the

global minimum by solving progressively less blurred versions of the problem. This
approach can break down in three different ways. First, it might successfully define
a series of cost functions where the first is convex and the optimum tracks from
one function to the next arriving at the global minimum, but it might require so
many incremental cost functions that the cost of the entire procedure remains high.
NP-hard optimization problems remain NP-hard, even when continuation methods
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are applicable. The other two ways that continuation methods fail both correspond
to the method not being applicable. First, the function might not become convex,
no matter how much it is blurred. Consider for example the function J(θ) = θ

>θ.
Second, the function may become convex as a result of blurring, but the minimum
of this blurred function may track to a local rather than a global minimum of the
original cost function.

Though continuation methods were mostly originally designed to deal with the
problem of local minima, local minima are no longer believed to be the primary
problem for neural network optimization. Fortunately, continuation methods can

still help. The easier objective functions introduced by the continuation method can
eliminate flat regions, decrease variance in gradient estimates, improve conditioning
of the Hessian matrix, or do anything else that will either make local updates
easier to compute or improve the correspondence between local update directions
and progress toward a global solution.

Bengio 2009et al. ( ) observed that an approach called curriculum learning or
shaping can be interpreted as a continuation method. Curriculum learning is based
on the idea of planning a learning process to begin by learning simple concepts
and progress to learning more complex concepts that depend on these simpler
concepts. This basic strategy was previously known to accelerate progress in animal
training ( , ; , ;Skinner 1958 Peterson 2004 Krueger and Dayan 2009, ) and machine

learning ( , ; , ; , ). ( )Solomonoff 1989 Elman 1993 Sanger 1994 Bengio et al. 2009
justified this strategy as a continuation method, where earlier J( )i are made easier by
increasing the influence of simpler examples (either by assigning their contributions
to the cost function larger coefficients, or by sampling them more frequently), and
experimentally demonstrated that better results could be obtained by following a
curriculum on a large-scale neural language modeling task. Curriculum learning
has been successful on a wide range of natural language (Spitkovsky 2010et al., ;
Collobert 2011a Mikolov 2011b Tu and Honavar 2011et al., ; et al., ; , ) and computer
vision ( , ; , ; , )Kumar et al. 2010 Lee and Grauman 2011 Supancic and Ramanan 2013
tasks. Curriculum learning was also verified as being consistent with the way in
which humans teach ( , ): teachers start by showing easier andKhan et al. 2011

more prototypical examples and then help the learner refine the decision surface
with the less obvious cases. Curriculum-based strategies are more effective for
teaching humans than strategies based on uniform sampling of examples, and can
also increase the effectiveness of other teaching strategies ( ,Basu and Christensen
2013).

Another important contribution to research on curriculum learning arose in the
context of training recurrent neural networks to capture long-term dependencies:
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Zaremba and Sutskever 2014( ) found that much better results were obtained with
a stochastic curriculum, in which a random mix of easy and difficult examples is
always presented to the learner, but where the average proportion of the more
difficult examples (here, those with longer-term dependencies) is gradually increased.
With a deterministic curriculum, no improvement over the baseline (ordinary
training from the full training set) was observed.

We have now described the basic family of neural network models and how to
regularize and optimize them. In the chapters ahead, we turn to specializations of
the neural network family, that allow neural networks to scale to very large sizes and

process input data that has special structure. The optimization methods discussed
in this chapter are often directly applicable to these specialized architectures with
little or no modification.
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Convolutional Networks

Convolutional networks convolutional neural networks( , ), also known asLeCun 1989
or , are a specialized kind of neural network for processing data that hasCNNs
a known, grid-like topology. Examples include time-series data, which can be
thought of as a 1D grid taking samples at regular time intervals, and image data,

which can be thought of as a 2D grid of pixels. Convolutional networks have been
tremendously successful in practical applications. The name “convolutional neural
network” indicates that the network employs a mathematical operation called
convolution. Convolution is a specialized kind of linear operation. Convolutional
networks are simply neural networks that use convolution in place of
general matrix multiplication in at least one of their layers.

In this chapter, we will first describe what convolution is. Next, we will
explain the motivation behind using convolution in a neural network. We will
then describe an operation called pooling, which almost all convolutional networks
employ. Usually, the operation used in a convolutional neural network does not
correspond precisely to the definition of convolution as used in other fields such
as engineering or pure mathematics. We will describe several variants on the

convolution function that are widely used in practice for neural networks. We
will also show how convolution may be applied to many kinds of data, with
different numbers of dimensions. We then discuss means of making convolution
more efficient. Convolutional networks stand out as an example of neuroscientific
principles influencing deep learning. We will discuss these neuroscientific principles,
then conclude with comments about the role convolutional networks have played
in the history of deep learning. One topic this chapter does not address is how to
choose the architecture of your convolutional network. The goal of this chapter is
to describe the kinds of tools that convolutional networks provide, while Chapter 11
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describes general guidelines for choosing which tools to use in which circumstances.
Research into convolutional network architectures proceeds so rapidly that a new
best architecture for a given benchmark is announced every few weeks to months,
rendering it impractical to describe the best architecture in print. However, the
best architectures have consistently been composed of the building blocks described
here.

9.1 The Convolution Operation

In its most general form, convolution is an operation on two functions of a real-
valued argument. To motivate the definition of convolution, we start with examples

of two functions we might use.

Suppose we are tracking the location of a spaceship with a laser sensor. Our
laser sensor provides a single output x(t), the position of the spaceship at time
t. Both x and t are real-valued, i.e., we can get a different reading from the laser
sensor at any instant in time.

Now suppose that our laser sensor is somewhat noisy. To obtain a less noisy
estimate of the spaceship’s position, we would like to average together several
measurements. Of course, more recent measurements are more relevant, so we will
want this to be a weighted average that gives more weight to recent measurements.
We can do this with a weighting function w(a), where a is the age of a measurement.
If we apply such a weighted average operation at every moment, we obtain a new

function providing a smoothed estimate of the position of the spaceship:s

s t( ) =

Z
x a w t a da( ) ( − ) (9.1)

This operation is called convolution. The convolution operation is typically
denoted with an asterisk:

s t x w t( ) = ( ∗ )( ) (9.2)

In our example, w needs to be a valid probability density function, or the
output is not a weighted average. Also, w needs to be for all negative arguments,0
or it will look into the future, which is presumably beyond our capabilities. These
limitations are particular to our example though. In general, convolution is defined
for any functions for which the above integral is defined, and may be used for other
purposes besides taking weighted averages.

In convolutional network terminology, the first argument (in this example, the
function x) to the convolution is often referred to as the and the secondinput
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argument (in this example, the function w) as the . The output is sometimeskernel
referred to as the feature map.

In our example, the idea of a laser sensor that can provide measurements
at every instant in time is not realistic. Usually, when we work with data on a
computer, time will be discretized, and our sensor will provide data at regular
intervals. In our example, it might be more realistic to assume that our laser
provides a measurement once per second. The time index t can then take on only
integer values. If we now assume that x and w are defined only on integer t, we
can define the discrete convolution:

s t x w t( ) = ( ∗ )( ) =
∞X

a=−∞
x a w t a( ) ( − ) (9.3)

In machine learning applications, the input is usually a multidimensional array
of data and the kernel is usually a multidimensional array of parameters that are
adapted by the learning algorithm. We will refer to these multidimensional arrays
as tensors. Because each element of the input and kernel must be explicitly stored
separately, we usually assume that these functions are zero everywhere but the

finite set of points for which we store the values. This means that in practice we
can implement the infinite summation as a summation over a finite number of
array elements.

Finally, we often use convolutions over more than one axis at a time. For
example, if we use a two-dimensional image I as our input, we probably also want
to use a two-dimensional kernel :K

S i, j I K i, j( ) = ( ∗ )( ) =
X
m

X
n

I m,n K i m, j n .( ) ( − − ) (9.4)

Convolution is commutative, meaning we can equivalently write:

S i, j K I i, j( ) = ( ∗ )( ) =
X
m

X
n

I i m, j n K m, n .( − − ) ( ) (9.5)

Usually the latter formula is more straightforward to implement in a machine
learning library, because there is less variation in the range of valid values of m
and .n

The commutative property of convolution arises because we have flipped the
kernel relative to the input, in the sense that as m increases, the index into the
input increases, but the index into the kernel decreases. The only reason to flip
the kernel is to obtain the commutative property. While the commutative property
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is useful for writing proofs, it is not usually an important property of a neural
network implementation. Instead, many neural network libraries implement a
related function called the cross-correlation, which is the same as convolution but
without flipping the kernel:

S i, j I K i, j( ) = ( ∗ )( ) =
X
m

X
n

I i m, j n K m, n .( + + ) ( ) (9.6)

Many machine learning libraries implement cross-correlation but call it convolution.
In this text we will follow this convention of calling both operations convolution,
and specify whether we mean to flip the kernel or not in contexts where kernel

flipping is relevant. In the context of machine learning, the learning algorithm will
learn the appropriate values of the kernel in the appropriate place, so an algorithm
based on convolution with kernel flipping will learn a kernel that is flipped relative
to the kernel learned by an algorithm without the flipping. It is also rare for
convolution to be used alone in machine learning; instead convolution is used
simultaneously with other functions, and the combination of these functions does
not commute regardless of whether the convolution operation flips its kernel or
not.

See Fig. for an example of convolution (without kernel flipping) applied to9.1
a 2-D tensor.

Discrete convolution can be viewed as multiplication by a matrix. However, the

matrix has several entries constrained to be equal to other entries. For example,
for univariate discrete convolution, each row of the matrix is constrained to be
equal to the row above shifted by one element. This is known as a Toeplitz matrix.
In two dimensions, a doubly block circulant matrix corresponds to convolution.
In addition to these constraints that several elements be equal to each other,
convolution usually corresponds to a very sparse matrix (a matrix whose entries are
mostly equal to zero). This is because the kernel is usually much smaller than the
input image. Any neural network algorithm that works with matrix multiplication
and does not depend on specific properties of the matrix structure should work
with convolution, without requiring any further changes to the neural network.
Typical convolutional neural networks do make use of further specializations in
order to deal with large inputs efficiently, but these are not strictly necessary from

a theoretical perspective.
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9.2 Motivation

Convolution leverages three important ideas that can help improve a machine
learning system: sparse interactions parameter sharing equivariant representa-, and
tions. Moreover, convolution provides a means for working with inputs of variable
size. We now describe each of these ideas in turn.

Traditional neural network layers use matrix multiplication by a matrix of

parameters with a separate parameter describing the interaction between each
input unit and each output unit. This means every output unit interacts with every
input unit. Convolutional networks, however, typically have sparse interactions
(also referred to as sparse connectivity sparse weightsor ). This is accomplished by
making the kernel smaller than the input. For example, when processing an image,
the input image might have thousands or millions of pixels, but we can detect small,
meaningful features such as edges with kernels that occupy only tens or hundreds of
pixels. This means that we need to store fewer parameters, which both reduces the
memory requirements of the model and improves its statistical efficiency. It also
means that computing the output requires fewer operations. These improvements
in efficiency are usually quite large. If there are m inputs and n outputs, then
matrix multiplication requires m n× parameters and the algorithms used in practice

have O(m n× ) runtime (per example). If we limit the number of connections
each output may have to k, then the sparsely connected approach requires only
k n× parameters and O(k n× ) runtime. For many practical applications, it is
possible to obtain good performance on the machine learning task while keeping
k several orders of magnitude smaller than m . For graphical demonstrations of
sparse connectivity, see Fig. and Fig. . In a deep convolutional network,9.2 9.3
units in the deeper layers may indirectly interact with a larger portion of the input,
as shown in Fig. . This allows the network to efficiently describe complicated9.4
interactions between many variables by constructing such interactions from simple
building blocks that each describe only sparse interactions.

Parameter sharing refers to using the same parameter for more than one

function in a model. In a traditional neural net, each element of the weight matrix
is used exactly once when computing the output of a layer. It is multiplied by one
element of the input and then never revisited. As a synonym for parameter sharing,
one can say that a network has tied weights, because the value of the weight applied
to one input is tied to the value of a weight applied elsewhere. In a convolutional
neural net, each member of the kernel is used at every position of the input (except
perhaps some of the boundary pixels, depending on the design decisions regarding
the boundary). The parameter sharing used by the convolution operation means
that rather than learning a separate set of parameters for every location, we learn
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only one set. This does not affect the runtime of forward propagation—it is still
O(k n× )—but it does further reduce the storage requirements of the model to
k parameters. Recall that k is usually several orders of magnitude less than m.
Since m and n are usually roughly the same size, k is practically insignificant
compared to m n× . Convolution is thus dramatically more efficient than dense

matrix multiplication in terms of the memory requirements and statistical efficiency.
For a graphical depiction of how parameter sharing works, see Fig. .9.5

As an example of both of these first two principles in action, Fig. shows how9.6
sparse connectivity and parameter sharing can dramatically improve the efficiency
of a linear function for detecting edges in an image.

In the case of convolution, the particular form of parameter sharing causes the
layer to have a property called equivariance to translation. To say a function is
equivariant means that if the input changes, the output changes in the same way.
Specifically, a function f(x) is equivariant to a function g if f (g(x)) = g(f (x)).
In the case of convolution, if we let g be any function that translates the input,
i.e., shifts it, then the convolution function is equivariant to g. For example, let I

be a function giving image brightness at integer coordinates. Let g be a function
mapping one image function to another image function, such that I 0 = g(I ) is
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the image function with I 0(x, y) = I(x − 1, y). This shifts every pixel of I one
unit to the right. If we apply this transformation to I , then apply convolution,
the result will be the same as if we applied convolution to I 0, then applied the
transformation g to the output. When processing time series data, this means
that convolution produces a sort of timeline that shows when different features
appear in the input. If we move an event later in time in the input, the exact
same representation of it will appear in the output, just later in time. Similarly
with images, convolution creates a 2-D map of where certain features appear in
the input. If we move the object in the input, its representation will move the

same amount in the output. This is useful for when we know that some function
of a small number of neighboring pixels is useful when applied to multiple input
locations. For example, when processing images, it is useful to detect edges in
the first layer of a convolutional network. The same edges appear more or less
everywhere in the image, so it is practical to share parameters across the entire
image. In some cases, we may not wish to share parameters across the entire
image. For example, if we are processing images that are cropped to be centered
on an individual’s face, we probably want to extract different features at different
locations—the part of the network processing the top of the face needs to look for
eyebrows, while the part of the network processing the bottom of the face needs to
look for a chin.

Convolution is not naturally equivariant to some other transformations, such
as changes in the scale or rotation of an image. Other mechanisms are necessary
for handling these kinds of transformations.

Finally, some kinds of data cannot be processed by neural networks defined by
matrix multiplication with a fixed-shape matrix. Convolution enables processing
of some of these kinds of data. We discuss this further in Sec. .9.7

9.3 Pooling

A typical layer of a convolutional network consists of three stages (see Fig. ). In9.7

the first stage, the layer performs several convolutions in parallel to produce a set
of linear activations. In the second stage, each linear activation is run through a
nonlinear activation function, such as the rectified linear activation function. This
stage is sometimes called the detector stage. In the third stage, we use a pooling
function to modify the output of the layer further.

A pooling function replaces the output of the net at a certain location with
a summary statistic of the nearby outputs. For example, the max pooling (Zhou
and Chellappa 1988, ) operation reports the maximum output within a rectangular
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319 × 280 × 3 = 267, 960

320 × 280 × 319× 280

2 × 319 × 280 = 178, 640
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neighborhood. Other popular pooling functions include the average of a rectangular
neighborhood, the L2 norm of a rectangular neighborhood, or a weighted average
based on the distance from the central pixel.

In all cases, pooling helps to make the representation become approximately
invariant to small translations of the input. Invariance to translation means that if
we translate the input by a small amount, the values of most of the pooled outputs
do not change. See Fig. for an example of how this works.9.8 Invariance to
local translation can be a very useful property if we care more about
whether some feature is present than exactly where it is. For example,

when determining whether an image contains a face, we need not know the location
of the eyes with pixel-perfect accuracy, we just need to know that there is an eye on
the left side of the face and an eye on the right side of the face. In other contexts,
it is more important to preserve the location of a feature. For example, if we want
to find a corner defined by two edges meeting at a specific orientation, we need to
preserve the location of the edges well enough to test whether they meet.

The use of pooling can be viewed as adding an infinitely strong prior that
the function the layer learns must be invariant to small translations. When this
assumption is correct, it can greatly improve the statistical efficiency of the network.

Pooling over spatial regions produces invariance to translation, but if we pool
over the outputs of separately parametrized convolutions, the features can learn

which transformations to become invariant to (see Fig. ).9.9

Because pooling summarizes the responses over a whole neighborhood, it is
possible to use fewer pooling units than detector units, by reporting summary
statistics for pooling regions spaced k pixels apart rather than 1 pixel apart. See
Fig. for an example. This improves the computational efficiency of the network9.10
because the next layer has roughly k times fewer inputs to process. When the
number of parameters in the next layer is a function of its input size (such as
when the next layer is fully connected and based on matrix multiplication) this
reduction in the input size can also result in improved statistical efficiency and
reduced memory requirements for storing the parameters.

For many tasks, pooling is essential for handling inputs of varying size. For

example, if we want to classify images of variable size, the input to the classification
layer must have a fixed size. This is usually accomplished by varying the size of an
offset between pooling regions so that the classification layer always receives the
same number of summary statistics regardless of the input size. For example, the
final pooling layer of the network may be defined to output four sets of summary
statistics, one for each quadrant of an image, regardless of the image size.

Some theoretical work gives guidance as to which kinds of pooling one should
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use in various situations ( , ). It is also possible to dynamicallyBoureau et al. 2010
pool features together, for example, by running a clustering algorithm on the
locations of interesting features ( , ). This approach yields aBoureau et al. 2011
different set of pooling regions for each image. Another approach is to learn a
single pooling structure that is then applied to all images ( , ).Jia et al. 2012

Pooling can complicate some kinds of neural network architectures that use
top-down information, such as Boltzmann machines and autoencoders. These
issues will be discussed further when we present these types of networks in Part
III. Pooling in convolutional Boltzmann machines is presented in Sec. . The20.6

inverse-like operations on pooling units needed in some differentiable networks will
be covered in Sec. .20.10.6

Some examples of complete convolutional network architectures for classification
using convolution and pooling are shown in Fig. .9.11

9.4 Convolution and Pooling as an Infinitely Strong

Prior

Recall the concept of a prior probability distribution from Sec. . This is a5.2
probability distribution over the parameters of a model that encodes our beliefs
about what models are reasonable, before we have seen any data.

Priors can be considered weak or strong depending on how concentrated the

probability density in the prior is. A weak prior is a prior distribution with high
entropy, such as a Gaussian distribution with high variance. Such a prior allows
the data to move the parameters more or less freely. A strong prior has very low
entropy, such as a Gaussian distribution with low variance. Such a prior plays a
more active role in determining where the parameters end up.

An infinitely strong prior places zero probability on some parameters and says
that these parameter values are completely forbidden, regardless of how much
support the data gives to those values.

We can imagine a convolutional net as being similar to a fully connected net,
but with an infinitely strong prior over its weights. This infinitely strong prior
says that the weights for one hidden unit must be identical to the weights of its

neighbor, but shifted in space. The prior also says that the weights must be zero,
except for in the small, spatially contiguous receptive field assigned to that hidden
unit. Overall, we can think of the use of convolution as introducing an infinitely
strong prior probability distribution over the parameters of a layer. This prior
says that the function the layer should learn contains only local interactions and is
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equivariant to translation. Likewise, the use of pooling is an infinitely strong prior
that each unit should be invariant to small translations.

Of course, implementing a convolutional net as a fully connected net with an
infinitely strong prior would be extremely computationally wasteful. But thinking
of a convolutional net as a fully connected net with an infinitely strong prior can
give us some insights into how convolutional nets work.

One key insight is that convolution and pooling can cause underfitting. Like
any prior, convolution and pooling are only useful when the assumptions made

by the prior are reasonably accurate. If a task relies on preserving precise spatial
information, then using pooling on all features can increase the training error.
Some convolutional network architectures ( , ) are designed toSzegedy et al. 2014a
use pooling on some channels but not on other channels, in order to get both
highly invariant features and features that will not underfit when the translation
invariance prior is incorrect. When a task involves incorporating information from
very distant locations in the input, then the prior imposed by convolution may be
inappropriate.

Another key insight from this view is that we should only compare convolu-
tional models to other convolutional models in benchmarks of statistical learning
performance. Models that do not use convolution would be able to learn even if
we permuted all of the pixels in the image. For many image datasets, there are

separate benchmarks for models that are permutation invariant and must discover
the concept of topology via learning, and models that have the knowledge of spatial
relationships hard-coded into them by their designer.

9.5 Variants of the Basic Convolution Function

When discussing convolution in the context of neural networks, we usually do
not refer exactly to the standard discrete convolution operation as it is usually
understood in the mathematical literature. The functions used in practice differ
slightly. Here we describe these differences in detail, and highlight some useful

properties of the functions used in neural networks.

First, when we refer to convolution in the context of neural networks, we usually
actually mean an operation that consists of many applications of convolution in
parallel. This is because convolution with a single kernel can only extract one kind
of feature, albeit at many spatial locations. Usually we want each layer of our
network to extract many kinds of features, at many locations.

Additionally, the input is usually not just a grid of real values. Rather, it is a
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grid of vector-valued observations. For example, a color image has a red, green
and blue intensity at each pixel. In a multilayer convolutional network, the input
to the second layer is the output of the first layer, which usually has the output
of many different convolutions at each position. When working with images, we
usually think of the input and output of the convolution as being 3-D tensors, with
one index into the different channels and two indices into the spatial coordinates
of each channel. Software implementations usually work in batch mode, so they
will actually use 4-D tensors, with the fourth axis indexing different examples in
the batch, but we will omit the batch axis in our description here for simplicity.

Because convolutional networks usually use multi-channel convolution, the
linear operations they are based on are not guaranteed to be commutative, even if
kernel-flipping is used. These multi-channel operations are only commutative if
each operation has the same number of output channels as input channels.

Assume we have a 4-D kernel tensor with element i,j,k,l giving the connection
strength between a unit in channel i of the output and a unit in channel j of the
input, with an offset of k rows and l columns between the output unit and the
input unit. Assume our input consists of observed data with element i,j,k giving
the value of the input unit within channel i at row j and column k. Assume our
output consists of with the same format as . If is produced by convolving
across without flipping , then

i,j,k =
X
l,m,n

l,j m ,k n+ −1 + −1 i,l,m,n (9.7)

where the summation over l ,m and n is over all values for which the tensor indexing

operations inside the summation is valid. In linear algebra notation, we index into
arrays using a for the first entry. This necessitates the1 − 1 in the above formula.
Programming languages such as C and Python index starting from , rendering0

the above expression even simpler.

We may want to skip over some positions of the kernel in order to reduce the
computational cost (at the expense of not extracting our features as finely). We
can think of this as downsampling the output of the full convolution function. If
we want to sample only every s pixels in each direction in the output, then we can
defined a downsampled convolution function such thatc

i,j,k = ( )c , , s i,j,k =

X
l,m,n


l, j s m, k s n( − ×1) + ( − ×1) + i,l,m,n


. (9.8)

We refer to s as the of this downsampled convolution. It is also possiblestride
to define a separate stride for each direction of motion. See Fig. for an9.12
illustration.
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One essential feature of any convolutional network implementation is the ability
to implicitly zero-pad the input in order to make it wider. Without this feature,
the width of the representation shrinks by one pixel less than the kernel width
at each layer. Zero padding the input allows us to control the kernel width and
the size of the output independently. Without zero padding, we are forced to
choose between shrinking the spatial extent of the network rapidly and using small
kernels—both scenarios that significantly limit the expressive power of the network.
See Fig. for an example.9.13

Three special cases of the zero-padding setting are worth mentioning. One is

the extreme case in which no zero-padding is used whatsoever, and the convolution
kernel is only allowed to visit positions where the entire kernel is contained entirely
within the image. In MATLAB terminology, this is called convolution. Invalid
this case, all pixels in the output are a function of the same number of pixels in
the input, so the behavior of an output pixel is somewhat more regular. However,
the size of the output shrinks at each layer. If the input image has width m and
the kernel has width k , the output will be of width m k− + 1. The rate of this
shrinkage can be dramatic if the kernels used are large. Since the shrinkage is
greater than 0, it limits the number of convolutional layers that can be included
in the network. As layers are added, the spatial dimension of the network will
eventually drop to 1 × 1, at which point additional layers cannot meaningfully

be considered convolutional. Another special case of the zero-padding setting is
when just enough zero-padding is added to keep the size of the output equal to the
size of the input. MATLAB calls this convolution. In this case, the networksame
can contain as many convolutional layers as the available hardware can support,
since the operation of convolution does not modify the architectural possibilities
available to the next layer. However, the input pixels near the border influence
fewer output pixels than the input pixels near the center. This can make the
border pixels somewhat underrepresented in the model. This motivates the other
extreme case, which MATLAB refers to as full convolution, in which enough zeroes
are added for every pixel to be visited k times in each direction, resulting in an
output image of width . In this case, the output pixels near the borderm k+ − 1
are a function of fewer pixels than the output pixels near the center. This can

make it difficult to learn a single kernel that performs well at all positions in
the convolutional feature map. Usually the optimal amount of zero padding (in
terms of test set classification accuracy) lies somewhere between “valid” and “same”
convolution.

In some cases, we do not actually want to use convolution, but rather locally
connected layers ( , , ). In this case, the adjacency matrix in theLeCun 1986 1989
graph of our MLP is the same, but every connection has its own weight, specified
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by a 6-D tensor . The indices into are respectively: i, the output channel,
j, the output row, k , the output column, l, the input channel, m, the row offset
within the input, and n, the column offset within the input. The linear part of a
locally connected layer is then given by

i,j,k =
X
l,m,n

[ l,j m ,k n+ −1 + −1wi,j,k,l,m,n] . (9.9)

This is sometimes also called unshared convolution, because it is a similar operation

to discrete convolution with a small kernel, but without sharing parameters across
locations. Fig. compares local connections, convolution, and full connections.9.14

Locally connected layers are useful when we know that each feature should be
a function of a small part of space, but there is no reason to think that the same
feature should occur across all of space. For example, if we want to tell if an image
is a picture of a face, we only need to look for the mouth in the bottom half of the
image.

It can also be useful to make versions of convolution or locally connected layers
in which the connectivity is further restricted, for example to constrain that each
output channel i be a function of only a subset of the input channels l. A common
way to do this is to make the first m output channels connect to only the first

n input channels, the second m output channels connect to only the second n
input channels, and so on. See Fig. for an example. Modeling interactions9.15
between few channels allows the network to have fewer parameters in order to
reduce memory consumption and increase statistical efficiency, and also reduces
the amount of computation needed to perform forward and back-propagation. It
accomplishes these goals without reducing the number of hidden units.

Tiled convolution ( , ; , ) offers a compromiseGregor and LeCun 2010a Le et al. 2010
between a convolutional layer and a locally connected layer. Rather than learning
a separate set of weights at spatial location, we learn a set of kernels thatevery
we rotate through as we move through space. This means that immediately
neighboring locations will have different filters, like in a locally connected layer, but

the memory requirements for storing the parameters will increase only by a factor
of the size of this set of kernels, rather than the size of the entire output feature
map. See Fig. for a comparison of locally connected layers, tiled convolution,9.16
and standard convolution.

To define tiled convolution algebraically, let k be a 6-D tensor, where two of
the dimensions correspond to different locations in the output map. Rather than
having a separate index for each location in the output map, output locations cycle
through a set of t different choices of kernel stack in each direction. If t is equal to
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the output width, this is the same as a locally connected layer.

i,j,k =
X
l,m,n

l,j m ,k n+ −1 + −1 i,l,m,n,j t ,k t% +1 % +1 , (9.10)

where is the modulo operation, with% t%t = 0 (, t + 1)%t = 1, etc. It is
straightforward to generalize this equation to use a different tiling range for each

dimension.

Both locally connected layers and tiled convolutional layers have an interesting
interaction with max-pooling: the detector units of these layers are driven by
different filters. If these filters learn to detect different transformed versions of
the same underlying features, then the max-pooled units become invariant to the
learned transformation (see Fig. ). Convolutional layers are hard-coded to be9.9
invariant specifically to translation.

Other operations besides convolution are usually necessary to implement a
convolutional network. To perform learning, one must be able to compute the
gradient with respect to the kernel, given the gradient with respect to the outputs.
In some simple cases, this operation can be performed using the convolution

operation, but many cases of interest, including the case of stride greater than 1,
do not have this property.

Recall that convolution is a linear operation and can thus be described as a
matrix multiplication (if we first reshape the input tensor into a flat vector). The
matrix involved is a function of the convolution kernel. The matrix is sparse and
each element of the kernel is copied to several elements of the matrix. This view
helps us to derive some of the other operations needed to implement a convolutional
network.

Multiplication by the transpose of the matrix defined by convolution is one
such operation. This is the operation needed to back-propagate error derivatives
through a convolutional layer, so it is needed to train convolutional networks

that have more than one hidden layer. This same operation is also needed if we
wish to reconstruct the visible units from the hidden units ( , ).Simard et al. 1992
Reconstructing the visible units is an operation commonly used in the models
described in Part of this book, such as autoencoders, RBMs, and sparse coding.III
Transpose convolution is necessary to construct convolutional versions of those
models. Like the kernel gradient operation, this input gradient operation can be
implemented using a convolution in some cases, but in the general case requires
a third operation to be implemented. Care must be taken to coordinate this
transpose operation with the forward propagation. The size of the output that the
transpose operation should return depends on the zero padding policy and stride of
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the forward propagation operation, as well as the size of the forward propagation’s
output map. In some cases, multiple sizes of input to forward propagation can
result in the same size of output map, so the transpose operation must be explicitly
told what the size of the original input was.

These three operations—convolution, backprop from output to weights, and
backprop from output to inputs—are sufficient to compute all of the gradients
needed to train any depth of feedforward convolutional network, as well as to train
convolutional networks with reconstruction functions based on the transpose of
convolution. See ( ) for a full derivation of the equations in theGoodfellow 2010

fully general multi-dimensional, multi-example case. To give a sense of how these
equations work, we present the two dimensional, single example version here.

Suppose we want to train a convolutional network that incorporates strided
convolution of kernel stack applied to multi-channel image with stride s as
defined by c( , , s) as in Eq. . Suppose we want to minimize some loss function9.8
J( , ). During forward propagation, we will need to use c itself to output ,
which is then propagated through the rest of the network and used to compute
the cost function J. During back-propagation, we will receive a tensor such that

i,j,k = ∂
∂ J , .( )

To train the network, we need to compute the derivatives with respect to the
weights in the kernel. To do so, we can use a function

g , , s( )i,j,k,l =
∂

∂ i,j,k,l
J ,( ) =

X
m,n

i,m,n j, m s k, n s l( − ×1) + ( − ×1) + . (9.11)

If this layer is not the bottom layer of the network, we will need to compute

the gradient with respect to in order to back-propagate the error farther down.
To do so, we can use a function

h , , s( ) i,j,k =
∂

∂ i,j,k
J ,( ) (9.12)

=
X
l,m

( 1) + =l− ×s m j

X
n,p

( 1) + =n− ×s p k

X
q

q,i,m,p q,l,n. (9.13)

Autoencoder networks, described in Chapter , are feedforward networks14
trained to copy their input to their output. A simple example is the PCA algorithm,
that copies its input to an approximate reconstruction using the function

> . It is common for more general autoencoders to use multiplication
by the transpose of the weight matrix just as PCA does. To make such models
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convolutional, we can use the function h to perform the transpose of the convolution
operation. Suppose we have hidden units in the same format as and we define
a reconstruction

= (h , , s .) (9.14)

In order to train the autoencoder, we will receive the gradient with respect
to as a tensor . To train the decoder, we need to obtain the gradient with
respect to . This is given by g ( , , s). To train the encoder, we need to obtain
the gradient with respect to . This is given by c ( , , s). It is also possible to
differentiate through g using c and h, but these operations are not needed for the
back-propagation algorithm on any standard network architectures.

Generally, we do not use only a linear operation in order to transform from
the inputs to the outputs in a convolutional layer. We generally also add some
bias term to each output before applying the nonlinearity. This raises the question
of how to share parameters among the biases. For locally connected layers it is

natural to give each unit its own bias, and for tiled convolution, it is natural to
share the biases with the same tiling pattern as the kernels. For convolutional
layers, it is typical to have one bias per channel of the output and share it across
all locations within each convolution map. However, if the input is of known, fixed
size, it is also possible to learn a separate bias at each location of the output map.
Separating the biases may slightly reduce the statistical efficiency of the model, but
also allows the model to correct for differences in the image statistics at different
locations. For example, when using implicit zero padding, detector units at the
edge of the image receive less total input and may need larger biases.

9.6 Structured Outputs

Convolutional networks can be used to output a high-dimensional, structured
object, rather than just predicting a class label for a classification task or a real
value for a regression task. Typically this object is just a tensor, emitted by a
standard convolutional layer. For example, the model might emit a tensor , where

i,j,k is the probability that pixel (j, k) of the input to the network belongs to class
i. This allows the model to label every pixel in an image and draw precise masks
that follow the outlines of individual objects.

One issue that often comes up is that the output plane can be smaller than the
input plane, as shown in Fig. . In the kinds of architectures typically used for9.13
classification of a single object in an image, the greatest reduction in the spatial

dimensions of the network comes from using pooling layers with large stride. In
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Ŷ Ŷ
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order to produce an output map of similar size as the input, one can avoid pooling
altogether ( , ). Another strategy is to simply emit a lower-resolutionJain et al. 2007
grid of labels ( , , ). Finally, in principle, one couldPinheiro and Collobert 2014 2015
use a pooling operator with unit stride.

One strategy for pixel-wise labeling of images is to produce an initial guess

of the image labels, then refine this initial guess using the interactions between
neighboring pixels. Repeating this refinement step several times corresponds to
using the same convolutions at each stage, sharing weights between the last layers
of the deep net ( , ). This makes the sequence of computationsJain et al. 2007
performed by the successive convolutional layers with weights shared across layers
a particular kind of recurrent network ( , , ). Fig.Pinheiro and Collobert 2014 2015
9.17 shows the architecture of such a recurrent convolutional network.

Once a prediction for each pixel is made, various methods can be used to
further process these predictions in order to obtain a segmentation of the image
into regions ( , ;Briggman et al. 2009 Turaga 2010 Farabet 2013et al., ; et al., ).

360



CHAPTER 9. CONVOLUTIONAL NETWORKS

The general idea is to assume that large groups of contiguous pixels tend to be
associated with the same label. Graphical models can describe the probabilistic
relationships between neighboring pixels. Alternatively, the convolutional network
can be trained to maximize an approximation of the graphical model training
objective ( , ; , ).Ning et al. 2005 Thompson et al. 2014

9.7 Data Types

The data used with a convolutional network usually consists of several channels,
each channel being the observation of a different quantity at some point in space
or time. See Table for examples of data types with different dimensionalities9.1
and number of channels.

For an example of convolutional networks applied to video, see Chen et al.
( ).2010

So far we have discussed only the case where every example in the train and test
data has the same spatial dimensions. One advantage to convolutional networks
is that they can also process inputs with varying spatial extents. These kinds of
input simply cannot be represented by traditional, matrix multiplication-based
neural networks. This provides a compelling reason to use convolutional networks

even when computational cost and overfitting are not significant issues.

For example, consider a collection of images, where each image has a different
width and height. It is unclear how to model such inputs with a weight matrix of
fixed size. Convolution is straightforward to apply; the kernel is simply applied a
different number of times depending on the size of the input, and the output of the
convolution operation scales accordingly. Convolution may be viewed as matrix
multiplication; the same convolution kernel induces a different size of doubly block
circulant matrix for each size of input. Sometimes the output of the network is
allowed to have variable size as well as the input, for example if we want to assign
a class label to each pixel of the input. In this case, no further design work is
necessary. In other cases, the network must produce some fixed-size output, for

example if we want to assign a single class label to the entire image. In this case
we must make some additional design steps, like inserting a pooling layer whose
pooling regions scale in size proportional to the size of the input, in order to
maintain a fixed number of pooled outputs. Some examples of this kind of strategy
are shown in Fig. .9.11

Note that the use of convolution for processing variable sized inputs only makes
sense for inputs that have variable size because they contain varying amounts
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Single channel Multi-channel
1-D Audio waveform: The axis we

convolve over corresponds to

time. We discretize time and
measure the amplitude of the
waveform once per time step.

Skeleton animation data: Anima-
tions of 3-D computer-rendered

characters are generated by alter-
ing the pose of a “skeleton” over
time. At each point in time, the
pose of the character is described
by a specification of the angles of
each of the joints in the charac-
ter’s skeleton. Each channel in
the data we feed to the convolu-
tional model represents the angle
about one axis of one joint.

2-D Audio data that has been prepro-
cessed with a Fourier transform:
We can transform the audio wave-
form into a 2D tensor with dif-
ferent rows corresponding to dif-

ferent frequencies and different
columns corresponding to differ-
ent points in time. Using convolu-
tion in the time makes the model
equivariant to shifts in time. Us-
ing convolution across the fre-
quency axis makes the model
equivariant to frequency, so that
the same melody played in a dif-
ferent octave produces the same
representation but at a different
height in the network’s output.

Color image data: One channel
contains the red pixels, one the
green pixels, and one the blue
pixels. The convolution kernel
moves over both the horizontal

and vertical axes of the image,
conferring translation equivari-
ance in both directions.

3-D Volumetric data: A common
source of this kind of data is med-
ical imaging technology, such as

CT scans.

Color video data: One axis corre-
sponds to time, one to the height
of the video frame, and one to

the width of the video frame.
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of observation of the same kind of thing—different lengths of recordings over
time, different widths of observations over space, etc. Convolution does not make
sense if the input has variable size because it can optionally include different
kinds of observations. For example, if we are processing college applications, and
our features consist of both grades and standardized test scores, but not every
applicant took the standardized test, then it does not make sense to convolve the
same weights over both the features corresponding to the grades and the features
corresponding to the test scores.

9.8 Efficient Convolution Algorithms

Modern convolutional network applications often involve networks containing more
than one million units. Powerful implementations exploiting parallel computation
resources, as discussed in Sec. , are essential. However, in many cases it is also12.1
possible to speed up convolution by selecting an appropriate convolution algorithm.

Convolution is equivalent to converting both the input and the kernel to the
frequency domain using a Fourier transform, performing point-wise multiplication
of the two signals, and converting back to the time domain using an inverse
Fourier transform. For some problem sizes, this can be faster than the naive

implementation of discrete convolution.

When a d-dimensional kernel can be expressed as the outer product of d
vectors, one vector per dimension, the kernel is called separable. When the kernel
is separable, naive convolution is inefficient. It is equivalent to compose d one-
dimensional convolutions with each of these vectors. The composed approach
is significantly faster than performing one d-dimensional convolution with their
outer product. The kernel also takes fewer parameters to represent as vectors.
If the kernel is w elements wide in each dimension, then naive multidimensional
convolution requires O (wd) runtime and parameter storage space, while separable
convolution requires O(w d× ) runtime and parameter storage space. Of course,
not every convolution can be represented in this way.

Devising faster ways of performing convolution or approximate convolution
without harming the accuracy of the model is an active area of research. Even tech-
niques that improve the efficiency of only forward propagation are useful because
in the commercial setting, it is typical to devote more resources to deployment of
a network than to its training.
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9.9 Random or Unsupervised Features

Typically, the most expensive part of convolutional network training is learning the
features. The output layer is usually relatively inexpensive due to the small number
of features provided as input to this layer after passing through several layers of
pooling. When performing supervised training with gradient descent, every gradient
step requires a complete run of forward propagation and backward propagation

through the entire network. One way to reduce the cost of convolutional network
training is to use features that are not trained in a supervised fashion.

There are three basic strategies for obtaining convolution kernels without
supervised training. One is to simply initialize them randomly. Another is to
design them by hand, for example by setting each kernel to detect edges at a
certain orientation or scale. Finally, one can learn the kernels with an unsupervised
criterion. For example, ( ) applyCoates et al. 2011 k -means clustering to small
image patches, then use each learned centroid as a convolution kernel. Part III
describes many more unsupervised learning approaches. Learning the features
with an unsupervised criterion allows them to be determined separately from the
classifier layer at the top of the architecture. One can then extract the features for
the entire training set just once, essentially constructing a new training set for the

last layer. Learning the last layer is then typically a convex optimization problem,
assuming the last layer is something like logistic regression or an SVM.

Random filters often work surprisingly well in convolutional networks (Jarrett
et al. et al. et al., ;2009 Saxe , ;2011 Pinto , ;2011 Cox and Pinto 2011 Saxe, ). et al.
( ) showed that layers consisting of convolution following by pooling naturally2011
become frequency selective and translation invariant when assigned random weights.
They argue that this provides an inexpensive way to choose the architecture of
a convolutional network: first evaluate the performance of several convolutional
network architectures by training only the last layer, then take the best of these
architectures and train the entire architecture using a more expensive approach.

An intermediate approach is to learn the features, but using methods that do
not require full forward and back-propagation at every gradient step. As with
multilayer perceptrons, we use greedy layer-wise pretraining, to train the first layer
in isolation, then extract all features from the first layer only once, then train the
second layer in isolation given those features, and so on. Chapter has described8
how to perform supervised greedy layer-wise pretraining, and Part extends thisIII
to greedy layer-wise pretraining using an unsupervised criterion at each layer. The
canonical example of greedy layer-wise pretraining of a convolutional model is the
convolutional deep belief network ( , ). Convolutional networks offerLee et al. 2009
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us the opportunity to take the pretraining strategy one step further than is possible
with multilayer perceptrons. Instead of training an entire convolutional layer at a
time, we can train a model of a small patch, as ( ) do withCoates et al. 2011 k-means.
We can then use the parameters from this patch-based model to define the kernels
of a convolutional layer. This means that it is possible to use unsupervised learning
to train a convolutional network without ever using convolution during the
training process. Using this approach, we can train very large models and incur a
high computational cost only at inference time ( , ; ,Ranzato et al. 2007b Jarrett et al.
2009 Kavukcuoglu 2010 Coates 2013; et al., ; et al., ). This approach was popular

from roughly 2007–2013, when labeled datasets were small and computational
power was more limited. Today, most convolutional networks are trained in a
purely supervised fashion, using full forward and back-propagation through the
entire network on each training iteration.

As with other approaches to unsupervised pretraining, it remains difficult to
tease apart the cause of some of the benefits seen with this approach. Unsupervised
pretraining may offer some regularization relative to supervised training, or it may
simply allow us to train much larger architectures due to the reduced computational
cost of the learning rule.

9.10 The Neuroscientific Basis for Convolutional Net-

works

Convolutional networks are perhaps the greatest success story of biologically
inspired artificial intelligence. Though convolutional networks have been guided
by many other fields, some of the key design principles of neural networks were
drawn from neuroscience.

The history of convolutional networks begins with neuroscientific experiments

long before the relevant computational models were developed. Neurophysiologists
David Hubel and Torsten Wiesel collaborated for several years to determine many
of the most basic facts about how the mammalian vision system works (Hubel and
Wiesel 1959 1962 1968, , , ). Their accomplishments were eventually recognized with
a Nobel prize. Their findings that have had the greatest influence on contemporary
deep learning models were based on recording the activity of individual neurons in
cats. They observed how neurons in the cat’s brain responded to images projected
in precise locations on a screen in front of the cat. Their great discovery was
that neurons in the early visual system responded most strongly to very specific
patterns of light, such as precisely oriented bars, but responded hardly at all to
other patterns.
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Their work helped to characterize many aspects of brain function that are
beyond the scope of this book. From the point of view of deep learning, we can
focus on a simplified, cartoon view of brain function.

In this simplified view, we focus on a part of the brain called , also known asV1
the primary visual cortex. V1 is the first area of the brain that begins to perform
significantly advanced processing of visual input. In this cartoon view, images are
formed by light arriving in the eye and stimulating the retina, the light-sensitive
tissue in the back of the eye. The neurons in the retina perform some simple
preprocessing of the image but do not substantially alter the way it is represented.

The image then passes through the optic nerve and a brain region called the lateral
geniculate nucleus. The main role, as far as we are concerned here, of both of these
anatomical regions is primarily just to carry the signal from the eye to V1, which
is located at the back of the head.

A convolutional network layer is designed to capture three properties of V1:

1. V1 is arranged in a spatial map. It actually has a two-dimensional structure
mirroring the structure of the image in the retina. For example, light
arriving at the lower half of the retina affects only the corresponding half of
V1. Convolutional networks capture this property by having their features
defined in terms of two dimensional maps.

2. V1 contains many simple cells. A simple cell’s activity can to some extent be
characterized by a linear function of the image in a small, spatially localized
receptive field. The detector units of a convolutional network are designed
to emulate these properties of simple cells.

3. V1 also contains many complex cells. These cells respond to features that

are similar to those detected by simple cells, but complex cells are invariant
to small shifts in the position of the feature. This inspires the pooling units
of convolutional networks. Complex cells are also invariant to some changes
in lighting that cannot be captured simply by pooling over spatial locations.
These invariances have inspired some of the cross-channel pooling strategies
in convolutional networks, such as maxout units ( , ).Goodfellow et al. 2013a

Though we know the most about V1, it is generally believed that the same
basic principles apply to other areas of the visual system. In our cartoon view of
the visual system, the basic strategy of detection followed by pooling is repeatedly
applied as we move deeper into the brain. As we pass through multiple anatomical
layers of the brain, we eventually find cells that respond to some specific concept
and are invariant to many transformations of the input. These cells have been
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nicknamed “grandmother cells”—the idea is that a person could have a neuron that
activates when seeing an image of their grandmother, regardless of whether she
appears in the left or right side of the image, whether the image is a close-up of
her face or zoomed out shot of her entire body, whether she is brightly lit, or in
shadow, etc.

These grandmother cells have been shown to actually exist in the human brain,
in a region called the medial temporal lobe ( , ). ResearchersQuiroga et al. 2005
tested whether individual neurons would respond to photos of famous individuals.
They found what has come to be called the “Halle Berry neuron”: an individual

neuron that is activated by the concept of Halle Berry. This neuron fires when a
person sees a photo of Halle Berry, a drawing of Halle Berry, or even text containing
the words “Halle Berry.” Of course, this has nothing to do with Halle Berry herself;
other neurons responded to the presence of Bill Clinton, Jennifer Aniston, etc.

These medial temporal lobe neurons are somewhat more general than modern
convolutional networks, which would not automatically generalize to identifying
a person or object when reading its name. The closest analog to a convolutional
network’s last layer of features is a brain area called the inferotemporal cortex
(IT). When viewing an object, information flows from the retina, through the
LGN, to V1, then onward to V2, then V4, then IT. This happens within the first
100ms of glimpsing an object. If a person is allowed to continue looking at the

object for more time, then information will begin to flow backwards as the brain
uses top-down feedback to update the activations in the lower level brain areas.
However, if we interrupt the person’s gaze, and observe only the firing rates that
result from the first 100ms of mostly feedforward activation, then IT proves to be
very similar to a convolutional network. Convolutional networks can predict IT
firing rates, and also perform very similarly to (time limited) humans on object
recognition tasks ( , ).DiCarlo 2013

That being said, there are many differences between convolutional networks
and the mammalian vision system. Some of these differences are well known
to computational neuroscientists, but outside the scope of this book. Some of
these differences are not yet known, because many basic questions about how the

mammalian vision system works remain unanswered. As a brief list:

• The human eye is mostly very low resolution, except for a tiny patch called the
fovea. The fovea only observes an area about the size of a thumbnail held at
arms length. Though we feel as if we can see an entire scene in high resolution,
this is an illusion created by the subconscious part of our brain, as it stitches
together several glimpses of small areas. Most convolutional networks actually
receive large full resolution photographs as input. The human brain makes
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several eye movements called saccades to glimpse the most visually salient or
task-relevant parts of a scene. Incorporating similar attention mechanisms
into deep learning models is an active research direction. In the context of
deep learning, attention mechanisms have been most successful for natural
language processing, as described in Sec. . Several visual models12.4.5.1
with foveation mechanisms have been developed but so far have not become
the dominant approach (Larochelle and Hinton 2010 Denil 2012, ; et al., ).

• The human visual system is integrated with many other senses, such as
hearing, and factors like our moods and thoughts. Convolutional networks
so far are purely visual.

• The human visual system does much more than just recognize objects. It is
able to understand entire scenes including many objects and relationships
between objects, and processes rich 3-D geometric information needed for
our bodies to interface with the world. Convolutional networks have been
applied to some of these problems but these applications are in their infancy.

• Even simple brain areas like V1 are heavily impacted by feedback from higher
levels. Feedback has been explored extensively in neural network models but
has not yet been shown to offer a compelling improvement.

• While feedforward IT firing rates capture much of the same information as
convolutional network features, it is not clear how similar the intermediate
computations are. The brain probably uses very different activation and
pooling functions. An individual neuron’s activation probably is not well-
characterized by a single linear filter response. A recent model of V1 involves

multiple quadratic filters for each neuron ( , ). Indeed ourRust et al. 2005
cartoon picture of “simple cells” and “complex cells” might create a non-
existent distinction; simple cells and complex cells might both be the same
kind of cell but with their “parameters” enabling a continuum of behaviors
ranging from what we call “simple” to what we call “complex.”

It is also worth mentioning that neuroscience has told us relatively little
about how to train convolutional networks. Model structures with parameter
sharing across multiple spatial locations date back to early connectionist models
of vision ( , ), but these models did not use the modernMarr and Poggio 1976
back-propagation algorithm and gradient descent. For example, the Neocognitron
(Fukushima 1980, ) incorporated most of the model architecture design elements of
the modern convolutional network but relied on a layer-wise unsupervised clustering

algorithm.
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Lang and Hinton 1988( ) introduced the use of back-propagation to train time-
delay neural networks (TDNNs). To use contemporary terminology, TDNNs are
one-dimensional convolutional networks applied to time series. Back-propagation
applied to these models was not inspired by any neuroscientific observation and
is considered by some to be biologically implausible. Following the success of
back-propagation-based training of TDNNs, ( , ) developed theLeCun et al. 1989
modern convolutional network by applying the same training algorithm to 2-D
convolution applied to images.

So far we have described how simple cells are roughly linear and selective for

certain features, complex cells are more nonlinear and become invariant to some
transformations of these simple cell features, and stacks of layers that alternate
between selectivity and invariance can yield grandmother cells for very specific
phenomena. We have not yet described precisely what these individual cells detect.
In a deep, nonlinear network, it can be difficult to understand the function of
individual cells. Simple cells in the first layer are easier to analyze, because their
responses are driven by a linear function. In an artificial neural network, we can
just display an image of the convolution kernel to see what the corresponding
channel of a convolutional layer responds to. In a biological neural network, we
do not have access to the weights themselves. Instead, we put an electrode in the
neuron itself, display several samples of white noise images in front of the animal’s

retina, and record how each of these samples causes the neuron to activate. We
can then fit a linear model to these responses in order to obtain an approximation
of the neuron’s weights. This approach is known as reverse correlation (Ringach
and Shapley 2004, ).

Reverse correlation shows us that most V1 cells have weights that are described
by Gabor functions. The Gabor function describes the weight at a 2-D point in the
image. We can think of an image as being a function of 2-D coordinates, I(x, y).
Likewise, we can think of a simple cell as sampling the image at a set of locations,
defined by a set of x coordinates and a set of y coordinates, , and applying
weights that are also a function of the location, w(x, y). From this point of view,
the response of a simple cell to an image is given by

s I( ) =
X
x∈

X
y∈
w x, y I x, y .( ) ( ) (9.15)

Specifically, takes the form of a Gabor function:w x, y( )

w x, y α, β( ; x, βy, f, φ, x0, y0, τ α) = exp


−βxx02 − βy y02


cos(fx 0+ )φ , (9.16)

where
x 0= (x x− 0 ) cos( ) + (τ y y− 0) sin( )τ (9.17)
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and
y0 = (− x x− 0) sin( ) + (τ y y− 0) cos( )τ . (9.18)

Here, α, βx, βy , f, φ, x0, y0, and τ are parameters that control the properties

of the Gabor function. Fig. shows some examples of Gabor functions with9.18
different settings of these parameters.

The parameters x0, y0, and τ define a coordinate system. We translate and
rotate x and y to form x0 and y0. Specifically, the simple cell will respond to image
features centered at the point (x0, y 0), and it will respond to changes in brightness
as we move along a line rotated radians from the horizontal.τ

Viewed as a function of x 0 and y0 , the function w then responds to changes in
brightness as we move along the x0 axis. It has two important factors: one is a
Gaussian function and the other is a cosine function.

The Gaussian factor α exp

−βxx02 − βyy02


can be seen as a gating term that

ensures the simple cell will only respond to values near where x 0 and y0 are both
zero, in other words, near the center of the cell’s receptive field. The scaling factor
α adjusts the total magnitude of the simple cell’s response, while βx and βy control
how quickly its receptive field falls off.

The cosine factor cos(fx0+φ) controls how the simple cell responds to changing
brightness along the x0 axis. The parameter f controls the frequency of the cosine
and controls its phase offset.φ

Altogether, this cartoon view of simple cells means that a simple cell responds
to a specific spatial frequency of brightness in a specific direction at a specific
location. Simple cells are most excited when the wave of brightness in the image
has the same phase as the weights. This occurs when the image is bright where the

weights are positive and dark where the weights are negative. Simple cells are most
inhibited when the wave of brightness is fully out of phase with the weights—when
the image is dark where the weights are positive and bright where the weights are
negative.

The cartoon view of a complex cell is that it computes the L 2 norm of the
2-D vector containing two simple cells’ responses: c(I) =

p
s0( )I 2 + s1 ( )I 2. An

important special case occurs when s1 has all of the same parameters as s0 except
for φ, and φ is set such that s1 is one quarter cycle out of phase with s0 . In
this case, s0 and s1 form a quadrature pair. A complex cell defined in this way
responds when the Gaussian reweighted image I(x, y) exp(−βx x02 −βyy02 ) contains
a high amplitude sinusoidal wave with frequency f in direction τ near (x0 , y0),
regardless of the phase offset of this wave. In other words, the complex cell

is invariant to small translations of the image in direction τ, or to negating the
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x y τ
x y τ

x y τ
β β

β
β β

× f
φ f φ

φ f ×

image (replacing black with white and vice versa).

Some of the most striking correspondences between neuroscience and machine
learning come from visually comparing the features learned by machine learning
models with those employed by V1. ( ) showed thatOlshausen and Field 1996

a simple unsupervised learning algorithm, sparse coding, learns features with
receptive fields similar to those of simple cells. Since then, we have found that
an extremely wide variety of statistical learning algorithms learn features with
Gabor-like functions when applied to natural images. This includes most deep
learning algorithms, which learn these features in their first layer. Fig. shows9.19
some examples. Because so many different learning algorithms learn edge detectors,
it is difficult to conclude that any specific learning algorithm is the “right” model
of the brain just based on the features that it learns (though it can certainly be a
bad sign if an algorithm does learn some sort of edge detector when applied tonot
natural images). These features are an important part of the statistical structure
of natural images and can be recovered by many different approaches to statistical

modeling. See Hyvärinen 2009et al. ( ) for a review of the field of natural image
statistics.
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9.11 Convolutional Networks and the History of Deep

Learning

Convolutional networks have played an important role in the history of deep
learning. They are a key example of a successful application of insights obtained
by studying the brain to machine learning applications. They were also some of
the first deep models to perform well, long before arbitrary deep models were
considered viable. Convolutional networks were also some of the first neural
networks to solve important commercial applications and remain at the forefront
of commercial applications of deep learning today. For example, in the 1990s, the
neural network research group at AT&T developed a convolutional network for
reading checks ( , ). By the end of the 1990s, this system deployedLeCun et al. 1998b
by NEC was reading over 10% of all the checks in the US. Later, several OCR
and handwriting recognition systems based on convolutional nets were deployed
by Microsoft ( , ). See Chapter for more details on suchSimard et al. 2003 12

applications and more modern applications of convolutional networks. See LeCun
et al. ( ) for a more in-depth history of convolutional networks up to 2010.2010

Convolutional networks were also used to win many contests. The current
intensity of commercial interest in deep learning began when Krizhevsky et al.
( ) won the ImageNet object recognition challenge, but convolutional networks2012
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had been used to win other machine learning and computer vision contests with
less impact for years earlier.

Convolutional nets were some of the first working deep networks trained with
back-propagation. It is not entirely clear why convolutional networks succeeded
when general back-propagation networks were considered to have failed. It may
simply be that convolutional networks were more computationally efficient than
fully connected networks, so it was easier to run multiple experiments with them
and tune their implementation and hyperparameters. Larger networks also seem
to be easier to train. With modern hardware, large fully connected networks

appear to perform reasonably on many tasks, even when using datasets that were
available and activation functions that were popular during the times when fully
connected networks were believed not to work well. It may be that the primary
barriers to the success of neural networks were psychological (practitioners did
not expect neural networks to work, so they did not make a serious effort to use
neural networks). Whatever the case, it is fortunate that convolutional networks
performed well decades ago. In many ways, they carried the torch for the rest of
deep learning and paved the way to the acceptance of neural networks in general.

Convolutional networks provide a way to specialize neural networks to work
with data that has a clear grid-structured topology and to scale such models to
very large size. This approach has been the most successful on a two-dimensional,

image topology. To process one-dimensional, sequential data, we turn next to
another powerful specialization of the neural networks framework: recurrent neural
networks.
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Sequence Modeling: Recurrent

and Recursive Nets

Recurrent neural networks RNNsor ( , ) are a family ofRumelhart et al. 1986a
neural networks for processing sequential data. Much as a convolutional network
is a neural network that is specialized for processing a grid of values X such as

an image, a recurrent neural network is a neural network that is specialized for
processing a sequence of values x(1), . . . ,x( )τ . Just as convolutional networks
can readily scale to images with large width and height, and some convolutional
networks can process images of variable size, recurrent networks can scale to much
longer sequences than would be practical for networks without sequence-based
specialization. Most recurrent networks can also process sequences of variable
length.

To go from multi-layer networks to recurrent networks, we need to take advan-
tage of one of the early ideas found in machine learning and statistical models of
the 1980s: sharing parameters across different parts of a model. Parameter sharing
makes it possible to extend and apply the model to examples of different forms

(different lengths, here) and generalize across them. If we had separate parameters
for each value of the time index, we could not generalize to sequence lengths not
seen during training, nor share statistical strength across different sequence lengths
and across different positions in time. Such sharing is particularly important when
a specific piece of information can occur at multiple positions within the sequence.
For example, consider the two sentences “I went to Nepal in 2009” and “In 2009,
I went to Nepal.” If we ask a machine learning model to read each sentence and
extract the year in which the narrator went to Nepal, we would like it to recognize
the year 2009 as the relevant piece of information, whether it appears in the sixth
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word or the second word of the sentence. Suppose that we trained a feedforward
network that processes sentences of fixed length. A traditional fully connected
feedforward network would have separate parameters for each input feature, so it
would need to learn all of the rules of the language separately at each position in
the sentence. By comparison, a recurrent neural network shares the same weights
across several time steps.

A related idea is the use of convolution across a 1-D temporal sequence. This
convolutional approach is the basis for time-delay neural networks (Lang and
Hinton 1988 Waibel 1989 Lang 1990, ; et al., ; et al., ). The convolution operation

allows a network to share parameters across time, but is shallow. The output
of convolution is a sequence where each member of the output is a function of
a small number of neighboring members of the input. The idea of parameter
sharing manifests in the application of the same convolution kernel at each time
step. Recurrent networks share parameters in a different way. Each member of the
output is a function of the previous members of the output. Each member of the
output is produced using the same update rule applied to the previous outputs.
This recurrent formulation results in the sharing of parameters through a very
deep computational graph.

For the simplicity of exposition, we refer to RNNs as operating on a sequence
that contains vectors x( )t with the time step index t ranging from to1 τ . In

practice, recurrent networks usually operate on minibatches of such sequences,
with a different sequence length τ for each member of the minibatch. We have
omitted the minibatch indices to simplify notation. Moreover, the time step index
need not literally refer to the passage of time in the real world, but only to the
position in the sequence. RNNs may also be applied in two dimensions across
spatial data such as images, and even when applied to data involving time, the
network may have connections that go backwards in time, provided that the entire
sequence is observed before it is provided to the network.

This chapter extends the idea of a computational graph to include cycles. These
cycles represent the influence of the present value of a variable on its own value
at a future time step. Such computational graphs allow us to define recurrent

neural networks. We then describe many different ways to construct, train, and
use recurrent neural networks.

For more information on recurrent neural networks than is available in this
chapter, we refer the reader to the textbook of Graves 2012( ).
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10.1 Unfolding Computational Graphs

A computational graph is a way to formalize the structure of a set of computations,
such as those involved in mapping inputs and parameters to outputs and loss.
Please refer to Sec. for a general introduction. In this section we explain6.5.1
the idea of a recursive or recurrent computation into a computationalunfolding
graph that has a repetitive structure, typically corresponding to a chain of events.

Unfolding this graph results in the sharing of parameters across a deep network
structure.

For example, consider the classical form of a dynamical system:

s( )t = (f s( 1)t− ; )θ , (10.1)

where s ( )t is called the state of the system.

Eq. is recurrent because the definition of10.1 s at time t refers back to the
same definition at time .t − 1

For a finite number of time steps τ , the graph can be unfolded by applying the
definition τ − 1 times. For example, if we unfold Eq. for10.1 τ = 3 time steps, we
obtain

s(3) = (f s(2); )θ (10.2)

= ( (f f s(1); ); )θ θ (10.3)

Unfolding the equation by repeatedly applying the definition in this way has

yielded an expression that does not involve recurrence. Such an expression can
now be represented by a traditional directed acyclic computational graph. The
unfolded computational graph of Eq. and Eq. is illustrated in Fig. .10.1 10.3 10.1

s(t1)s(t1) s( )ts( )t s( +1)ts( +1)t

ff
s( )...s( )... s( )...s( )...

ff ff ff

Figure 10.1: The classical dynamical system described by Eq. , illustrated as an10.1
unfolded computational graph. Each node represents the state at some time t and the
function f maps the state at t to the state at t+ 1. The same parameters (the same value
of used to parametrize ) are used for all time steps.θ f

As another example, let us consider a dynamical system driven by an external
signal x( )t ,

s( )t = (f s( 1)t− ,x( )t ; )θ , (10.4)
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where we see that the state now contains information about the whole past sequence.

Recurrent neural networks can be built in many different ways. Much as
almost any function can be considered a feedforward neural network, essentially
any function involving recurrence can be considered a recurrent neural network.

Many recurrent neural networks use Eq. or a similar equation to define10.5
the values of their hidden units. To indicate that the state is the hidden units of
the network, we now rewrite Eq. using the variable to represent the state:10.4 h

h( )t = (f h( 1)t− ,x( )t ; )θ , (10.5)

illustrated in Fig. , typical RNNs will add extra architectural features such as10.2
output layers that read information out of the state to make predictions.h

When the recurrent network is trained to perform a task that requires predicting
the future from the past, the network typically learns to use h( )t as a kind of lossy
summary of the task-relevant aspects of the past sequence of inputs up to t. This
summary is in general necessarily lossy, since it maps an arbitrary length sequence
(x( )t ,x( 1)t− ,x( 2)t− , . . . ,x(2) ,x(1)) to a fixed length vector h( )t . Depending on the
training criterion, this summary might selectively keep some aspects of the past
sequence with more precision than other aspects. For example, if the RNN is used
in statistical language modeling, typically to predict the next word given previous
words, it may not be necessary to store all of the information in the input sequence

up to time t , but rather only enough information to predict the rest of the sentence.
The most demanding situation is when we ask h( )t to be rich enough to allow
one to approximately recover the input sequence, as in autoencoder frameworks
(Chapter ).14

ff

hh

xx

h(t1)h(t1) h( )th( )t h( +1)th( +1)t

x(t1)x(t1) x( )tx( )t x( +1)tx( +1)t

h( )...h( )... h( )...h( )...

ff

Unfold

ff ff f

Figure 10.2: A recurrent network with no outputs. This recurrent network just processes
information from the input x by incorporating it into the state h that is passed forward
through time. (Left) Circuit diagram. The black square indicates a delay of 1 time step.
(Right) The same network seen as an unfolded computational graph, where each node is
now associated with one particular time instance.

Eq. can be drawn in two different ways. One way to draw the RNN is10.5
with a diagram containing one node for every component that might exist in a
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physical implementation of the model, such as a biological neural network. In
this view, the network defines a circuit that operates in real time, with physical
parts whose current state can influence their future state, as in the left of Fig. .10.2
Throughout this chapter, we use a black square in a circuit diagram to indicate
that an interaction takes place with a delay of 1 time step, from the state at time
t to the state at time t+ 1. The other way to draw the RNN is as an unfolded
computational graph, in which each component is represented by many different
variables, with one variable per time step, representing the state of the component
at that point in time. Each variable for each time step is drawn as a separate node

of the computational graph, as in the right of Fig. . What we call is10.2 unfolding
the operation that maps a circuit as in the left side of the figure to a computational
graph with repeated pieces as in the right side. The unfolded graph now has a size
that depends on the sequence length.

We can represent the unfolded recurrence after steps with a functiont g( )t :

h( )t =g( )t (x( )t ,x( 1)t− ,x( 2)t− , . . . ,x(2),x(1)) (10.6)

= (f h( 1)t− ,x( )t ; )θ (10.7)

The function g( )t takes the whole past sequence (x( )t ,x( 1)t− ,x( 2)t− , . . . ,x(2),x(1))
as input and produces the current state, but the unfolded recurrent structure
allows us to factorize g( )t into repeated application of a function f . The unfolding

process thus introduces two major advantages:

1. Regardless of the sequence length, the learned model always has the same
input size, because it is specified in terms of transition from one state to

another state, rather than specified in terms of a variable-length history of
states.

2. It is possible to use the transition function f with the same parameters
at every time step.

These two factors make it possible to learn a single model f that operates on
all time steps and all sequence lengths, rather than needing to learn a separate
model g( )t for all possible time steps. Learning a single, shared model allows
generalization to sequence lengths that did not appear in the training set, and
allows the model to be estimated with far fewer training examples than would be
required without parameter sharing.

Both the recurrent graph and the unrolled graph have their uses. The recurrent
graph is succinct. The unfolded graph provides an explicit description of which
computations to perform. The unfolded graph also helps to illustrate the idea of
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information flow forward in time (computing outputs and losses) and backward
in time (computing gradients) by explicitly showing the path along which this
information flows.

10.2 Recurrent Neural Networks

Armed with the graph unrolling and parameter sharing ideas of Sec. , we can10.1
design a wide variety of recurrent neural networks.

Figure 10.3: The computational graph to compute the training loss of a recurrent network
that maps an input sequence of x values to a corresponding sequence of output o values.
A loss L measures how far each o is from the corresponding training target y . When using
softmax outputs, we assume o is the unnormalized log probabilities. The loss L internally
computes ŷ = softmax(o) and compares this to the target y . The RNN has input to hidden
connections parametrized by a weight matrix U , hidden-to-hidden recurrent connections
parametrized by a weight matrix W , and hidden-to-output connections parametrized by
a weight matrix V . Eq. defines forward propagation in this model.10.8 (Left) The RNN
and its loss drawn with recurrent connections. (Right) The same seen as an time-unfolded
computational graph, where each node is now associated with one particular time instance.

Some examples of important design patterns for recurrent neural networks
include the following:

• Recurrent networks that produce an output at each time step and have
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recurrent connections between hidden units, illustrated in Fig. .10.3

• Recurrent networks that produce an output at each time step and have
recurrent connections only from the output at one time step to the hidden
units at the next time step, illustrated in Fig. 10.4

• Recurrent networks with recurrent connections between hidden units, that
read an entire sequence and then produce a single output, illustrated in Fig.
10.5.

Fig. is a reasonably representative example that we return to throughout10.3
most of the chapter.

The recurrent neural network of Fig. and Eq. is universal in the10.3 10.8
sense that any function computable by a Turing machine can be computed by such
a recurrent network of a finite size. The output can be read from the RNN after

a number of time steps that is asymptotically linear in the number of time steps
used by the Turing machine and asymptotically linear in the length of the input
( , ; , ; , ;Siegelmann and Sontag 1991 Siegelmann 1995 Siegelmann and Sontag 1995
Hyotyniemi 1996, ). The functions computable by a Turing machine are discrete,
so these results regard exact implementation of the function, not approximations.
The RNN, when used as a Turing machine, takes a binary sequence as input and its
outputs must be discretized to provide a binary output. It is possible to compute all
functions in this setting using a single specific RNN of finite size (Siegelmann and
Sontag 1995( ) use 886 units). The “input” of the Turing machine is a specification
of the function to be computed, so the same network that simulates this Turing
machine is sufficient for all problems. The theoretical RNN used for the proof
can simulate an unbounded stack by representing its activations and weights with

rational numbers of unbounded precision.

We now develop the forward propagation equations for the RNN depicted in
Fig. . The figure does not specify the choice of activation function for the10.3
hidden units. Here we assume the hyperbolic tangent activation function. Also,
the figure does not specify exactly what form the output and loss function take.
Here we assume that the output is discrete, as if the RNN is used to predict words
or characters. A natural way to represent discrete variables is to regard the output
o as giving the unnormalized log probabilities of each possible value of the discrete
variable. We can then apply the softmax operation as a post-processing step to
obtain a vector ŷ of normalized probabilities over the output. Forward propagation
begins with a specification of the initial state h(0) . Then, for each time step from

t t τ= 1 to = , we apply the following update equations:

a( )t = +b Wh( 1)t− +Ux( )t (10.8)
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Figure 10.4: An RNN whose only recurrence is the feedback connection from the output
to the hidden layer. At each time step t , the input is x , the hidden layer activations are
h , the outputs are o , the targets are y and the loss is L . (Left) Circuit diagram.
(Right) Unfolded computational graph. Such an RNN is less powerful (can express a
smaller set of functions) than those in the family represented by Fig. . The RNN10.3
in Fig. can choose to put any information it wants about the past into its hidden10.3
representation h and transmit h to the future. The RNN in this figure is trained to
put a specific output value into o , and o is the only information it is allowed to send
to the future. There are no direct connections from h going forward. The previous h
is connected to the present only indirectly, via the predictions it was used to produce.
Unless o is very high-dimensional and rich, it will usually lack important information
from the past. This makes the RNN in this figure less powerful, but it may be easier to
train because each time step can be trained in isolation from the others, allowing greater
parallelization during training, as described in Sec. .10.2.1

381



CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

h( )t = tanh(a( )t ) (10.9)

o( )t = +c V h( )t (10.10)

ŷ( )t = softmax(o( )t ) (10.11)

where the parameters are the bias vectors b and c along with the weight matrices
U , V and W , respectively for input-to-hidden, hidden-to-output and hidden-to-
hidden connections. This is an example of a recurrent network that maps an
input sequence to an output sequence of the same length. The total loss for a

given sequence of values paired with a sequence of values would then be justx y
the sum of the losses over all the time steps. For example, if L( )t is the negative
log-likelihood of y( )t given x(1) , . . . ,x( )t , then

L {x(1), . . . ,x( )τ } {, y(1), . . . ,y ( )τ } (10.12)

=
t

L( )t (10.13)

= −
t

log pmodel y
( )t | {x(1) , . . . ,x ( )t } , (10.14)

where pmodel y
( )t | {x(1) , . . . ,x( )t } is given by reading the entry for y( )t from the

model’s output vector ŷ ( )t . Computing the gradient of this loss function with
respect to the parameters is an expensive operation. The gradient computation
involves performing a forward propagation pass moving left to right through our
illustration of the unrolled graph in Fig. , followed by a backward propagation10.3
pass moving right to left through the graph. The runtime is O(τ) and cannot be
reduced by parallelization because the forward propagation graph is inherently
sequential; each time step may only be computed after the previous one. States

computed in the forward pass must be stored until they are reused during the
backward pass, so the memory cost is also O(τ ). The back-propagation algorithm
applied to the unrolled graph with O(τ) cost is called back-propagation through
time BPTTor and is discussed further Sec. . The network with recurrence10.2.2
between hidden units is thus very powerful but also expensive to train. Is there an
alternative?

The network with recurrent connections only from the output at one time step to
the hidden units at the next time step (shown in Fig. ) is strictly less powerful10.4
because it lacks hidden-to-hidden recurrent connections. For example, it cannot
simulate a universal Turing machine. Because this network lacks hidden-to-hidden
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recurrence, it requires that the output units capture all of the information about
the past that the network will use to predict the future. Because the output units
are explicitly trained to match the training set targets, they are unlikely to capture
the necessary information about the past history of the input, unless the user
knows how to describe the full state of the system and provides it as part of the
training set targets. The advantage of eliminating hidden-to-hidden recurrence
is that, for any loss function based on comparing the prediction at time t to the
training target at time t, all the time steps are decoupled. Training can thus be
parallelized, with the gradient for each step t computed in isolation. There is no

need to compute the output for the previous time step first, because the training
set provides the ideal value of that output.

Figure 10.5: Time-unfolded recurrent neural network with a single output at the end
of the sequence. Such a network can be used to summarize a sequence and produce a
fixed-size representation used as input for further processing. There might be a target
right at the end (as depicted here) or the gradient on the output o can be obtained by
back-propagating from further downstream modules.

Models that have recurrent connections from their outputs leading back into
the model may be trained with teacher forcing. Teacher forcing is a procedure
that emerges from the maximum likelihood criterion, in which during training the
model receives the ground truth output y( )t as input at time t + 1. We can see
this by examining a sequence with two time steps. The conditional maximum
likelihood criterion is

log p y(1),y(2) | x(1),x(2) (10.15)
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Figure 10.6: Illustration of teacher forcing. Teacher forcing is a training technique that is
applicable to RNNs that have connections from their output to their hidden states at the
next time step. (Left) correct outputAt train time, we feed the y drawn from the train
set as input to h . (Right) When the model is deployed, the true output is generally
not known. In this case, we approximate the correct output y with the model’s output
o , and feed the output back into the model.
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= log p y(2) | y(1),x(1),x(2) + log p y(1) | x(1),x(2) (10.16)

In this example, we see that at time t = 2, the model is trained to maximize the
conditional probability of y(2) given the x sequence so far and the previous y

value from the training set. Maximum likelihood thus specifies that during training,
rather than feeding the model’s own output back into itself, these connections
should be fed with the target values specifying what the correct output should be.
This is illustrated in Fig. .10.6

We originally motivated teacher forcing as allowing us to avoid back-propagation
through time in models that lack hidden-to-hidden connections. Teacher forcing
may still be applied to models that have hidden-to-hidden connections so long as
they have connections from the output at one time step to values computed in the
next time step. However, as soon as the hidden units become a function of earlier
time steps, the BPTT algorithm is necessary. Some models may thus be trained
with both teacher forcing and BPTT.

The disadvantage of strict teacher forcing arises if the network is going to be
later used in an open-loop mode, with the network outputs (or samples from the
output distribution) fed back as input. In this case, the kind of inputs that the
network sees during training could be quite different from the kind of inputs that
it will see at test time. One way to mitigate this problem is to train with both
teacher-forced inputs and with free-running inputs, for example by predicting the
correct target a number of steps in the future through the unfolded recurrent
output-to-input paths. In this way, the network can learn to take into account
input conditions (such as those it generates itself in the free-running mode) not
seen during training and how to map the state back towards one that will make
the network generate proper outputs after a few steps. Another approach (Bengio
et al., ) to mitigate the gap between the inputs seen at train time and the2015b

inputs seen at test time randomly chooses to use generated values or actual data
values as input. This approach exploits a curriculum learning strategy to gradually
use more of the generated values as input.

Computing the gradient through a recurrent neural network is straightforward.
One simply applies the generalized back-propagation algorithm of Sec. to the6.5.6
unrolled computational graph. No specialized algorithms are necessary. The use
of back-propagation on the unrolled graph is called the back-propagation through
time (BPTT) algorithm. Gradients obtained by back-propagation may then be
used with any general-purpose gradient-based techniques to train an RNN.
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To gain some intuition for how the BPTT algorithm behaves, we provide an
example of how to compute gradients by BPTT for the RNN equations above
(Eq. and Eq. ). The nodes of our computational graph include the10.8 10.12
parameters U, V , W , b and c as well as the sequence of nodes indexed by t for
x( )t , h( )t , o ( )t and L( )t . For each node N we need to compute the gradient ∇ L
recursively, based on the gradient computed at nodes that follow it in the graph.
We start the recursion with the nodes immediately preceding the final loss

∂L

∂L( )t
= 1. (10.17)

In this derivation we assume that the outputs o( )t are used as the argument to the
softmax function to obtain the vector ŷ of probabilities over the output. We also

assume that the loss is the negative log-likelihood of the true target y( )t given the
input so far. The gradient ∇ L on the outputs at time step t, for all i, t , is as
follows:

(∇ L)i =
∂L

∂o
( )t
i

=
∂L

∂L( )t
∂L( )t

∂o
( )t
i

= ŷ
( )t
i − i,y . (10.18)

We work our way backwards, starting from the end of the sequence. At the final
time step ,τ h ( )τ only has o( )τ as a descendent, so its gradient is simple:

∇ L = (∇ L)
∂o( )τ

∂h( )τ
= (∇ L .)V (10.19)

We can then iterate backwards in time to back-propagate gradients through time,
from t = τ − 1 down to t= 1, noting that h( )t (for t < τ) has as descendents both
o( )t and h( +1)t . Its gradient is thus given by

∇ L = (∇ L)
∂h( +1)t

∂h( )t
+ (∇ L)

∂o( )t

∂h( )t
(10.20)

= (∇ L) diag 1 − h( +1)t
2
W + (∇ L)V (10.21)

where diag 1 − h( +1)t 2
indicates the diagonal matrix containing the elements

1 − (h
( +1)t
i )2 . This is the Jacobian of the hyperbolic tangent associated with the

hidden unit at time .i t + 1

Once the gradients on the internal nodes of the computational graph are ob-
tained, we can obtain the gradients on the parameter nodes, which have descendents

at all the time steps:

∇ L =
t

(∇ L)
∂o( )t

∂c
=

t

∇ L
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∇ L =
t

(∇ L)
∂h( )t

∂b
=

t

(∇ L) diag 1 − h( )t
2

∇ L =
t

(∇ L)
∂o( )t

∂V
=

t

(∇ L)h( )t

∇ L =
t

(∇ L)
∂h( )t

∂W
=

t

(∇ L) diag 1 − h( )t
2
h( 1)t−

∇ L =
t

(∇ L)
∂h( )t

∂U
=

t

(∇ L) diag 1 − h( )t
2
x( )t

We do not need to compute the gradient with respect to x( )t for training because
it does not have any parameters as ancestors in the computational graph defining
the loss.

We are abusing notation somewhat in the above equations. We correctly use
∇ L to indicate the full influence of h( )t through all paths from h( )t to L. This

is in contrast to our usage of ∂
∂

or ∂
∂

, which we use here in an unconventional

manner. By ∂
∂

we refer to the effect of W on h( )t only via the use ofW at time
step t. This is not standard calculus notation, because the standard definition of

the Jacobian would actually include the complete influence of W on h( )t via its
use in all of the preceding time steps to produce h( 1)t− . What we refer to here is
in fact the method of Sec. , that computes the contribution of a single6.5.6
edge in the computational graph to the gradient.

In the example recurrent network we have developed so far, the losses L( )t were
cross-entropies between training targets y( )t and outputs o( )t . As with a feedforward

network, it is in principle possible to use almost any loss with a recurrent network.
The loss should be chosen based on the task. As with a feedforward network, we
usually wish to interpret the output of the RNN as a probability distribution, and
we usually use the cross-entropy associated with that distribution to define the loss.
Mean squared error is the cross-entropy loss associated with an output distribution
that is a unit Gaussian, for example, just as with a feedforward network.

When we use a predictive log-likelihood training objective, such as Eq. , we10.12
train the RNN to estimate the conditional distribution of the next sequence element
y( )t given the past inputs. This may mean that we maximize the log-likelihood

log (p y( )t | x(1) , . . . ,x( )t ), (10.22)
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or, if the model includes connections from the output at one time step to the next
time step,

log (p y( )t | x(1) , . . . ,x( )t ,y(1) , . . . ,y( 1)t− ). (10.23)

Decomposing the joint probability over the sequence of y values as a series of
one-step probabilistic predictions is one way to capture the full joint distribution
across the whole sequence. When we do not feed past y values as inputs that
condition the next step prediction, the directed graphical model contains no edges

from any y( )i in the past to the current y( )t . In this case, the outputs y are
conditionally independent given the sequence of x values. When we do feed the
actual y values (not their prediction, but the actual observed or generated values)
back into the network, the directed graphical model contains edges from all y( )i

values in the past to the current y ( )t value.

Figure 10.7: Fully connected graphical model for a sequence y , y , . . . , y , . . . : every
past observation y may influence the conditional distribution of some y (for t > i),
given the previous values. Parametrizing the graphical model directly according to this
graph (as in Eq. ) might be very inefficient, with an ever growing number of inputs10.6
and parameters for each element of the sequence. RNNs obtain the same full connectivity
but efficient parametrization, as illustrated in Fig. .10.8

As a simple example, let us consider the case where the RNN models only a
sequence of scalar random variables = {y(1), . . . , y( )τ }, with no additional inputs
x. The input at time step t is simply the output at time step t− 1. The RNN then
defines a directed graphical model over the y variables. We parametrize the joint

distribution of these observations using the chain rule (Eq. ) for conditional3.6
probabilities:

P P( ) = ( (1) , . . . , ( )τ ) =

τ

t=1

P ( ( )t | ( 1)t− , ( 2)t− , . . . , (1)) (10.24)
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where the right-hand side of the bar is empty for t = 1, of course. Hence the
negative log-likelihood of a set of values {y(1) , . . . , y( )τ } according to such a model
is

L =
t

L( )t (10.25)

where
L( )t = log (− P y( )t = y ( )t | y( 1)t− , y( 2)t− , . . . , y (1)). (10.26)

Figure 10.8: Introducing the state variable in the graphical model of the RNN, even
though it is a deterministic function of its inputs, helps to see how we can obtain a very
efficient parametrization, based on Eq. . Every stage in the sequence (for10.5 h and
y ) involves the same structure (the same number of inputs for each node) and can share
the same parameters with the other stages.

The edges in a graphical model indicate which variables depend directly on other
variables. Many graphical models aim to achieve statistical and computational

efficiency by omitting edges that do not correspond to strong interactions. For
example, it is common to make the Markov assumption that the graphical model
should only contain edges from {y( )t k− , . . . , y( 1)t− } to y( )t , rather than containing
edges from the entire past history. However, in some cases, we believe that all past
inputs should have an influence on the next element of the sequence. RNNs are
useful when we believe that the distribution over y( )t may depend on a value of y( )i

from the distant past in a way that is not captured by the effect of y( )i on y( 1)t− .

One way to interpret an RNN as a graphical model is to view the RNN as
defining a graphical model whose structure is the complete graph, able to represent
direct dependencies between any pair of y values. The graphical model over the
y values with the complete graph structure is shown in Fig. . The complete10.7

graph interpretation of the RNN is based on ignoring the hidden units h( )t by
marginalizing them out of the model.

It is more interesting to consider the graphical model structure of RNNs that
results from regarding the hidden units h( )t as random variables. Including the

The conditional distribution over these variables given their parents is deterministic. This is
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hidden units in the graphical model reveals that the RNN provides a very efficient
parametrization of the joint distribution over the observations. Suppose that we
represented an arbitrary joint distribution over discrete values with a tabular
representation—an array containing a separate entry for each possible assignment
of values, with the value of that entry giving the probability of that assignment
occurring. If y can take on k different values, the tabular representation would
have O(kτ ) parameters. By comparison, due to parameter sharing, the number
of parameters in the RNN is O(1) as a function of sequence length. The number
of parameters in the RNN may be adjusted to control model capacity but is not

forced to scale with sequence length. Eq. shows that the RNN parametrizes10.5
long-term relationships between variables efficiently, using recurrent applications
of the same function f and same parameters θ at each time step. Fig. 10.8
illustrates the graphical model interpretation. Incorporating the h( )t nodes in
the graphical model decouples the past and the future, acting as an intermediate
quantity between them. A variable y( )i in the distant past may influence a variable
y( )t via its effect on h. The structure of this graph shows that the model can be
efficiently parametrized by using the same conditional probability distributions at
each time step, and that when the variables are all observed, the probability of the
joint assignment of all variables can be evaluated efficiently.

Even with the efficient parametrization of the graphical model, some operations

remain computationally challenging. For example, it is difficult to predict missing
values in the middle of the sequence.

The price recurrent networks pay for their reduced number of parameters is

that the parameters may be difficult.

The parameter sharing used in recurrent networks relies on the assumption
that the same parameters can be used for different time steps. Equivalently, the
assumption is that the conditional probability distribution over the variables at
time t+ 1 given the variables at time t is , meaning that the relationshipstationary
between the previous time step and the next time step does not depend on t . In
principle, it would be possible to use t as an extra input at each time step and let
the learner discover any time-dependence while sharing as much as it can between

different time steps. This would already be much better than using a different
conditional probability distribution for each t, but the network would then have to
extrapolate when faced with new values of .t

To complete our view of an RNN as a graphical model, we must describe how
to draw samples from the model. The main operation that we need to perform is

perfectly legitimate, though it is somewhat rare to design a graphical model with such deterministic

hidden units.
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simply to sample from the conditional distribution at each time step. However,
there is one additional complication. The RNN must have some mechanism for
determining the length of the sequence. This can be achieved in various ways.

In the case when the output is a symbol taken from a vocabulary, one can
add a special symbol corresponding to the end of a sequence (Schmidhuber 2012, ).
When that symbol is generated, the sampling process stops. In the training set,
we insert this symbol as an extra member of the sequence, immediately after x( )τ

in each training example.

Another option is to introduce an extra Bernoulli output to the model that
represents the decision to either continue generation or halt generation at each
time step. This approach is more general than the approach of adding an extra
symbol to the vocabulary, because it may be applied to any RNN, rather than
only RNNs that output a sequence of symbols. For example, it may be applied to
an RNN that emits a sequence of real numbers. The new output unit is usually a
sigmoid unit trained with the cross-entropy loss. In this approach the sigmoid is
trained to maximize the log-probability of the correct prediction as to whether the
sequence ends or continues at each time step.

Another way to determine the sequence length τ is to add an extra output to
the model that predicts the integer τ itself. The model can sample a value of τ
and then sample τ steps worth of data. This approach requires adding an extra

input to the recurrent update at each time step so that the recurrent update is
aware of whether it is near the end of the generated sequence. This extra input
can either consist of the value of τ or can consist of τ t− , the number of remaining
time steps. Without this extra input, the RNN might generate sequences that
end abruptly, such as a sentence that ends before it is complete. This approach is
based on the decomposition

P (x(1) , . . . ,x ( )τ ) = ( ) (P τ P x(1) , . . . ,x( )τ | τ .) (10.27)

The strategy of predicting τ directly is used for example by Goodfellow et al.
( ).2014d

In the previous section we described how an RNN could correspond to a directed
graphical model over a sequence of random variables y( )t with no inputs x. Of
course, our development of RNNs as in Eq. included a sequence of inputs10.8
x(1) ,x(2), . . . ,x( )τ . In general, RNNs allow the extension of the graphical model
view to represent not only a joint distribution over the y variables but also a
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conditional distribution over y given x. As discussed in the context of feedforward
networks in Sec. , any model representing a variable6.2.1.1 P (y; θ) can be reinter-
preted as a model representing a conditional distribution P(y ω| ) with ω = θ. We
can extend such a model to represent a distribution P (y x| ) by using the same
P(y ω| ) as before, but making ω a function of x. In the case of an RNN, this
can be achieved in different ways. We review here the most common and obvious
choices.

Previously, we have discussed RNNs that take a sequence of vectors x ( )t for
t = 1, . . . , τ as input. Another option is to take only a single vector x as input.

When x is a fixed-size vector, we can simply make it an extra input of the RNN
that generates the sequence. Some common ways of providing an extra input to
an RNN are:

1. as an extra input at each time step, or

2. as the initial state h(0) , or

3. both.

The first and most common approach is illustrated in Fig. . The interaction10.9
between the input x and each hidden unit vector h( )t is parametrized by a newly

introduced weight matrix R that was absent from the model of only the sequence
of y values. The same product x>R is added as additional input to the hidden
units at every time step. We can think of the choice of x as determining the value
of x>R that is effectively a new bias parameter used for each of the hidden units.
The weights remain independent of the input. We can think of this model as taking
the parameters θ of the non-conditional model and turning them into ω, where
the bias parameters within are now a function of the input.ω

Rather than receiving only a single vector x as input, the RNN may receive a
sequence of vectors x( )t as input. The RNN described in Eq. corresponds to a10.8
conditional distribution P (y(1) , . . . ,y( )τ | x(1) , . . . ,x( )τ ) that makes a conditional
independence assumption that this distribution factorizes as

t

P (y( )t | x(1), . . . ,x( )t ). (10.28)

To remove the conditional independence assumption, we can add connections from
the output at time t to the hidden unit at time t+ 1, as shown in Fig. . The10.10
model can then represent arbitrary probability distributions over the y sequence.
This kind of model representing a distribution over a sequence given another
sequence still has one restriction, which is that the length of both sequences must
be the same. We describe how to remove this restriction in Sec. .10.4
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Figure 10.9: An RNN that maps a fixed-length vector x into a distribution over sequences
. This RNN is appropriate for tasks such as image captioning, where a single image is

used as input to a model that then produces a sequence of words describing the image.
Each element y of the observed output sequence serves both as input (for the current
time step) and, during training, as target (for the previous time step).
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Figure 10.10: A conditional recurrent neural network mapping a variable-length sequence
of xvalues into a distribution over sequences of y values of the same length. Compared
to Fig. , this RNN contains connections from the previous output to the current state.10.3
These connections allow this RNN to model an arbitrary distribution over sequences of y
given sequences of of the same length. The RNN of Fig. is only able to representx 10.3
distributions in which the y values are conditionally independent from each other given
the values.x

394



CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

Figure 10.11: Computation of a typical bidirectional recurrent neural network, meant
to learn to map input sequences x to target sequences y , with loss L at each step t.
The h recurrence propagates information forward in time (towards the right) while the
g recurrence propagates information backward in time (towards the left). Thus at each
point t, the output units o can benefit from a relevant summary of the past in its h
input and from a relevant summary of the future in its g input.
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10.3 Bidirectional RNNs

All of the recurrent networks we have considered up to now have a “causal” struc-
ture, meaning that the state at time t only captures information from the past,
x(1) , . . . ,x( 1)t− , and the present input x( )t . Some of the models we have discussed
also allow information from past y values to affect the current state when the y
values are available.

However, in many applications we want to output a prediction of y ( )t which
may depend on . For example, in speech recognition,
the correct interpretation of the current sound as a phoneme may depend on the
next few phonemes because of co-articulation and potentially may even depend on
the next few words because of the linguistic dependencies between nearby words: if
there are two interpretations of the current word that are both acoustically plausible,
we may have to look far into the future (and the past) to disambiguate them.
This is also true of handwriting recognition and many other sequence-to-sequence
learning tasks, described in the next section.

Bidirectional recurrent neural networks (or bidirectional RNNs) were invented
to address that need (Schuster and Paliwal 1997, ). They have been extremely suc-

cessful (Graves 2012, ) in applications where that need arises, such as handwriting
recognition (Graves 2008 Graves and Schmidhuber 2009et al., ; , ), speech recogni-
tion (Graves and Schmidhuber 2005 Graves 2013 Baldi, ; et al., ) and bioinformatics (
et al., ).1999

As the name suggests, bidirectional RNNs combine an RNN that moves forward
through time beginning from the start of the sequence with another RNN that
moves backward through time beginning from the end of the sequence. Fig. 10.11
illustrates the typical bidirectional RNN, with h( )t standing for the state of the
sub-RNN that moves forward through time and g( )t standing for the state of the
sub-RNN that moves backward through time. This allows the output units o( )t to
compute a representation that depends on but

is most sensitive to the input values around time t, without having to specify a
fixed-size window around t (as one would have to do with a feedforward network,
a convolutional network, or a regular RNN with a fixed-size look-ahead buffer).

This idea can be naturally extended to 2-dimensional input, such as images,
by having RNNs, each one going in one of the four directions: up, down,
left, right. At each point (i, j) of a 2-D grid, an output Oi,j could then compute a
representation that would capture mostly local information but could also depend
on long-range inputs, if the RNN is able to learn to carry that information.
Compared to a convolutional network, RNNs applied to images are typically more
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expensive but allow for long-range lateral interactions between features in the
same feature map ( , ;Visin et al. 2015 Kalchbrenner 2015et al., ). Indeed, the
forward propagation equations for such RNNs may be written in a form that shows
they use a convolution that computes the bottom-up input to each layer, prior
to the recurrent propagation across the feature map that incorporates the lateral
interactions.

10.4 Encoder-Decoder Sequence-to-Sequence Architec-

tures

We have seen in Fig. how an RNN can map an input sequence to a fixed-size10.5
vector. We have seen in Fig. how an RNN can map a fixed-size vector to a10.9
sequence. We have seen in Fig. , Fig. , Fig. and Fig. how an10.3 10.4 10.10 10.11
RNN can map an input sequence to an output sequence of the same length.

Here we discuss how an RNN can be trained to map an input sequence to an
output sequence which is not necessarily of the same length. This comes up in
many applications, such as speech recognition, machine translation or question
answering, where the input and output sequences in the training set are generally
not of the same length (although their lengths might be related).

We often call the input to the RNN the “context.” We want to produce a
representation of this context, C . The context C might be a vector or sequence of

vectors that summarize the input sequence X x= ( (1), . . . ,x(n )).

The simplest RNN architecture for mapping a variable-length sequence to an-
other variable-length sequence was first proposed by ( ) and shortlyCho et al. 2014a
after by Sutskever 2014et al. ( ), who independently developed that architecture and
were the first to obtain state-of-the-art translation using this approach. The former
system is based on scoring proposals generated by another machine translation
system, while the latter uses a standalone recurrent network to generate the trans-
lations. These authors respectively called this architecture, illustrated in Fig. ,10.12
the encoder-decoder or sequence-to-sequence architecture. The idea is very simple:
(1) an encoder reader inputor or RNN processes the input sequence. The encoder
emits the context C, usually as a simple function of its final hidden state. (2) a

decoder writer outputor or RNN is conditioned on that fixed-length vector (just like
in Fig. ) to generate the output sequence10.9 Y = (y(1), . . . ,y (n )). The innovation
of this kind of architecture over those presented in earlier sections of this chapter is
that the lengths nx and ny can vary from each other, while previous architectures
constrained nx = ny = τ . In a sequence-to-sequence architecture, the two RNNs
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Figure 10.12: Example of an encoder-decoder or sequence-to-sequence RNN architecture,
for learning to generate an output sequence ( , . . . , ) given an input sequence
( , , . . . , ). It is composed of an encoder RNN that reads the input sequence
and a decoder RNN that generates the output sequence (or computes the probability of a
given output sequence). The final hidden state of the encoder RNN is used to compute a
generally fixed-size context variable C which represents a semantic summary of the input
sequence and is given as input to the decoder RNN.
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are trained jointly to maximize the average of logP (y(1) , . . . ,y(n ) | x(1), . . . ,x(n ))
over all the pairs of x and y sequences in the training set. The last state hn of
the encoder RNN is typically used as a representation C of the input sequence
that is provided as input to the decoder RNN.

If the context C is a vector, then the decoder RNN is simply a vector-to-
sequence RNN as described in Sec. . As we have seen, there are at least two10.2.4
ways for a vector-to-sequence RNN to receive input. The input can be provided as
the initial state of the RNN, or the input can be connected to the hidden units at
each time step. These two ways can also be combined.

There is no constraint that the encoder must have the same size of hidden layer
as the decoder.

One clear limitation of this architecture is when the context C output by the
encoder RNN has a dimension that is too small to properly summarize a long
sequence. This phenomenon was observed by ( ) in the contextBahdanau et al. 2015
of machine translation. They proposed to make C a variable-length sequence rather
than a fixed-size vector. Additionally, they introduced an attention mechanism
that learns to associate elements of the sequence C to elements of the output
sequence. See Sec. for more details.12.4.5.1

10.5 Deep Recurrent Networks

The computation in most RNNs can be decomposed into three blocks of parameters
and associated transformations:

1. from the input to the hidden state,

2. from the previous hidden state to the next hidden state, and

3. from the hidden state to the output.

With the RNN architecture of Fig. , each of these three blocks is associated10.3
with a single weight matrix. In other words, when the network is unfolded, each
of these corresponds to a shallow transformation. By a shallow transformation,
we mean a transformation that would be represented by a single layer within
a deep MLP. Typically this is a transformation represented by a learned affine
transformation followed by a fixed nonlinearity.

Would it be advantageous to introduce depth in each of these operations?
Experimental evidence (Graves 2013 Pascanu 2014aet al., ; et al., ) strongly suggests
so. The experimental evidence is in agreement with the idea that we need enough
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Figure 10.13: A recurrent neural network can be made deep in many ways (Pascanu
et al., ). The hidden recurrent state can be broken down into groups organized2014a (a)
hierarchically. Deeper computation (e.g., an MLP) can be introduced in the input-to-(b)
hidden, hidden-to-hidden and hidden-to-output parts. This may lengthen the shortest
path linking different time steps. The path-lengthening effect can be mitigated by(c)
introducing skip connections.
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depth in order to perform the required mappings. See also Schmidhuber 1992( ),
El Hihi and Bengio 1996 Jaeger 2007a( ), or ( ) for earlier work on deep RNNs.

Graves 2013et al. ( ) were the first to show a significant benefit of decomposing
the state of an RNN into multiple layers as in Fig. (left). We can think10.13
of the lower layers in the hierarchy depicted in Fig. a as playing a role in10.13
transforming the raw input into a representation that is more appropriate, at
the higher levels of the hidden state. Pascanu 2014aet al. ( ) go a step further
and propose to have a separate MLP (possibly deep) for each of the three blocks
enumerated above, as illustrated in Fig. b. Considerations of representational10.13

capacity suggest to allocate enough capacity in each of these three steps, but doing
so by adding depth may hurt learning by making optimization difficult. In general,
it is easier to optimize shallower architectures, and adding the extra depth of
Fig. b makes the shortest path from a variable in time step10.13 t to a variable
in time step t+ 1 become longer. For example, if an MLP with a single hidden
layer is used for the state-to-state transition, we have doubled the length of the
shortest path between variables in any two different time steps, compared with the
ordinary RNN of Fig. . However, as argued by10.3 Pascanu 2014aet al. ( ), this
can be mitigated by introducing skip connections in the hidden-to-hidden path, as
illustrated in Fig. c.10.13

10.6 Recursive Neural Networks

Recursive neural networks represent yet another generalization of recurrent net-
works, with a different kind of computational graph, which is structured as a deep
tree, rather than the chain-like structure of RNNs. The typical computational
graph for a recursive network is illustrated in Fig. . Recursive neural networks10.14
were introduced by Pollack 1990( ) and their potential use for learning to reason
was described by by ( ). Recursive networks have been successfullyBottou 2011
applied to processing as input to neural nets (Frasconi et al.,
1997 1998 Socher 2011a c 2013a, ), in natural language processing ( et al., , , ) as well
as in computer vision ( , ).Socher et al. 2011b

One clear advantage of recursive nets over recurrent nets is that for a sequence
of the same length τ , the depth (measured as the number of compositions of
nonlinear operations) can be drastically reduced from τ to O( log τ), which might
help deal with long-term dependencies. An open question is how to best structure
the tree. One option is to have a tree structure which does not depend on the data,

We suggest to not abbreviate “recursive neural network” as “RNN” to avoid confusion with

“recurrent neural network.”
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Figure 10.14: A recursive network has a computational graph that generalizes that of the
recurrent network from a chain to a tree. A variable-size sequence x ,x , . . . ,x can
be mapped to a fixed-size representation (the output o), with a fixed set of parameters
(the weight matrices U, V ,W ). The figure illustrates a supervised learning case in which
some target is provided which is associated with the whole sequence.y
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such as a balanced binary tree. In some application domains, external methods
can suggest the appropriate tree structure. For example, when processing natural
language sentences, the tree structure for the recursive network can be fixed to
the structure of the parse tree of the sentence provided by a natural language
parser ( , , ). Ideally, one would like the learner itself toSocher et al. 2011a 2013a
discover and infer the tree structure that is appropriate for any given input, as
suggested by ( ).Bottou 2011

Many variants of the recursive net idea are possible. For example, Frasconi
et al. ( ) and1997 Frasconi 1998et al. ( ) associate the data with a tree structure,

and associate the inputs and targets with individual nodes of the tree. The
computation performed by each node does not have to be the traditional artificial
neuron computation (affine transformation of all inputs followed by a monotone
nonlinearity). For example, ( ) propose using tensor operationsSocher et al. 2013a
and bilinear forms, which have previously been found useful to model relationships
between concepts (Weston 2010 Bordes 2012et al., ; et al., ) when the concepts are
represented by continuous vectors (embeddings).

10.7 The Challenge of Long-Term Dependencies

The mathematical challenge of learning long-term dependencies in recurrent net-
works was introduced in Sec. . The basic problem is that gradients propagated8.2.5
over many stages tend to either vanish (most of the time) or explode (rarely, but
with much damage to the optimization). Even if we assume that the parameters are
such that the recurrent network is stable (can store memories, with gradients not
exploding), the difficulty with long-term dependencies arises from the exponentially
smaller weights given to long-term interactions (involving the multiplication of
many Jacobians) compared to short-term ones. Many other sources provide a
deeper treatment ( , ;Hochreiter 1991 Doya 1993 Bengio 1994 Pascanu, ; et al., ; et al.,
2013a) . In this section, we describe the problem in more detail. The remaining
sections describe approaches to overcoming the problem.

Recurrent networks involve the composition of the same function multiple
times, once per time step. These compositions can result in extremely nonlinear
behavior, as illustrated in Fig. .10.15

In particular, the function composition employed by recurrent neural networks
somewhat resembles matrix multiplication. We can think of the recurrence relation

h( )t = W>h( 1)t− (10.29)

as a very simple recurrent neural network lacking a nonlinear activation function,
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Figure 10.15: When composing many nonlinear functions (like the linear-tanh layer shown
here), the result is highly nonlinear, typically with most of the values associated with a tiny
derivative, some values with a large derivative, and many alternations between increasing
and decreasing. In this plot, we plot a linear projection of a 100-dimensional hidden state
down to a single dimension, plotted on the y-axis. The x -axis is the coordinate of the
initial state along a random direction in the 100-dimensional space. We can thus view this
plot as a linear cross-section of a high-dimensional function. The plots show the function
after each time step, or equivalently, after each number of times the transition function
has been composed.
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and lacking inputs x. As described in Sec. , this recurrence relation essentially8.2.5
describes the power method. It may be simplified to

h( )t = W t >
h (0), (10.30)

and if admits an eigendecompositionW

W Q Q= > , (10.31)

the recurrence may be simplified further to

h( )t = Q> tQh(0). (10.32)

The eigenvalues are raised to the power of t causing eigenvalues with magnitude
less than one to decay to zero and eigenvalues with magnitude greater than one to
explode. Any component of h(0) that is not aligned with the largest eigenvector
will eventually be discarded.

This problem is particular to recurrent networks. In the scalar case, imagine
multiplying a weight w by itself many times. The product wt will either vanish or
explode depending on the magnitude of w. However, if we make a non-recurrent
network that has a different weight w ( )t at each time step, the situation is different.
If the initial state is given by , then the state at time1 t is given by t w

( )t . Suppose
that the w( )t values are generated randomly, independently from one another, with

zero mean and variance v . The variance of the product isO(vn). To obtain some
desired variance v∗ we may choose the individual weights with variance v =

√
v∗.

Very deep feedforward networks with carefully chosen scaling can thus avoid the
vanishing and exploding gradient problem, as argued by ( ).Sussillo 2014

The vanishing and exploding gradient problem for RNNs was independently
discovered by separate researchers ( , ; , , ).Hochreiter 1991 Bengio et al. 1993 1994
One may hope that the problem can be avoided simply by staying in a region of
parameter space where the gradients do not vanish or explode. Unfortunately, in
order to store memories in a way that is robust to small perturbations, the RNN
must enter a region of parameter space where gradients vanish ( , ,Bengio et al. 1993
1994). Specifically, whenever the model is able to represent long term dependencies,

the gradient of a long term interaction has exponentially smaller magnitude than
the gradient of a short term interaction. It does not mean that it is impossible
to learn, but that it might take a very long time to learn long-term dependencies,
because the signal about these dependencies will tend to be hidden by the smallest
fluctuations arising from short-term dependencies. In practice, the experiments
in ( ) show that as we increase the span of the dependencies thatBengio et al. 1994

405



CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

need to be captured, gradient-based optimization becomes increasingly difficult,
with the probability of successful training of a traditional RNN via SGD rapidly
reaching 0 for sequences of only length 10 or 20.

For a deeper treatment of the dynamical systems view of recurrent networks,
see Doya 1993 Bengio 1994 Siegelmann and Sontag 1995( ), et al. ( ) and ( ), with a
review in Pascanu 2013aet al. ( ). The remaining sections of this chapter discuss
various approaches that have been proposed to reduce the difficulty of learning
long-term dependencies (in some cases allowing an RNN to learn dependencies
across hundreds of steps), but the problem of learning long-term dependencies

remains one of the main challenges in deep learning.

10.8 Echo State Networks

The recurrent weights mapping from h( 1)t− to h( )t and the input weights mapping
from x( )t to h( )t are some of the most difficult parameters to learn in a recurrent
network. One proposed ( , ; , ; , ;Jaeger 2003 Maass et al. 2002 Jaeger and Haas 2004
Jaeger 2007b, ) approach to avoiding this difficulty is to set the recurrent weights
such that the recurrent hidden units do a good job of capturing the history of
past inputs, and . This is the idea that was

independently proposed for echo state networks or ESNs ( , ;Jaeger and Haas 2004
Jaeger 2007b Maass 2002, ) and (liquid state machines et al., ). The latter is similar,
except that it uses spiking neurons (with binary outputs) instead of the continuous-
valued hidden units used for ESNs. Both ESNs and liquid state machines are
termed reservoir computing (Lukoševičius and Jaeger 2009, ) to denote the fact
that the hidden units form of reservoir of temporal features which may capture
different aspects of the history of inputs.

One way to think about these reservoir computing recurrent networks is that
they are similar to kernel machines: they map an arbitrary length sequence (the
history of inputs up to time t) into a fixed-length vector (the recurrent state h( )t ),
on which a linear predictor (typically a linear regression) can be applied to solve

the problem of interest. The training criterion may then be easily designed to be
convex as a function of the output weights. For example, if the output consists
of linear regression from the hidden units to the output targets, and the training
criterion is mean squared error, then it is convex and may be solved reliably with
simple learning algorithms ( , ).Jaeger 2003

The important question is therefore: how do we set the input and recurrent
weights so that a rich set of histories can be represented in the recurrent neural
network state? The answer proposed in the reservoir computing literature is to
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view the recurrent net as a dynamical system, and set the input and recurrent
weights such that the dynamical system is near the edge of stability.

The original idea was to make the eigenvalues of the Jacobian of the state-to-
state transition function be close to . As explained in Sec. , an important1 8.2.5
characteristic of a recurrent network is the eigenvalue spectrum of the Jacobians

J( )t = ∂s
∂s

. Of particular importance is the spectral radius of J( )t , defined to be
the maximum of the absolute values of its eigenvalues.

To understand the effect of the spectral radius, consider the simple case of

back-propagation with a Jacobian matrix J that does not change with t . This
case happens, for example, when the network is purely linear. Suppose that J has
an eigenvector v with corresponding eigenvalue λ . Consider what happens as we
propagate a gradient vector backwards through time. If we begin with a gradient
vector g, then after one step of back-propagation, we will have Jg, and after n
steps we will have Jng. Now consider what happens if we instead back-propagate
a perturbed version of g. If we begin with g + δv, then after one step, we will
have J (g + δv). After n steps, we will have Jn(g + δv). From this we can see
that back-propagation starting from g and back-propagation starting from g + δv
diverge by δJnv after n steps of back-propagation. If v is chosen to be a unit
eigenvector of J with eigenvalue λ, then multiplication by the Jacobian simply

scales the difference at each step. The two executions of back-propagation are
separated by a distance of δ λ| |n.When v corresponds to the largest value of | |λ ,
this perturbation achieves the widest possible separation of an initial perturbation
of size .δ

When | |λ > 1, the deviation size δ λ| |n grows exponentially large. When | |λ < 1,
the deviation size becomes exponentially small.

Of course, this example assumed that the Jacobian was the same at every
time step, corresponding to a recurrent network with no nonlinearity. When a
nonlinearity is present, the derivative of the nonlinearity will approach zero on
many time steps, and help to prevent the explosion resulting from a large spectral
radius. Indeed, the most recent work on echo state networks advocates using a

spectral radius much larger than unity ( , ; , ).Yildiz et al. 2012 Jaeger 2012

Everything we have said about back-propagation via repeated matrix multipli-
cation applies equally to forward propagation in a network with no nonlinearity,
where the state h( +1)t = h( )t >W .

When a linear map W > always shrinks h as measured by the L 2 norm, then
we say that the map is contractive. When the spectral radius is less than one, the
mapping from h( )t to h( +1)t is contractive, so a small change becomes smaller after
each time step. This necessarily makes the network forget information about the
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past when we use a finite level of precision (such as 32 bit integers) to store the
state vector.

The Jacobian matrix tells us how a small change of h( )t propagates one step
forward, or equivalently, how the gradient on h( +1)t propagates one step backward,
during back-propagation. Note that neither W nor J need to be symmetric (al-
though they are square and real), so they can have complex-valued eigenvalues and
eigenvectors, with imaginary components corresponding to potentially oscillatory
behavior (if the same Jacobian was applied iteratively). Even though h( )t or a
small variation of h ( )t of interest in back-propagation are real-valued, they can

be expressed in such a complex-valued basis. What matters is what happens to
the magnitude (complex absolute value) of these possibly complex-valued basis
coefficients, when we multiply the matrix by the vector. An eigenvalue with
magnitude greater than one corresponds to magnification (exponential growth, if
applied iteratively) or shrinking (exponential decay, if applied iteratively).

With a nonlinear map, the Jacobian is free to change at each step. The
dynamics therefore become more complicated. However, it remains true that a
small initial variation can turn into a large variation after several steps. One
difference between the purely linear case and the nonlinear case is that the use of
a squashing nonlinearity such as tanh can cause the recurrent dynamics to become
bounded. Note that it is possible for back-propagation to retain unbounded

dynamics even when forward propagation has bounded dynamics, for example,
when a sequence of tanh units are all in the middle of their linear regime and are
connected by weight matrices with spectral radius greater than . However, it is1

rare for all of the units to simultaneously lie at their linear activation point.tanh

The strategy of echo state networks is simply to fix the weights to have some
spectral radius such as , where information is carried forward through time but3
does not explode due to the stabilizing effect of saturating nonlinearities like tanh.

More recently, it has been shown that the techniques used to set the weights
in ESNs could be used to the weights in a fully trainable recurrent net-
work (with the hidden-to-hidden recurrent weights trained using back-propagation
through time), helping to learn long-term dependencies (Sutskever 2012 Sutskever, ;

et al., ). In this setting, an initial spectral radius of 1.2 performs well, combined2013
with the sparse initialization scheme described in Sec. .8.4
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10.9 Leaky Units and Other Strategies for Multiple

Time Scales

One way to deal with long-term dependencies is to design a model that operates
at multiple time scales, so that some parts of the model operate at fine-grained
time scales and can handle small details, while other parts operate at coarse time
scales and transfer information from the distant past to the present more efficiently.
Various strategies for building both fine and coarse time scales are possible. These
include the addition of skip connections across time, “leaky units” that integrate
signals with different time constants, and the removal of some of the connections

used to model fine-grained time scales.

One way to obtain coarse time scales is to add direct connections from variables in
the distant past to variables in the present. The idea of using such skip connections
dates back to ( ) and follows from the idea of incorporating delays inLin et al. 1996
feedforward neural networks ( , ). In an ordinary recurrentLang and Hinton 1988
network, a recurrent connection goes from a unit at time t to a unit at time t+ 1.

It is possible to construct recurrent networks with longer delays ( , ).Bengio 1991

As we have seen in Sec. , gradients may vanish or explode exponentially8.2.5
. ( ) introducedLin et al. 1996

recurrent connections with a time-delay of d to mitigate this problem. Gradients
now diminish exponentially as a function of τd rather than τ . Since there are both
delayed and single step connections, gradients may still explode exponentially in τ.
This allows the learning algorithm to capture longer dependencies although not all
long-term dependencies may be represented well in this way.

Another way to obtain paths on which the product of derivatives is close to one is to
have units with self-connections and a weight near one on these connections.

When we accumulate a running average µ( )t of some value v( )t by applying the
update µ( )t ← αµ( 1)t− + (1 − α)v( )t the α parameter is an example of a linear self-
connection from µ( 1)t− to µ( )t . When α is near one, the running average remembers
information about the past for a long time, and when α is near zero, information
about the past is rapidly discarded. Hidden units with linear self-connections can
behave similarly to such running averages. Such hidden units are called leaky units.
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Skip connections through d time steps are a way of ensuring that a unit can
always learn to be influenced by a value from d time steps earlier. The use of a
linear self-connection with a weight near one is a different way of ensuring that the
unit can access values from the past. The linear self-connection approach allows
this effect to be adapted more smoothly and flexibly by adjusting the real-valued
α rather than by adjusting the integer-valued skip length.

These ideas were proposed by ( ) and by ( ).Mozer 1992 El Hihi and Bengio 1996
Leaky units were also found to be useful in the context of echo state networks
( , ).Jaeger et al. 2007

There are two basic strategies for setting the time constants used by leaky
units. One strategy is to manually fix them to values that remain constant, for
example by sampling their values from some distribution once at initialization time.
Another strategy is to make the time constants free parameters and learn them.
Having such leaky units at different time scales appears to help with long-term
dependencies ( , ;Mozer 1992 Pascanu 2013aet al., ).

Another approach to handle long-term dependencies is the idea of organizing
the state of the RNN at multiple time-scales ( , ), withEl Hihi and Bengio 1996
information flowing more easily through long distances at the slower time scales.

This idea differs from the skip connections through time discussed earlier
because it involves actively length-one connections and replacing them
with longer connections. Units modified in such a way are forced to operate on a
long time scale. Skip connections through time edges. Units receiving such
new connections may learn to operate on a long time scale but may also choose to
focus on their other short-term connections.

There are different ways in which a group of recurrent units can be forced to

operate at different time scales. One option is to make the recurrent units leaky,
but to have different groups of units associated with different fixed time scales.
This was the proposal in ( ) and has been successfully used inMozer 1992 Pascanu
et al. ( ). Another option is to have explicit and discrete updates taking place2013a
at different times, with a different frequency for different groups of units. This is
the approach of ( ) andEl Hihi and Bengio 1996 Koutnik 2014et al. ( ). It worked
well on a number of benchmark datasets.
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10.10 The Long Short-Term Memory and Other Gated

RNNs

As of this writing, the most effective sequence models used in practical applications
are called gated RNNs long short-term memory. These include the and networks
based on the gated recurrent unit.

Like leaky units, gated RNNs are based on the idea of creating paths through
time that have derivatives that neither vanish nor explode. Leaky units did
this with connection weights that were either manually chosen constants or were

parameters. Gated RNNs generalize this to connection weights that may change
at each time step.

Leaky units allow the network to information (such as evidence
for a particular feature or category) over a long duration. However, once that
information has been used, it might be useful for the neural network to the
old state. For example, if a sequence is made of sub-sequences and we want a leaky
unit to accumulate evidence inside each sub-subsequence, we need a mechanism to
forget the old state by setting it to zero. Instead of manually deciding when to
clear the state, we want the neural network to learn to decide when to do it. This
is what gated RNNs do.

The clever idea of introducing self-loops to produce paths where the gradient can
flow for long durations is a core contribution of the initial long short-term memory
(LSTM) model (Hochreiter and Schmidhuber 1997, ). A crucial addition has been
to make the weight on this self-loop conditioned on the context, rather than fixed
( , ). By making the weight of this self-loop gated (controlled byGers et al. 2000
another hidden unit), the time scale of integration can be changed dynamically. In
this case, we mean that even for an LSTM with fixed parameters, the time scale of

integration can change based on the input sequence, because the time constants
are output by the model itself. The LSTM has been found extremely successful
in many applications, such as unconstrained handwriting recognition (Graves
et al., ), speech recognition (2009 Graves 2013 Graves and Jaitly 2014et al., ; , ),
handwriting generation (Graves 2013, ), machine translation (Sutskever 2014et al., ),
image captioning ( , ;Kiros et al. 2014b Vinyals 2014b Xu 2015et al., ; et al., ) and
parsing (Vinyals 2014aet al., ).

The LSTM block diagram is illustrated in Fig. . The corresponding10.16
forward propagation equations are given below, in the case of a shallow recurrent
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Figure 10.16: Block diagram of the LSTM recurrent network “cell.” Cells are connected
recurrently to each other, replacing the usual hidden units of ordinary recurrent networks.
An input feature is computed with a regular artificial neuron unit. Its value can be
accumulated into the state if the sigmoidal input gate allows it. The state unit has a
linear self-loop whose weight is controlled by the forget gate. The output of the cell can
be shut off by the output gate. All the gating units have a sigmoid nonlinearity, while the
input unit can have any squashing nonlinearity. The state unit can also be used as an
extra input to the gating units. The black square indicates a delay of 1 time unit.
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network architecture. Deeper architectures have also been successfully used (Graves
et al., ;2013 Pascanu 2014aet al., ). Instead of a unit that simply applies an element-
wise nonlinearity to the affine transformation of inputs and recurrent units, LSTM
recurrent networks have “LSTM cells” that have an internal recurrence (a self-loop),
in addition to the outer recurrence of the RNN. Each cell has the same inputs
and outputs as an ordinary recurrent network, but has more parameters and a
system of gating units that controls the flow of information. The most important

component is the state unit s
( )t
i that has a linear self-loop similar to the leaky

units described in the previous section. However, here, the self-loop weight (or the

associated time constant) is controlled by a forget gate unit f
( )t
i (for time step t

and cell ), that sets this weight to a value between 0 and 1 via a sigmoid unit:i

f
( )t
i = σ bfi +

j

U fi,j x
( )t
j +

j

W f
i,jh

( 1)t−
j , (10.33)

where x( )t is the current input vector and h( )t is the current hidden layer vector,
containing the outputs of all the LSTM cells, and bf ,Uf ,Wf are respectively
biases, input weights and recurrent weights for the forget gates. The LSTM cell
internal state is thus updated as follows, but with a conditional self-loop weight

f
( )t
i :

s
( )t
i = f

( )t
i s

( 1)t−
i + g

( )t
i σ bi +

j

Ui,jx
( )t
j +

j

Wi,jh
( 1)t−
j , (10.34)

where b, U andW respectively denote the biases, input weights and recurrent

weights into the LSTM cell. The unitexternal input gate g
( )t
i is computed similarly

to the forget gate (with a sigmoid unit to obtain a gating value between 0 and 1),
but with its own parameters:

g
( )t
i = σ b

g
i +

j

U
g
i,jx

( )t
j +

j

W
g
i,j h

( 1)t−
j . (10.35)

The output h
( )t
i of the LSTM cell can also be shut off, via the output gate q

( )t
i ,

which also uses a sigmoid unit for gating:

h
( )t
i = tanh s

( )t
i q

( )t
i (10.36)

q
( )t
i = σ boi +

j

Uoi,jx
( )t
j +

j

W o
i,jh

( 1)t−
j (10.37)
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which has parameters bo, U o, W o for its biases, input weights and recurrent

weights, respectively. Among the variants, one can choose to use the cell state s
( )t
i

as an extra input (with its weight) into the three gates of the i-th unit, as shown
in Fig. . This would require three additional parameters.10.16

LSTM networks have been shown to learn long-term dependencies more easily

than the simple recurrent architectures, first on artificial data sets designed for
testing the ability to learn long-term dependencies ( , ;Bengio et al. 1994 Hochreiter
and Schmidhuber 1997 Hochreiter 2000, ; et al., ), then on challenging sequence
processing tasks where state-of-the-art performance was obtained (Graves 2012, ;
Graves 2013 Sutskever 2014et al., ; et al., ). Variants and alternatives to the LSTM
have been studied and used and are discussed next.

Which pieces of the LSTM architecture are actually necessary? What other
successful architectures could be designed that allow the network to dynamically
control the time scale and forgetting behavior of different units?

Some answers to these questions are given with the recent work on gated RNNs,
whose units are also known as gated recurrent units or GRUs ( , ;Cho et al. 2014b
Chung 2014 2015a Jozefowicz 2015 Chrupala 2015et al., , ; et al., ; et al., ). The main
difference with the LSTM is that a single gating unit simultaneously controls the
forgetting factor and the decision to update the state unit. The update equations
are the following:

h
( )t
i = u

( 1)t−
i h

( 1)t−
i + (1 − u( 1)t−

i )σ bi +
j

Ui,jx
( 1)t−
j +

j

Wi,jr
( 1)t−
j h

( 1)t−
j ,

(10.38)

where u stands for “update” gate and r for “reset” gate. Their value is defined as
usual:

u
( )t
i = σ bui +

j

Uui,jx
( )t
j +

j

W u
i,jh

( )t
j (10.39)

and

r
( )t
i = σ bri +

j

U ri,j x
( )t
j +

j

W r
i,jh

( )t
j . (10.40)

The reset and updates gates can individually “ignore” parts of the state vector.
The update gates act like conditional leaky integrators that can linearly gate any
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dimension, thus choosing to copy it (at one extreme of the sigmoid) or completely
ignore it (at the other extreme) by replacing it by the new “target state” value
(towards which the leaky integrator wants to converge). The reset gates control
which parts of the state get used to compute the next target state, introducing an
additional nonlinear effect in the relationship between past state and future state.

Many more variants around this theme can be designed. For example the
reset gate (or forget gate) output could be shared across multiple hidden units.
Alternately, the product of a global gate (covering a whole group of units, such as
an entire layer) and a local gate (per unit) could be used to combine global control

and local control. However, several investigations over architectural variations
of the LSTM and GRU found no variant that would clearly beat both of these
across a wide range of tasks ( , ;Greff et al. 2015 Jozefowicz 2015 Greffet al., ).
et al. ( ) found that a crucial ingredient is the forget gate, while2015 Jozefowicz
et al. ( ) found that adding a bias of 1 to the LSTM forget gate, a practice2015
advocated by ( ), makes the LSTM as strong as the best of theGers et al. 2000
explored architectural variants.

10.11 Optimization for Long-Term Dependencies

Sec. and Sec. have described the vanishing and exploding gradient8.2.5 10.7
problems that occur when optimizing RNNs over many time steps.

An interesting idea proposed by Martens and Sutskever 2011( ) is that second
derivatives may vanish at the same time that first derivatives vanish. Second-order
optimization algorithms may roughly be understood as dividing the first derivative
by the second derivative (in higher dimension, multiplying the gradient by the
inverse Hessian). If the second derivative shrinks at a similar rate to the first
derivative, then the ratio of first and second derivatives may remain relatively
constant. Unfortunately, second-order methods have many drawbacks, including
high computational cost, the need for a large minibatch, and a tendency to be
attracted to saddle points. Martens and Sutskever 2011( ) found promising results

using second-order methods. Later, Sutskever 2013et al. ( ) found that simpler
methods such as Nesterov momentum with careful initialization could achieve
similar results. See Sutskever 2012( ) for more detail. Both of these approaches
have largely been replaced by simply using SGD (even without momentum) applied
to LSTMs. This is part of a continuing theme in machine learning that it is often
much easier to design a model that is easy to optimize than it is to design a more
powerful optimization algorithm.
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As discussed in Sec. , strongly nonlinear functions such as those computed by8.2.4
a recurrent net over many time steps tend to have derivatives that can be either

very large or very small in magnitude. This is illustrated in Fig. and Fig. ,8.3 10.17
in which we see that the objective function (as a function of the parameters) has a
“landscape” in which one finds “cliffs”: wide and rather flat regions separated by
tiny regions where the objective function changes quickly, forming a kind of cliff.

The difficulty that arises is that when the parameter gradient is very large, a
gradient descent parameter update could throw the parameters very far, into a
region where the objective function is larger, undoing much of the work that had
been done to reach the current solution. The gradient tells us the direction that
corresponds to the steepest descent within an infinitesimal region surrounding the
current parameters. Outside of this infinitesimal region, the cost function may
begin to curve back upwards. The update must be chosen to be small enough to

avoid traversing too much upward curvature. We typically use learning rates that
decay slowly enough that consecutive steps have approximately the same learning
rate. A step size that is appropriate for a relatively linear part of the landscape is
often inappropriate and causes uphill motion if we enter a more curved part of the
landscape on the next step.
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Figure 10.17: Example of the effect of gradient clipping in a recurrent network with
two parameters w and b. Gradient clipping can make gradient descent perform more
reasonably in the vicinity of extremely steep cliffs. These steep cliffs commonly occur
in recurrent networks near where a recurrent network behaves approximately linearly.
The cliff is exponentially steep in the number of time steps because the weight matrix
is multiplied by itself once for each time step. (Left) Gradient descent without gradient
clipping overshoots the bottom of this small ravine, then receives a very large gradient
from the cliff face. The large gradient catastrophically propels the parameters outside the
axes of the plot. (Right) Gradient descent with gradient clipping has a more moderate
reaction to the cliff. While it does ascend the cliff face, the step size is restricted so that
it cannot be propelled away from steep region near the solution. Figure adapted with
permission from Pascanu 2013aet al. ( ).

A simple type of solution has been in use by practitioners for many years:
clipping the gradient. There are different instances of this idea (Mikolov 2012, ;
Pascanu 2013aet al., ). One option is to clip the parameter gradient from a
minibatch (element-wise Mikolov 2012, ) just before the parameter update. Another
is to clip the norm || ||g of the gradient g (Pascanu 2013aet al., ) just before the
parameter update:

if || ||g > v (10.41)

g ← gv

|| ||g
(10.42)

where v is the norm threshold and g is used to update parameters. Because the
gradient of all the parameters (including different groups of parameters, such as
weights and biases) is renormalized jointly with a single scaling factor, the latter
method has the advantage that it guarantees that each step is still in the gradient
direction, but experiments suggest that both forms work similarly. Although
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the parameter update has the same direction as the true gradient, with gradient
norm clipping, the parameter update vector norm is now bounded. This bounded
gradient avoids performing a detrimental step when the gradient explodes. In
fact, even simply taking a random step when the gradient magnitude is above
a threshold tends to work almost as well. If the explosion is so severe that the
gradient is numerically or (considered infinite or not-a-number), then
a random step of size v can be taken and will typically move away from the
numerically unstable configuration. Clipping the gradient norm per-minibatch will
not change the direction of the gradient for an individual minibatch. However,

taking the average of the norm-clipped gradient from many minibatches is not
equivalent to clipping the norm of the true gradient (the gradient formed from
using all examples). Examples that have large gradient norm, as well as examples
that appear in the same minibatch as such examples, will have their contribution
to the final direction diminished. This stands in contrast to traditional minibatch
gradient descent, where the true gradient direction is equal to the average over all
minibatch gradients. Put another way, traditional stochastic gradient descent uses
an unbiased estimate of the gradient, while gradient descent with norm clipping
introduces a heuristic bias that we know empirically to be useful. With element-
wise clipping, the direction of the update is not aligned with the true gradient
or the minibatch gradient, but it is still a descent direction. It has also been

proposed (Graves 2013, ) to clip the back-propagated gradient (with respect to
hidden units) but no comparison has been published between these variants; we
conjecture that all these methods behave similarly.

Gradient clipping helps to deal with exploding gradients, but it does not help with
vanishing gradients. To address vanishing gradients and better capture long-term
dependencies, we discussed the idea of creating paths in the computational graph of

the unfolded recurrent architecture along which the product of gradients associated
with arcs is near 1. One approach to achieve this is with LSTMs and other self-loops
and gating mechanisms, described above in Sec. . Another idea is to regularize10.10
or constrain the parameters so as to encourage “information flow.” In particular,
we would like the gradient vector ∇ L being back-propagated to maintain its
magnitude, even if the loss function only penalizes the output at the end of the
sequence. Formally, we want

(∇ L)
∂h( )t

∂h( 1)t− (10.43)
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to be as large as
∇ L. (10.44)

With this objective, Pascanu 2013aet al. ( ) propose the following regularizer:

Ω =
t

| ∇( L) ∂
∂

|
||∇ L| | − 1

2

. (10.45)

Computing the gradient of this regularizer may appear difficult, but Pascanu
et al. ( ) propose an approximation in which we consider the back-propagated2013a
vectors ∇ L as if they were constants (for the purpose of this regularizer, so
that there is no need to back-propagate through them). The experiments with

this regularizer suggest that, if combined with the norm clipping heuristic (which
handles gradient explosion), the regularizer can considerably increase the span of
the dependencies that an RNN can learn. Because it keeps the RNN dynamics
on the edge of explosive gradients, the gradient clipping is particularly important.
Without gradient clipping, gradient explosion prevents learning from succeeding.

A key weakness of this approach is that it is not as effective as the LSTM for
tasks where data is abundant, such as language modeling.

10.12 Explicit Memory

Intelligence requires knowledge and acquiring knowledge can be done via learning,
which has motivated the development of large-scale deep architectures. However,
there are different kinds of knowledge. Some knowledge can be implicit, sub-
conscious, and difficult to verbalize—such as how to walk, or how a dog looks
different from a cat. Other knowledge can be explicit, declarative, and relatively
straightforward to put into words—every day commonsense knowledge, like “a cat
is a kind of animal,” or very specific facts that you need to know to accomplish
your current goals, like “the meeting with the sales team is at 3:00 PM in room
141.”

Neural networks excel at storing implicit knowledge. However, they struggle
to memorize facts. Stochastic gradient descent requires many presentations of

the same input before it can be stored in a neural network parameters, and even
then, that input will not be stored especially precisely. Graves 2014bet al. ( )
hypothesized that this is because neural networks lack the equivalent of the working
memory system that allows human beings to explicitly hold and manipulate pieces
of information that are relevant to achieving some goal. Such explicit memory
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Figure 10.18: A schematic of an example of a network with an explicit memory, capturing
some of the key design elements of the neural Turing machine. In this diagram we
distinguish the “representation” part of the model (the “task network,” here a recurrent
net in the bottom) from the “memory” part of the model (the set of cells), which can
store facts. The task network learns to “control” the memory, deciding where to read from
and where to write to within the memory (through the reading and writing mechanisms,
indicated by bold arrows pointing at the reading and writing addresses).
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components would allow our systems not only to rapidly and “intentionally” store
and retrieve specific facts but also to sequentially reason with them. The need
for neural networks that can process information in a sequence of steps, changing
the way the input is fed into the network at each step, has long been recognized
as important for the ability to reason rather than to make automatic, intuitive
responses to the input ( , ).Hinton 1990

To resolve this difficulty, Weston 2014et al. ( ) introduced thatmemory networks
include a set of memory cells that can be accessed via an addressing mechanism.
Memory networks originally required a supervision signal instructing them how

to use their memory cells. Graves 2014bet al. ( ) introduced the neural Turing
machine, which is able to learn to read from and write arbitrary content to memory
cells without explicit supervision about which actions to undertake, and allowed
end-to-end training without this supervision signal, via the use of a content-based
soft attention mechanism (see ( ) and Sec. ). ThisBahdanau et al. 2015 12.4.5.1
soft addressing mechanism has become standard with other related architectures
emulating algorithmic mechanisms in a way that still allows gradient-based opti-
mization ( , ;Sukhbaatar et al. 2015 Joulin and Mikolov 2015 Kumar 2015, ; et al., ;
Vinyals 2015a Grefenstette 2015et al., ; et al., ).

Each memory cell can be thought of as an extension of the memory cells in
LSTMs and GRUs. The difference is that the network outputs an internal state

that chooses which cell to read from or write to, just as memory accesses in a
digital computer read from or write to a specific address.

It is difficult to optimize functions that produce exact, integer addresses. To
alleviate this problem, NTMs actually read to or write from many memory cells
simultaneously. To read, they take a weighted average of many cells. To write, they
modify multiple cells by different amounts. The coefficients for these operations
are chosen to be focused on a small number of cells, for example, by producing
them via a softmax function. Using these weights with non-zero derivatives allows
the functions controlling access to the memory to be optimized using gradient
descent. The gradient on these coefficients indicates whether each of them should
be increased or decreased, but the gradient will typically be large only for those

memory addresses receiving a large coefficient.

These memory cells are typically augmented to contain a vector, rather than
the single scalar stored by an LSTM or GRU memory cell. There are two reasons
to increase the size of the memory cell. One reason is that we have increased the
cost of accessing a memory cell. We pay the computational cost of producing a
coefficient for many cells, but we expect these coefficients to cluster around a small
number of cells. By reading a vector value, rather than a scalar value, we can
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offset some of this cost. Another reason to use vector-valued memory cells is that
they allow for content-based addressing, where the weight used to read to or write
from a cell is a function of that cell. Vector-valued cells allow us to retrieve a
complete vector-valued memory if we are able to produce a pattern that matches
some but not all of its elements. This is analogous to the way that people can
recall the lyrics of a song based on a few words. We can think of a content-based
read instruction as saying, “Retrieve the lyrics of the song that has the chorus ‘We
all live in a yellow submarine.’ ” Content-based addressing is more useful when we
make the objects to be retrieved large—if every letter of the song was stored in a

separate memory cell, we would not be able to find them this way. By comparison,
location-based addressing is not allowed to refer to the content of the memory. We
can think of a location-based read instruction as saying “Retrieve the lyrics of
the song in slot 347.” Location-based addressing can often be a perfectly sensible
mechanism even when the memory cells are small.

If the content of a memory cell is copied (not forgotten) at most time steps, then
the information it contains can be propagated forward in time and the gradients
propagated backward in time without either vanishing or exploding.

The explicit memory approach is illustrated in Fig. , where we see that10.18
a “task neural network” is coupled with a memory. Although that task neural
network could be feedforward or recurrent, the overall system is a recurrent network.

The task network can choose to read from or write to specific memory addresses.
Explicit memory seems to allow models to learn tasks that ordinary RNNs or LSTM
RNNs cannot learn. One reason for this advantage may be because information and
gradients can be propagated (forward in time or backwards in time, respectively)
for very long durations.

As an alternative to back-propagation through weighted averages of memory
cells, we can interpret the memory addressing coefficients as probabilities and
stochastically read just one cell (Zaremba and Sutskever 2015, ). Optimizing models
that make discrete decisions requires specialized optimization algorithms, described
in Sec. . So far, training these stochastic architectures that make discrete20.9.1
decisions remains harder than training deterministic algorithms that make soft

decisions.

Whether it is soft (allowing back-propagation) or stochastic and hard, the mech-
anism for choosing an address is in its form identical to the attention mechanism
which had been previously introduced in the context of machine translation (Bah-
danau 2015et al., ) and discussed in Sec. . The idea of attention mechanisms12.4.5.1
for neural networks was introduced even earlier, in the context of handwriting
generation (Graves 2013, ), with an attention mechanism that was constrained to
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move only forward in time through the sequence. In the case of machine translation
and memory networks, at each step, the focus of attention can move to a completely
different place, compared to the previous step.

Recurrent neural networks provide a way to extend deep learning to sequential
data. They are the last major tool in our deep learning toolbox. Our discussion now
moves to how to choose and use these tools and how to apply them to real-world
tasks.
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Practical methodology

Successfully applying deep learning techniques requires more than just a good
knowledge of what algorithms exist and the principles that explain how they
work. A good machine learning practitioner also needs to know how to choose an
algorithm for a particular application and how to monitor and respond to feedback

obtained from experiments in order to improve a machine learning system. During
day to day development of machine learning systems, practitioners need to decide
whether to gather more data, increase or decrease model capacity, add or remove
regularizing features, improve the optimization of a model, improve approximate
inference in a model, or debug the software implementation of the model. All of
these operations are at the very least time-consuming to try out, so it is important
to be able to determine the right course of action rather than blindly guessing.

Most of this book is about different machine learning models, training algo-
rithms, and objective functions. This may give the impression that the most
important ingredient to being a machine learning expert is knowing a wide variety
of machine learning techniques and being good at different kinds of math. In prac-
tice, one can usually do much better with a correct application of a commonplace

algorithm than by sloppily applying an obscure algorithm. Correct application of
an algorithm depends on mastering some fairly simple methodology. Many of the
recommendations in this chapter are adapted from ( ).Ng 2015

We recommend the following practical design process:

• Determine your goals—what error metric to use, and your target value for
this error metric. These goals and error metrics should be driven by the

problem that the application is intended to solve.

• Establish a working end-to-end pipeline as soon as possible, including the
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estimation of the appropriate performance metrics.

• Instrument the system well to determine bottlenecks in performance. Diag-
nose which components are performing worse than expected and whether it
is due to overfitting, underfitting, or a defect in the data or software.

• Repeatedly make incremental changes such as gathering new data, adjusting
hyperparameters, or changing algorithms, based on specific findings from
your instrumentation.

As a running example, we will use Street View address number transcription
system ( , ). The purpose of this application is to addGoodfellow et al. 2014d
buildings to Google Maps. Street View cars photograph the buildings and record
the GPS coordinates associated with each photograph. A convolutional network

recognizes the address number in each photograph, allowing the Google Maps
database to add that address in the correct location. The story of how this
commercial application was developed gives an example of how to follow the design
methodology we advocate.

We now describe each of the steps in this process.

11.1 Performance Metrics

Determining your goals, in terms of which error metric to use, is a necessary first
step because your error metric will guide all of your future actions. You should

also have an idea of what level of performance you desire.

Keep in mind that for most applications, it is impossible to achieve absolute
zero error. The Bayes error defines the minimum error rate that you can hope to
achieve, even if you have infinite training data and can recover the true probability
distribution. This is because your input features may not contain complete
information about the output variable, or because the system might be intrinsically
stochastic. You will also be limited by having a finite amount of training data.

The amount of training data can be limited for a variety of reasons. When your
goal is to build the best possible real-world product or service, you can typically
collect more data but must determine the value of reducing error further and weigh
this against the cost of collecting more data. Data collection can require time,

money, or human suffering (for example, if your data collection process involves
performing invasive medical tests). When your goal is to answer a scientific question
about which algorithm performs better on a fixed benchmark, the benchmark
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specification usually determines the training set and you are not allowed to collect
more data.

How can one determine a reasonable level of performance to expect? Typically,
in the academic setting, we have some estimate of the error rate that is attainable
based on previously published benchmark results. In the real-word setting, we
have some idea of the error rate that is necessary for an application to be safe,
cost-effective, or appealing to consumers. Once you have determined your realistic
desired error rate, your design decisions will be guided by reaching this error rate.

Another important consideration besides the target value of the performance
metric is the choice of which metric to use. Several different performance metrics
may be used to measure the effectiveness of a complete application that includes
machine learning components. These performance metrics are usually different
from the cost function used to train the model. As described in Sec. , it is5.1.2
common to measure the accuracy, or equivalently, the error rate, of a system.

However, many applications require more advanced metrics.

Sometimes it is much more costly to make one kind of a mistake than another.
For example, an e-mail spam detection system can make two kinds of mistakes:
incorrectly classifying a legitimate message as spam, and incorrectly allowing a
spam message to appear in the inbox. It is much worse to block a legitimate

message than to allow a questionable message to pass through. Rather than
measuring the error rate of a spam classifier, we may wish to measure some form
of total cost, where the cost of blocking legitimate messages is higher than the cost
of allowing spam messages.

Sometimes we wish to train a binary classifier that is intended to detect some
rare event. For example, we might design a medical test for a rare disease. Suppose
that only one in every million people has this disease. We can easily achieve
99.9999% accuracy on the detection task, by simply hard-coding the classifier
to always report that the disease is absent. Clearly, accuracy is a poor way to
characterize the performance of such a system. One way to solve this problem is to
instead measure precision recalland . Precision is the fraction of detections reported
by the model that were correct, while recall is the fraction of true events that

were detected. A detector that says no one has the disease would achieve perfect
precision, but zero recall. A detector that says everyone has the disease would
achieve perfect recall, but precision equal to the percentage of people who have
the disease (0.0001% in our example of a disease that only one people in a million
have). When using precision and recall, it is common to plot a , withPR curve
precision on the y-axis and recall on the x-axis. The classifier generates a score
that is higher if the event to be detected occurred. For example, a feedforward
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network designed to detect a disease outputs ŷ = P (y = 1 | x), estimating the
probability that a person whose medical results are described by features x has
the disease. We choose to report a detection whenever this score exceeds some
threshold. By varying the threshold, we can trade precision for recall. In many
cases, we wish to summarize the performance of the classifier with a single number
rather than a curve. To do so, we can convert precision p and recall r into an
F-score given by

F =
2pr

p r+
. (11.1)

Another option is to report the total area lying beneath the PR curve.

In some applications, it is possible for the machine learning system to refuse to
make a decision. This is useful when the machine learning algorithm can estimate
how confident it should be about a decision, especially if a wrong decision can

be harmful and if a human operator is able to occasionally take over. The Street
View transcription system provides an example of this situation. The task is to
transcribe the address number from a photograph in order to associate the location
where the photo was taken with the correct address in a map. Because the value
of the map degrades considerably if the map is inaccurate, it is important to add
an address only if the transcription is correct. If the machine learning system
thinks that it is less likely than a human being to obtain the correct transcription,
then the best course of action is to allow a human to transcribe the photo instead.
Of course, the machine learning system is only useful if it is able to dramatically
reduce the amount of photos that the human operators must process. A natural
performance metric to use in this situation is coverage. Coverage is the fraction of
examples for which the machine learning system is able to produce a response. It

is possible to trade coverage for accuracy. One can always obtain 100% accuracy
by refusing to process any example, but this reduces the coverage to 0%. For the
Street View task, the goal for the project was to reach human-level transcription
accuracy while maintaining 95% coverage. Human-level performance on this task
is 98% accuracy.

Many other metrics are possible. We can for example, measure click-through
rates, collect user satisfaction surveys, and so on. Many specialized application
areas have application-specific criteria as well.

What is important is to determine which performance metric to improve ahead
of time, then concentrate on improving this metric. Without clearly defined goals,

it can be difficult to tell whether changes to a machine learning system make
progress or not.
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11.2 Default Baseline Models

After choosing performance metrics and goals, the next step in any practical
application is to establish a reasonable end-to-end system as soon as possible. In
this section, we provide recommendations for which algorithms to use as the first
baseline approach in various situations. Keep in mind that deep learning research
progresses quickly, so better default algorithms are likely to become available soon

after this writing.

Depending on the complexity of your problem, you may even want to begin
without using deep learning. If your problem has a chance of being solved by
just choosing a few linear weights correctly, you may want to begin with a simple
statistical model like logistic regression.

If you know that your problem falls into an “AI-complete” category like object
recognition, speech recognition, machine translation, and so on, then you are likely
to do well by beginning with an appropriate deep learning model.

First, choose the general category of model based on the structure of your
data. If you want to perform supervised learning with fixed-size vectors as input,
use a feedforward network with fully connected layers. If the input has known

topological structure (for example, if the input is an image), use a convolutional
network. In these cases, you should begin by using some kind of piecewise linear
unit (ReLUs or their generalizations like Leaky ReLUs, PreLus and maxout). If
your input or output is a sequence, use a gated recurrent net (LSTM or GRU).

A reasonable choice of optimization algorithm is SGD with momentum with a
decaying learning rate (popular decay schemes that perform better or worse on
different problems include decaying linearly until reaching a fixed minimum learning
rate, decaying exponentially, or decreasing the learning rate by a factor of 2-10
each time validation error plateaus). Another very reasonable alternative is Adam.
Batch normalization can have a dramatic effect on optimization performance,
especially for convolutional networks and networks with sigmoidal nonlinearities.

While it is reasonable to omit batch normalization from the very first baseline, it
should be introduced quickly if optimization appears to be problematic.

Unless your training set contains tens of millions of examples or more, you
should include some mild forms of regularization from the start. Early stopping
should be used almost universally. Dropout is an excellent regularizer that is easy
to implement and compatible with many models and training algorithms. Batch
normalization also sometimes reduces generalization error and allows dropout to
be omitted, due to the noise in the estimate of the statistics used to normalize
each variable.
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If your task is similar to another task that has been studied extensively, you
will probably do well by first copying the model and algorithm that is already
known to perform best on the previously studied task. You may even want to copy
a trained model from that task. For example, it is common to use the features
from a convolutional network trained on ImageNet to solve other computer vision
tasks ( , ).Girshick et al. 2015

A common question is whether to begin by using unsupervised learning, de-
scribed further in Part . This is somewhat domain specific. Some domains, suchIII
as natural language processing, are known to benefit tremendously from unsuper-

vised learning techniques such as learning unsupervised word embeddings. In other
domains, such as computer vision, current unsupervised learning techniques do
not bring a benefit, except in the semi-supervised setting, when the number of
labeled examples is very small ( , ;Kingma et al. 2014 Rasmus 2015et al., ). If your
application is in a context where unsupervised learning is known to be important,
then include it in your first end-to-end baseline. Otherwise, only use unsupervised
learning in your first attempt if the task you want to solve is unsupervised. You
can always try adding unsupervised learning later if you observe that your initial
baseline overfits.

11.3 Determining Whether to Gather More Data

After the first end-to-end system is established, it is time to measure the perfor-
mance of the algorithm and determine how to improve it. Many machine learning
novices are tempted to make improvements by trying out many different algorithms.
However, it is often much better to gather more data than to improve the learning
algorithm.

How does one decide whether to gather more data? First, determine whether
the performance on the training set is acceptable. If performance on the training
set is poor, the learning algorithm is not using the training data that is already
available, so there is no reason to gather more data. Instead, try increasing the

size of the model by adding more layers or adding more hidden units to each layer.
Also, try improving the learning algorithm, for example by tuning the learning rate
hyperparameter. If large models and carefully tuned optimization algorithms do
not work well, then the problem might be the of the training data. The
data may be too noisy or may not include the right inputs needed to predict the
desired outputs. This suggests starting over, collecting cleaner data or collecting a
richer set of features.

If the performance on the training set is acceptable, then measure the per-
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formance on a test set. If the performance on the test set is also acceptable,
then there is nothing left to be done. If test set performance is much worse than
training set performance, then gathering more data is one of the most effective
solutions. The key considerations are the cost and feasibility of gathering more
data, the cost and feasibility of reducing the test error by other means, and the
amount of data that is expected to be necessary to improve test set performance
significantly. At large internet companies with millions or billions of users, it is
feasible to gather large datasets, and the expense of doing so can be considerably
less than the other alternatives, so the answer is almost always to gather more

training data. For example, the development of large labeled datasets was one of
the most important factors in solving object recognition. In other contexts, such as
medical applications, it may be costly or infeasible to gather more data. A simple
alternative to gathering more data is to reduce the size of the model or improve
regularization, by adjusting hyperparameters such as weight decay coefficients,
or by adding regularization strategies such as dropout. If you find that the gap
between train and test performance is still unacceptable even after tuning the
regularization hyperparameters, then gathering more data is advisable.

When deciding whether to gather more data, it is also necessary to decide
how much to gather. It is helpful to plot curves showing the relationship between
training set size and generalization error, like in Fig. . By extrapolating such5.4

curves, one can predict how much additional training data would be needed to
achieve a certain level of performance. Usually, adding a small fraction of the total
number of examples will not have a noticeable impact on generalization error. It is
therefore recommended to experiment with training set sizes on a logarithmic scale,
for example doubling the number of examples between consecutive experiments.

If gathering much more data is not feasible, the only other way to improve
generalization error is to improve the learning algorithm itself. This becomes the
domain of research and not the domain of advice for applied practitioners.

11.4 Selecting Hyperparameters

Most deep learning algorithms come with many hyperparameters that control many
aspects of the algorithm’s behavior. Some of these hyperparameters affect the time
and memory cost of running the algorithm. Some of these hyperparameters affect
the quality of the model recovered by the training process and its ability to infer
correct results when deployed on new inputs.

There are two basic approaches to choosing these hyperparameters: choosing
them manually and choosing them automatically. Choosing the hyperparameters
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manually requires understanding what the hyperparameters do and how machine
learning models achieve good generalization. Automatic hyperparameter selection
algorithms greatly reduce the need to understand these ideas, but they are often
much more computationally costly.

To set hyperparameters manually, one must understand the relationship between
hyperparameters, training error, generalization error and computational resources
(memory and runtime). This means establishing a solid foundation on the fun-
damental ideas concerning the effective capacity of a learning algorithm from
Chapter .5

The goal of manual hyperparameter search is usually to find the lowest general-
ization error subject to some runtime and memory budget. We do not discuss how
to determine the runtime and memory impact of various hyperparameters here
because this is highly platform-dependent.

The primary goal of manual hyperparameter search is to adjust the effective

capacity of the model to match the complexity of the task. Effective capacity
is constrained by three factors: the representational capacity of the model, the
ability of the learning algorithm to successfully minimize the cost function used to
train the model, and the degree to which the cost function and training procedure
regularize the model. A model with more layers and more hidden units per layer has
higher representational capacity—it is capable of representing more complicated
functions. It can not necessarily actually learn all of these functions though, if
the training algorithm cannot discover that certain functions do a good job of
minimizing the training cost, or if regularization terms such as weight decay forbid
some of these functions.

The generalization error typically follows a U-shaped curve when plotted as

a function of one of the hyperparameters, as in Fig. . At one extreme, the5.3
hyperparameter value corresponds to low capacity, and generalization error is high
because training error is high. This is the underfitting regime. At the other extreme,
the hyperparameter value corresponds to high capacity, and the generalization
error is high because the gap between training and test error is high. Somewhere
in the middle lies the optimal model capacity, which achieves the lowest possible
generalization error, by adding a medium generalization gap to a medium amount
of training error.

For some hyperparameters, overfitting occurs when the value of the hyper-
parameter is large. The number of hidden units in a layer is one such example,
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because increasing the number of hidden units increases the capacity of the model.
For some hyperparameters, overfitting occurs when the value of the hyperparame-
ter is small. For example, the smallest allowable weight decay coefficient of zero
corresponds to the greatest effective capacity of the learning algorithm.

Not every hyperparameter will be able to explore the entire U-shaped curve.
Many hyperparameters are discrete, such as the number of units in a layer or the
number of linear pieces in a maxout unit, so it is only possible to visit a few points
along the curve. Some hyperparameters are binary. Usually these hyperparameters
are switches that specify whether or not to use some optional component of

the learning algorithm, such as a preprocessing step that normalizes the input
features by subtracting their mean and dividing by their standard deviation. These
hyperparameters can only explore two points on the curve. Other hyperparameters
have some minimum or maximum value that prevents them from exploring some
part of the curve. For example, the minimum weight decay coefficient is zero. This
means that if the model is underfitting when weight decay is zero, we can not enter
the overfitting region by modifying the weight decay coefficient. In other words,
some hyperparameters can only subtract capacity.

The learning rate is perhaps the most important hyperparameter. If you
have time to tune only one hyperparameter, tune the learning rate. It con-
trols the effective capacity of the model in a more complicated way than other

hyperparameters—the effective capacity of the model is highest when the learning
rate is for the optimization problem, not when the learning rate is espe-
cially large or especially small. The learning rate has a U-shaped curve for training
error, illustrated in Fig. . When the learning rate is too large, gradient descent11.1
can inadvertently increase rather than decrease the training error. In the idealized
quadratic case, this occurs if the learning rate is at least twice as large as its
optimal value ( , ). When the learning rate is too small, trainingLeCun et al. 1998a
is not only slower, but may become permanently stuck with a high training error.
This effect is poorly understood (it would not happen for a convex loss function).

Tuning the parameters other than the learning rate requires monitoring both
training and test error to diagnose whether your model is overfitting or underfitting,

then adjusting its capacity appropriately.

If your error on the training set is higher than your target error rate, you have
no choice but to increase capacity. If you are not using regularization and you are
confident that your optimization algorithm is performing correctly, then you must
add more layers to your network or add more hidden units. Unfortunately, this
increases the computational costs associated with the model.

If your error on the test set is higher than than your target error rate, you can
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now take two kinds of actions. The test error is the sum of the training error and
the gap between training and test error. The optimal test error is found by trading
off these quantities. Neural networks typically perform best when the training

error is very low (and thus, when capacity is high) and the test error is primarily
driven by the gap between train and test error. Your goal is to reduce this gap
without increasing training error faster than the gap decreases. To reduce the gap,
change regularization hyperparameters to reduce effective model capacity, such as
by adding dropout or weight decay. Usually the best performance comes from a
large model that is regularized well, for example by using dropout.

Most hyperparameters can be set by reasoning about whether they increase or
decrease model capacity. Some examples are included in Table .11.1

While manually tuning hyperparameters, do not lose sight of your end goal:
good performance on the test set. Adding regularization is only one way to achieve
this goal. As long as you have low training error, you can always reduce general-

ization error by collecting more training data. The brute force way to practically
guarantee success is to continually increase model capacity and training set size
until the task is solved. This approach does of course increase the computational
cost of training and inference, so it is only feasible given appropriate resources. In
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principle, this approach could fail due to optimization difficulties, but for many
problems optimization does not seem to be a significant barrier, provided that the
model is chosen appropriately.

The ideal learning algorithm just takes a dataset and outputs a function, without
requiring hand-tuning of hyperparameters. The popularity of several learning
algorithms such as logistic regression and SVMs stems in part from their ability to
perform well with only one or two tuned hyperparameters. Neural networks can
sometimes perform well with only a small number of tuned hyperparameters, but
often benefit significantly from tuning of forty or more hyperparameters. Manual
hyperparameter tuning can work very well when the user has a good starting point,
such as one determined by others having worked on the same type of application
and architecture, or when the user has months or years of experience in exploring
hyperparameter values for neural networks applied to similar tasks. However,
for many applications, these starting points are not available. In these cases,
automated algorithms can find useful values of the hyperparameters.

If we think about the way in which the user of a learning algorithm searches
for good values of the hyperparameters, we realize that an optimization is taking
place: we are trying to find a value of the hyperparameters that optimizes an
objective function, such as validation error, sometimes under constraints (such as a
budget for training time, memory or recognition time). It is therefore possible, in
principle, to develop hyperparameter optimization algorithms that wrap a learning
algorithm and choose its hyperparameters, thus hiding the hyperparameters of the
learning algorithm from the user. Unfortunately, hyperparameter optimization
algorithms often have their own hyperparameters, such as the range of values that
should be explored for each of the learning algorithm’s hyperparameters. However,
these secondary hyperparameters are usually easier to choose, in the sense that

acceptable performance may be achieved on a wide range of tasks using the same
secondary hyperparameters for all tasks.

When there are three or fewer hyperparameters, the common practice is to perform
grid search. For each hyperparameter, the user selects a small finite set of values to
explore. The grid search algorithm then trains a model for every joint specification
of hyperparameter values in the Cartesian product of the set of values for each

individual hyperparameter. The experiment that yields the best validation set
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error is then chosen as having found the best hyperparameters. See the left of
Fig. for an illustration of a grid of hyperparameter values.11.2

How should the lists of values to search over be chosen? In the case of numerical
(ordered) hyperparameters, the smallest and largest element of each list is chosen
conservatively, based on prior experience with similar experiments, to make sure
that the optimal value is very likely to be in the selected range. Typically, a
grid search involves picking values approximately on a , e.g., a
learning rate taken within the set {.1, .01,10 , 10 , 10 }, or a number of hidden
units taken with the set .{ }50 100 200 500 1000 2000, , , , ,

Grid search usually performs best when it is performed repeatedly. For example,
suppose that we ran a grid search over a hyperparameter α using values of {−1, 0,1}.
If the best value found is , then we underestimated the range in which the best1 α
lies and we should shift the grid and run another search with α in, for example,
{1,2, 3}. If we find that the best value of α is , then we may wish to refine our0
estimate by zooming in and running a grid search over .{− }. , , .1 0 1

The obvious problem with grid search is that its computational cost grows
exponentially with the number of hyperparameters. If there are m hyperparameters,
each taking at most n values, then the number of training and evaluation trials
required grows as O(n ). The trials may be run in parallel and exploit loose
parallelism (with almost no need for communication between different machines

carrying out the search) Unfortunately, due to the exponential cost of grid search,
even parallelization may not provide a satisfactory size of search.

Fortunately, there is an alternative to grid search that is as simple to program, more
convenient to use, and converges much faster to good values of the hyperparameters:

random search ( , ).Bergstra and Bengio 2012

A random search proceeds as follows. First we define a marginal distribution
for each hyperparameter, e.g., a Bernoulli or multinoulli for binary or discrete
hyperparameters, or a uniform distribution on a log-scale for positive real-valued
hyperparameters. For example,

_ _ ∼ − −u( 1, 5) (11.2)

_ = 10 . (11.3)

where u(a, b) indicates a sample of the uniform distribution in the interval (a, b).
Similarly the _ _ _ _ may be sampled from u(log(50),
log(2000)).
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Unlike in the case of a grid search, one or bin the
values of the hyperparameters. This allows one to explore a larger set of values, and
does not incur additional computational cost. In fact, as illustrated in Fig. , a11.2
random search can be exponentially more efficient than a grid search, when there
are several hyperparameters that do not strongly affect the performance measure.
This is studied at length in ( ), who found that randomBergstra and Bengio 2012
search reduces the validation set error much faster than grid search, in terms of
the number of trials run by each method.

As with grid search, one may often want to run repeated versions of random

search, to refine the search based on the results of the first run.

The main reason why random search finds good solutions faster than grid search
is that the there are no wasted experimental runs, unlike in the case of grid search,
when two values of a hyperparameter (given values of the other hyperparameters)
would give the same result. In the case of grid search, the other hyperparameters
would have the same values for these two runs, whereas with random search, they
would usually have different values. Hence if the change between these two values
does not marginally make much difference in terms of validation set error, grid
search will unnecessarily repeat two equivalent experiments while random search
will still give two independent explorations of the other hyperparameters.

The search for good hyperparameters can be cast as an optimization problem.
The decision variables are the hyperparameters. The cost to be optimized is the
validation set error that results from training using these hyperparameters. In
simplified settings where it is feasible to compute the gradient of some differentiable
error measure on the validation set with respect to the hyperparameters, we can
simply follow this gradient ( , ; , ; ,Bengio et al. 1999 Bengio 2000 Maclaurin et al.
2015). Unfortunately, in most practical settings, this gradient is unavailable, either

due to its high computation and memory cost, or due to hyperparameters having
intrinsically non-differentiable interactions with the validation set error, as in the
case of discrete-valued hyperparameters.

To compensate for this lack of a gradient, we can build a model of the validation
set error, then propose new hyperparameter guesses by performing optimization
within this model. Most model-based algorithms for hyperparameter search use a
Bayesian regression model to estimate both the expected value of the validation set
error for each hyperparameter and the uncertainty around this expectation. Opti-
mization thus involves a tradeoff between exploration (proposing hyperparameters
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for which there is high uncertainty, which may lead to a large improvement but may
also perform poorly) and exploitation (proposing hyperparameters which the model
is confident will perform as well as any hyperparameters it has seen so far—usually
hyperparameters that are very similar to ones it has seen before). Contemporary
approaches to hyperparameter optimization include Spearmint ( , ),Snoek et al. 2012
TPE ( , ) and SMAC ( , ).Bergstra et al. 2011 Hutter et al. 2011

Currently, we cannot unambiguously recommend Bayesian hyperparameter
optimization as an established tool for achieving better deep learning results or
for obtaining those results with less effort. Bayesian hyperparameter optimization

sometimes performs comparably to human experts, sometimes better, but fails
catastrophically on other problems. It may be worth trying to see if it works on
a particular problem but is not yet sufficiently mature or reliable. That being
said, hyperparameter optimization is an important field of research that, while
often driven primarily by the needs of deep learning, holds the potential to benefit
not only the entire field of machine learning but the discipline of engineering in
general.

One drawback common to most hyperparameter optimization algorithms with
more sophistication than random search is that they require for a training ex-
periment to run to completion before they are able to extract any information
from the experiment. This is much less efficient, in the sense of how much infor-

mation can be gleaned early in an experiment, than manual search by a human
practitioner, since one can usually tell early on if some set of hyperparameters is
completely pathological. ( ) have introduced an early versionSwersky et al. 2014
of an algorithm that maintains a set of multiple experiments. At various time
points, the hyperparameter optimization algorithm can choose to begin a new
experiment, to “freeze” a running experiment that is not promising, or to “thaw”
and resume an experiment that was earlier frozen but now appears promising given
more information.

11.5 Debugging Strategies

When a machine learning system performs poorly, it is usually difficult to tell
whether the poor performance is intrinsic to the algorithm itself or whether there
is a bug in the implementation of the algorithm. Machine learning systems are
difficult to debug for a variety of reasons.

In most cases, we do not know a priori what the intended behavior of the
algorithm is. In fact, the entire point of using machine learning is that it will
discover useful behavior that we were not able to specify ourselves. If we train a
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neural network on a classification task and it achieves 5% test error, we havenew
no straightforward way of knowing if this is the expected behavior or sub-optimal
behavior.

A further difficulty is that most machine learning models have multiple parts
that are each adaptive. If one part is broken, the other parts can adapt and still
achieve roughly acceptable performance. For example, suppose that we are training
a neural net with several layers parametrized by weightsW and biases b. Suppose
further that we have manually implemented the gradient descent rule for each
parameter separately, and we made an error in the update for the biases:

b b← − α (11.4)

where α is the learning rate. This erroneous update does not use the gradient at
all. It causes the biases to constantly become negative throughout learning, which
is clearly not a correct implementation of any reasonable learning algorithm. The
bug may not be apparent just from examining the output of the model though.
Depending on the distribution of the input, the weights may be able to adapt to
compensate for the negative biases.

Most debugging strategies for neural nets are designed to get around one or
both of these two difficulties. Either we design a case that is so simple that the
correct behavior actually can be predicted, or we design a test that exercises one
part of the neural net implementation in isolation.

Some important debugging tests include:

Visualize the model in action : When training a model to detect objects in
images, view some images with the detections proposed by the model displayed
superimposed on the image. When training a generative model of speech, listen to
some of the speech samples it produces. This may seem obvious, but it is easy to
fall into the practice of only looking at quantitative performance measurements
like accuracy or log-likelihood. Directly observing the machine learning model

performing its task will help you to determine whether the quantitative performance
numbers it achieves seem reasonable. Evaluation bugs can be some of the most
devastating bugs because they can mislead you into believing your system is
performing well when it is not.

Visualize the worst mistakes : Most models are able to output some sort of
confidence measure for the task they perform. For example, classifiers based on a
softmax output layer assign a probability to each class. The probability assigned
to the most likely class thus gives an estimate of the confidence the model has in
its classification decision. Typically, maximum likelihood training results in these
values being overestimates rather than accurate probabilities of correct prediction,
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but they are somewhat useful in the sense that examples that are actually less
likely to be correctly labeled receive smaller probabilities under the model. By
viewing the training set examples that are the hardest to model correctly, one can
often discover problems with the way the data has been preprocessed or labeled.
For example, the Street View transcription system originally had a problem where
the address number detection system would crop the image too tightly and omit
some of the digits. The transcription network then assigned very low probability
to the correct answer on these images. Sorting the images to identify the most
confident mistakes showed that there was a systematic problem with the cropping.

Modifying the detection system to crop much wider images resulted in much better
performance of the overall system, even though the transcription network needed
to be able to process greater variation in the position and scale of the address
numbers.

Reasoning about software using train and test error: It is often difficult to
determine whether the underlying software is correctly implemented. Some clues
can be obtained from the train and test error. If training error is low but test error
is high, then it is likely that that the training procedure works correctly, and the
model is overfitting for fundamental algorithmic reasons. An alternative possibility
is that the test error is measured incorrectly due to a problem with saving the
model after training then reloading it for test set evaluation, or if the test data

was prepared differently from the training data. If both train and test error are
high, then it is difficult to determine whether there is a software defect or whether
the model is underfitting due to fundamental algorithmic reasons. This scenario
requires further tests, described next.

Fit a tiny dataset: If you have high error on the training set, determine whether
it is due to genuine underfitting or due to a software defect. Usually even small
models can be guaranteed to be able fit a sufficiently small dataset. For example,
a classification dataset with only one example can be fit just by setting the biases
of the output layer correctly. Usually if you cannot train a classifier to correctly
label a single example, an autoencoder to successfully reproduce a single example
with high fidelity, or a generative model to consistently emit samples resembling a

single example, there is a software defect preventing successful optimization on the
training set. This test can be extended to a small dataset with few examples.

Compare back-propagated derivatives to numerical derivatives: If you are using
a software framework that requires you to implement your own gradient com-
putations, or if you are adding a new operation to a differentiation library and
must define its method, then a common source of error is implementing this
gradient expression incorrectly. One way to verify that these derivatives are correct
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is to compare the derivatives computed by your implementation of automatic
differentiation to the derivatives computed by a finite differences. Because

f ( ) = limx
f x  f x( + ) − ( )


, (11.5)

we can approximate the derivative by using a small, finite :

f ( ) x ≈ f x  f x( + ) − ( )


. (11.6)

We can improve the accuracy of the approximation by using the centered difference:

f ( ) x ≈
f x( +  f x) − ( − )


. (11.7)

The perturbation size  must chosen to be large enough to ensure that the pertur-
bation is not rounded down too much by finite-precision numerical computations.

Usually, we will want to test the gradient or Jacobian of a vector-valued function

g : → . Unfortunately, finite differencing only allows us to take a single
derivative at a time. We can either run finite differencing mn times to evaluate all
of the partial derivatives of g, or we can apply the test to a new function that uses
random projections at both the input and output of g. For example, we can apply
our test of the implementation of the derivatives to f(x) where f (x) = u g(vx),
where u and v are randomly chosen vectors. Computing f (x) correctly requires
being able to back-propagate through g correctly, yet is efficient to do with finite
differences because f has only a single input and a single output. It is usually
a good idea to repeat this test for more than one value of u and v to reduce
the chance that the test overlooks mistakes that are orthogonal to the random
projection.

If one has access to numerical computation on complex numbers, then there is
a very efficient way to numerically estimate the gradient by using complex numbers
as input to the function (Squire and Trapp 1998, ). The method is based on the
observation that

f x i f x if( + ) = ( ) + ( ) + (x O  ) (11.8)

real( ( + )) = ( ) + (f x i f x O  ) imag(,
f x i( + )


) = f ( ) + (x O  ), (11.9)

where i=
√

−1. Unlike in the real-valued case above, there is no cancellation effect
due to taking the difference between the value of f at different points. This allows
the use of tiny values of  like  = 10 , which make the O( ) error insignificant
for all practical purposes.
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Monitor histograms of activations and gradient: It is often useful to visualize
statistics of neural network activations and gradients, collected over a large amount
of training iterations (maybe one epoch). The pre-activation value of hidden units
can tell us if the units saturate, or how often they do. For example, for rectifiers,
how often are they off? Are there units that are always off? For tanh units,
the average of the absolute value of the pre-activations tells us how saturated
the unit is. In a deep network where the propagated gradients quickly grow or
quickly vanish, optimization may be hampered. Finally, it is useful to compare the
magnitude of parameter gradients to the magnitude of the parameters themselves.

As suggested by ( ), we would like the magnitude of parameter updatesBottou 2015
over a minibatch to represent something like 1% of the magnitude of the parameter,
not 50% or 0.001% (which would make the parameters move too slowly). It may
be that some groups of parameters are moving at a good pace while others are
stalled. When the data is sparse (like in natural language), some parameters may
be very rarely updated, and this should be kept in mind when monitoring their
evolution.

Finally, many deep learning algorithms provide some sort of guarantee about
the results produced at each step. For example, in Part , we will see someIII
approximate inference algorithms that work by using algebraic solutions to op-
timization problems. Typically these can be debugged by testing each of their

guarantees. Some guarantees that some optimization algorithms offer include that
the objective function will never increase after one step of the algorithm, that
the gradient with respect to some subset of variables will be zero after each step
of the algorithm, and that the gradient with respect to all variables will be zero
at convergence. Usually due to rounding error, these conditions will not hold
exactly in a digital computer, so the debugging test should include some tolerance
parameter.

11.6 Example: Multi-Digit Number Recognition

To provide an end-to-end description of how to apply our design methodology

in practice, we present a brief account of the Street View transcription system,
from the point of view of designing the deep learning components. Obviously,
many other components of the complete system, such as the Street View cars, the
database infrastructure, and so on, were of paramount importance.

From the point of view of the machine learning task, the process began with
data collection. The cars collected the raw data and human operators provided
labels. The transcription task was preceded by a significant amount of dataset
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curation, including using other machine learning techniques to the house
numbers prior to transcribing them.

The transcription project began with a choice of performance metrics and
desired values for these metrics. An important general principle is to tailor the
choice of metric to the business goals for the project. Because maps are only useful
if they have high accuracy, it was important to set a high accuracy requirement
for this project. Specifically, the goal was to obtain human-level, 98% accuracy.
This level of accuracy may not always be feasible to obtain. In order to reach
this level of accuracy, the Street View transcription system sacrifices coverage.

Coverage thus became the main performance metric optimized during the project,
with accuracy held at 98%. As the convolutional network improved, it became
possible to reduce the confidence threshold below which the network refuses to
transcribe the input, eventually exceeding the goal of 95% coverage.

After choosing quantitative goals, the next step in our recommended methodol-
ogy is to rapidly establish a sensible baseline system. For vision tasks, this means a
convolutional network with rectified linear units. The transcription project began
with such a model. At the time, it was not common for a convolutional network
to output a sequence of predictions. In order to begin with the simplest possible
baseline, the first implementation of the output layer of the model consisted of n
different softmax units to predict a sequence of n characters. These softmax units

were trained exactly the same as if the task were classification, with each softmax
unit trained independently.

Our recommended methodology is to iteratively refine the baseline and test
whether each change makes an improvement. The first change to the Street View
transcription system was motivated by a theoretical understanding of the coverage
metric and the structure of the data. Specifically, the network refuses to classify
an input x whenever the probability of the output sequence p(y x| ) < t for
some threshold t. Initially, the definition of p(y x| ) was ad-hoc, based on simply
multiplying all of the softmax outputs together. This motivated the development
of a specialized output layer and cost function that actually computed a principled
log-likelihood. This approach allowed the example rejection mechanism to function

much more effectively.

At this point, coverage was still below 90%, yet there were no obvious theoretical
problems with the approach. Our methodology therefore suggests to instrument
the train and test set performance in order to determine whether the problem
is underfitting or overfitting. In this case, train and test set error were nearly
identical. Indeed, the main reason this project proceeded so smoothly was the
availability of a dataset with tens of millions of labeled examples. Because train
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and test set error were so similar, this suggested that the problem was either due
to underfitting or due to a problem with the training data. One of the debugging
strategies we recommend is to visualize the model’s worst errors. In this case, that
meant visualizing the incorrect training set transcriptions that the model gave the
highest confidence. These proved to mostly consist of examples where the input
image had been cropped too tightly, with some of the digits of the address being
removed by the cropping operation. For example, a photo of an address “1849”
might be cropped too tightly, with only the “849” remaining visible. This problem
could have been resolved by spending weeks improving the accuracy of the address

number detection system responsible for determining the cropping regions. Instead,
the team took a much more practical decision, to simply expand the width of the
crop region to be systematically wider than the address number detection system
predicted. This single change added ten percentage points to the transcription
system’s coverage.

Finally, the last few percentage points of performance came from adjusting
hyperparameters. This mostly consisted of making the model larger while main-
taining some restrictions on its computational cost. Because train and test error
remained roughly equal, it was always clear that any performance deficits were due
to underfitting, as well as due to a few remaining problems with the dataset itself.

Overall, the transcription project was a great success, and allowed hundreds of

millions of addresses to be transcribed both faster and at lower cost than would
have been possible via human effort.

We hope that the design principles described in this chapter will lead to many
other similar successes.
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Applications

In this chapter, we describe how to use deep learning to solve applications in com-
puter vision, speech recognition, natural language processing, and other application
areas of commercial interest. We begin by discussing the large scale neural network
implementations required for most serious AI applications. Next, we review several

specific application areas that deep learning has been used to solve. While one
goal of deep learning is to design algorithms that are capable of solving a broad
variety of tasks, so far some degree of specialization is needed. For example, vision
tasks require processing a large number of input features (pixels) per example.
Language tasks require modeling a large number of possible values (words in the
vocabulary) per input feature.

12.1 Large Scale Deep Learning

Deep learning is based on the philosophy of connectionism: while an individual
biological neuron or an individual feature in a machine learning model is not

intelligent, a large population of these neurons or features acting together can
exhibit intelligent behavior. It truly is important to emphasize the fact that the
number of neurons must be large. One of the key factors responsible for the
improvement in neural network’s accuracy and the improvement of the complexity
of tasks they can solve between the 1980s and today is the dramatic increase in
the size of the networks we use. As we saw in Sec. , network sizes have grown1.2.3
exponentially for the past three decades, yet artificial neural networks are only as
large as the nervous systems of insects.

Because the size of neural networks is of paramount importance, deep learning
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requires high performance hardware and software infrastructure.

12.1.1 Fast CPU Implementations

Traditionally, neural networks were trained using the CPU of a single machine.
Today, this approach is generally considered insufficient. We now mostly use GPU

computing or the CPUs of many machines networked together. Before moving to
these expensive setups, researchers worked hard to demonstrate that CPUs could
not manage the high computational workload required by neural networks.

A description of how to implement efficient numerical CPU code is beyond
the scope of this book, but we emphasize here that careful implementation for
specific CPU families can yield large improvements. For example, in 2011, the best
CPUs available could run neural network workloads faster when using fixed-point
arithmetic rather than floating-point arithmetic. By creating a carefully tuned
fixed-point implementation, Vanhoucke 2011et al. ( ) obtained a 3× speedup over
a strong floating-point system. Each new model of CPU has different performance
characteristics, so sometimes floating-point implementations can be faster too.

The important principle is that careful specialization of numerical computation
routines can yield a large payoff. Other strategies, besides choosing whether to use
fixed or floating point, include optimizing data structures to avoid cache misses
and using vector instructions. Many machine learning researchers neglect these
implementation details, but when the performance of an implementation restricts
the size of the model, the accuracy of the model suffers.

12.1.2 GPU Implementations

Most modern neural network implementations are based on graphics processing
units. Graphics processing units (GPUs) are specialized hardware components
that were originally developed for graphics applications. The consumer market for
video gaming systems spurred development of graphics processing hardware. The
performance characteristics needed for good video gaming systems turn out to be
beneficial for neural networks as well.

Video game rendering requires performing many operations in parallel quickly.
Models of characters and environments are specified in terms of lists of 3-D
coordinates of vertices. Graphics cards must perform matrix multiplication and
division on many vertices in parallel to convert these 3-D coordinates into 2-D
on-screen coordinates. The graphics card must then perform many computations

at each pixel in parallel to determine the color of each pixel. In both cases, the
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computations are fairly simple and do not involve much branching compared to
the computational workload that a CPU usually encounters. For example, each
vertex in the same rigid object will be multiplied by the same matrix; there is no
need to evaluate an if statement per-vertex to determine which matrix to multiply
by. The computations are also entirely independent of each other, and thus may
be parallelized easily. The computations also involve processing massive buffers of
memory, containing bitmaps describing the texture (color pattern) of each object
to be rendered. Together, this results in graphics cards having been designed to
have a high degree of parallelism and high memory bandwidth, at the cost of

having a lower clock speed and less branching capability relative to traditional
CPUs.

Neural network algorithms require the same performance characteristics as the
real-time graphics algorithms described above. Neural networks usually involve
large and numerous buffers of parameters, activation values, and gradient values,
each of which must be completely updated during every step of training. These
buffers are large enough to fall outside the cache of a traditional desktop computer
so the memory bandwidth of the system often becomes the rate limiting factor.
GPUs offer a compelling advantage over CPUs due to their high memory bandwidth.
Neural network training algorithms typically do not involve much branching or
sophisticated control, so they are appropriate for GPU hardware. Since neural

networks can be divided into multiple individual “neurons” that can be processed
independently from the other neurons in the same layer, neural networks easily
benefit from the parallelism of GPU computing.

GPU hardware was originally so specialized that it could only be used for
graphics tasks. Over time, GPU hardware became more flexible, allowing custom
subroutines to be used to transform the coordinates of vertices or assign colors
to pixels. In principle, there was no requirement that these pixel values actually
be based on a rendering task. These GPUs could be used for scientific computing
by writing the output of a computation to a buffer of pixel values. Steinkrau
et al. ( ) implemented a two-layer fully connected neural network on a GPU2005
and reported a 3X speedup over their CPU-based baseline. Shortly thereafter,

Chellapilla 2006et al. ( ) demonstrated that the same technique could be used to
accelerate supervised convolutional networks.

The popularity of graphics cards for neural network training exploded after the
advent of general purpose GPUs. These GP-GPUs could execute arbitrary code,
not just rendering subroutines. NVIDIA’s CUDA programming language provided
a way to write this arbitrary code in a C-like language. With their relatively
convenient programming model, massive parallelism, and high memory bandwidth,
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GP-GPUs now offer an ideal platform for neural network programming. This
platform was rapidly adopted by deep learning researchers soon after it became
available ( , ; , ).Raina et al. 2009 Ciresan et al. 2010

Writing efficient code for GP-GPUs remains a difficult task best left to spe-
cialists. The techniques required to obtain good performance on GPU are very
different from those used on CPU. For example, good CPU-based code is usually
designed to read information from the cache as much as possible. On GPU, most
writable memory locations are not cached, so it can actually be faster to compute
the same value twice, rather than compute it once and read it back from memory.

GPU code is also inherently multi-threaded and the different threads must be
coordinated with each other carefully. For example, memory operations are faster
if they can be coalesced. Coalesced reads or writes occur when several threads can
each read or write a value that they need simultaneously, as part of a single memory
transaction. Different models of GPUs are able to coalesce different kinds of read
or write patterns. Typically, memory operations are easier to coalesce if among n
threads, thread i accesses byte i+ j of memory, and j is a multiple of some power
of 2. The exact specifications differ between models of GPU. Another common
consideration for GPUs is making sure that each thread in a group executes the
same instruction simultaneously. This means that branching can be difficult on
GPU. Threads are divided into small groups called . Each thread in a warpwarps

executes the same instruction during each cycle, so if different threads within the
same warp need to execute different code paths, these different code paths must
be traversed sequentially rather than in parallel.

Due to the difficulty of writing high performance GPU code, researchers should
structure their workflow to avoid needing to write new GPU code in order to test
new models or algorithms. Typically, one can do this by building a software library
of high performance operations like convolution and matrix multiplication, then
specifying models in terms of calls to this library of operations. For example, the
machine learning library Pylearn2 (Goodfellow 2013cet al., ) specifies all of its
machine learning algorithms in terms of calls to Theano ( , ;Bergstra et al. 2010
Bastien 2012et al., ) and cuda-convnet ( , ), which provide theseKrizhevsky 2010

high-performance operations. This factored approach can also ease support for
multiple kinds of hardware. For example, the same Theano program can run on
either CPU or GPU, without needing to change any of the calls to Theano itself.
Other libraries like TensorFlow ( , ) and Torch ( ,Abadi et al. 2015 Collobert et al.
2011b) provide similar features.
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12.1.3 Large Scale Distributed Implementations

In many cases, the computational resources available on a single machine are
insufficient. We therefore want to distribute the workload of training and inference

across many machines.

Distributing inference is simple, because each input example we want to process
can be run by a separate machine. This is known as data parallelism.

It is also possible to get model parallelism, where multiple machines work
together on a single datapoint, with each machine running a different part of the
model. This is feasible for both inference and training.

Data parallelism during training is somewhat harder. We can increase the size
of the minibatch used for a single SGD step, but usually we get less than linear
returns in terms of optimization performance. It would be better to allow multiple
machines to compute multiple gradient descent steps in parallel. Unfortunately,

the standard definition of gradient descent is as a completely sequential algorithm:
the gradient at step is a function of the parameters produced by step .t t − 1

This can be solved using asynchronous stochastic gradient descent (Bengio
et al., ;2001 Recht 2011et al., ). In this approach, several processor cores share
the memory representing the parameters. Each core reads parameters without a
lock, then computes a gradient, then increments the parameters without a lock.
This reduces the average amount of improvement that each gradient descent step
yields, because some of the cores overwrite each other’s progress, but the increased
rate of production of steps causes the learning process to be faster overall. Dean
et al. ( ) pioneered the multi-machine implementation of this lock-free approach2012
to gradient descent, where the parameters are managed by a parameter server
rather than stored in shared memory. Distributed asynchronous gradient descent

remains the primary strategy for training large deep networks and is used by
most major deep learning groups in industry ( , ;Chilimbi et al. 2014 Wu et al.,
2015). Academic deep learning researchers typically cannot afford the same scale
of distributed learning systems but some research has focused on how to build
distributed networks with relatively low-cost hardware available in the university
setting ( , ).Coates et al. 2013

12.1.4 Model Compression

In many commercial applications, it is much more important that the time and
memory cost of running inference in a machine learning model be low than that
the time and memory cost of training be low. For applications that do not require
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personalization, it is possible to train a model once, then deploy it to be used by
billions of users. In many cases, the end user is more resource-constrained than
the developer. For example, one might train a speech recognition network with a
powerful computer cluster, then deploy it on mobile phones.

A key strategy for reducing the cost of inference is model compression (Buciluǎ
et al., ). The basic idea of model compression is to replace the original,2006
expensive model with a smaller model that requires less memory and runtime to
store and evaluate.

Model compression is applicable when the size of the original model is driven
primarily by a need to prevent overfitting. In most cases, the model with the
lowest generalization error is an ensemble of several independently trained models.
Evaluating all n ensemble members is expensive. Sometimes, even a single model
generalizes better if it is large (for example, if it is regularized with dropout).

These large models learn some function f( ), but do so using many more
parameters than are necessary for the task. Their size is necessary only due to
the limited number of training examples. As soon as we have fit this function
f ( ), we can generate a training set containing infinitely many examples, simply
by applying f to randomly sampled points . We then train the new, smaller,
model to match f ( ) on these points. In order to most efficiently use the capacity
of the new, small model, it is best to sample the new points from a distribution

resembling the actual test inputs that will be supplied to the model later. This can
be done by corrupting training examples or by drawing points from a generative
model trained on the original training set.

Alternatively, one can train the smaller model only on the original training
points, but train it to copy other features of the model, such as its posterior
distribution over the incorrect classes (Hinton 2014 2015et al., , ).

12.1.5 Dynamic Structure

One strategy for accelerating data processing systems in general is to build systems
that have dynamic structure in the graph describing the computation needed to
process an input. Data processing systems can dynamically determine which
subset of many neural networks should be run on a given input. Individual neural
networks can also exhibit dynamic structure internally by determining which subset
of features (hidden units) to compute given information from the input. This
form of dynamic structure inside neural networks is sometimes called conditional
computation ( , ; , ). Since many components of theBengio 2013 Bengio et al. 2013b
architecture may be relevant only for a small amount of possible inputs, the system
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can run faster by computing these features only when they are needed.

Dynamic structure of computations is a basic computer science principle applied
generally throughout the software engineering discipline. The simplest versions
of dynamic structure applied to neural networks are based on determining which
subset of some group of neural networks (or other machine learning models) should
be applied to a particular input.

A venerable strategy for accelerating inference in a classifier is to use a cascade
of classifiers. The cascade strategy may be applied when the goal is to detect the

presence of a rare object (or event). To know for sure that the object is present,
we must use a sophisticated classifier with high capacity, that is expensive to run.
However, because the object is rare, we can usually use much less computation
to reject inputs as not containing the object. In these situations, we can train
a sequence of classifiers. The first classifiers in the sequence have low capacity,
and are trained to have high recall. In other words, they are trained to make sure
we do not wrongly reject an input when the object is present. The final classifier
is trained to have high precision. At test time, we run inference by running the
classifiers in a sequence, abandoning any example as soon as any one element in
the cascade rejects it. Overall, this allows us to verify the presence of objects with
high confidence, using a high capacity model, but does not force us to pay the cost
of full inference for every example. There are two different ways that the cascade

can achieve high capacity. One way is to make the later members of the cascade
individually have high capacity. In this case, the system as a whole obviously has
high capacity, because some of its individual members do. It is also possible to
make a cascade in which every individual model has low capacity but the system
as a whole has high capacity due to the combination of many small models. Viola
and Jones 2001( ) used a cascade of boosted decision trees to implement a fast and
robust face detector suitable for use in handheld digital cameras. Their classifier
localizes a face using essentially a sliding window approach in which many windows
are examined and rejected if they do not contain faces. Another version of cascades
uses the earlier models to implement a sort of hard attention mechanism: the
early members of the cascade localize an object and later members of the cascade

perform further processing given the location of the object. For example, Google
transcribes address numbers from Street View imagery using a two-step cascade
that first locates the address number with one machine learning model and then
transcribes it with another (Goodfellow 2014det al., ).

Decision trees themselves are an example of dynamic structure, because each
node in the tree determines which of its subtrees should be evaluated for each input.
A simple way to accomplish the union of deep learning and dynamic structure
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is to train a decision tree in which each node uses a neural network to make the
splitting decision ( , ), though this has typically not beenGuo and Gelfand 1992
done with the primary goal of accelerating inference computations.

In the same spirit, one can use a neural network, called the to select whichgater
one out of several expert networks will be used to compute the output, given the
current input. The first version of this idea is called the mixture of experts ( ,Nowlan
1990 Jacobs 1991; et al., ), in which the gater outputs a set of probabilities or
weights (obtained via a softmax nonlinearity), one per expert, and the final output
is obtained by the weighted combination of the output of the experts. In that

case, the use of the gater does not offer a reduction in computational cost, but if a
single expert is chosen by the gater for each example, we obtain the hard mixture
of experts ( , , ), which can considerably accelerate trainingCollobert et al. 2001 2002
and inference time. This strategy works well when the number of gating decisions is
small because it is not combinatorial. But when we want to select different subsets
of units or parameters, it is not possible to use a “soft switch” because it requires
enumerating (and computing outputs for) all the gater configurations. To deal
with this problem, several approaches have been explored to train combinatorial
gaters. ( ) experiment with several estimators of the gradientBengio et al. 2013b
on the gating probabilities, while ( ) and ( ) useBacon et al. 2015 Bengio et al. 2015a
reinforcement learning techniques (policy gradient) to learn a form of conditional

dropout on blocks of hidden units and get an actual reduction in computational
cost without impacting negatively on the quality of the approximation.

Another kind of dynamic structure is a switch, where a hidden unit can
receive input from different units depending on the context. This dynamic routing
approach can be interpreted as an attention mechanism ( , ).Olshausen et al. 1993
So far, the use of a hard switch has not proven effective on large-scale applications.
Contemporary approaches instead use a weighted average over many possible inputs,
and thus do not achieve all of the possible computational benefits of dynamic
structure. Contemporary attention mechanisms are described in Sec. .12.4.5.1

One major obstacle to using dynamically structured systems is the decreased
degree of parallelism that results from the system following different code branches

for different inputs. This means that few operations in the network can be described
as matrix multiplication or batch convolution on a minibatch of examples. We
can write more specialized sub-routines that convolve each example with different
kernels or multiply each row of a design matrix by a different set of columns
of weights. Unfortunately, these more specialized subroutines are difficult to
implement efficiently. CPU implementations will be slow due to the lack of cache
coherence and GPU implementations will be slow due to the lack of coalesced
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memory transactions and the need to serialize warps when members of a warp take
different branches. In some cases, these issues can be mitigated by partitioning the
examples into groups that all take the same branch, and processing these groups
of examples simultaneously. This can be an acceptable strategy for minimizing
the time required to process a fixed amount of examples in an offline setting. In
a real-time setting where examples must be processed continuously, partitioning
the workload can result in load-balancing issues. For example, if we assign one
machine to process the first step in a cascade and another machine to process
the last step in a cascade, then the first will tend to be overloaded and the last

will tend to be underloaded. Similar issues arise if each machine is assigned to
implement different nodes of a neural decision tree.

12.1.6 Specialized Hardware Implementations of Deep Networks

Since the early days of neural networks research, hardware designers have worked
on specialized hardware implementations that could speed up training and/or
inference of neural network algorithms. See early and more recent reviews of
specialized hardware for deep networks ( , ; ,Lindsey and Lindblad 1994 Beiu et al.

2003 Misra and Saha 2010; , ).

Different forms of specialized hardware (Graf and Jackel 1989 Mead and, ;
Ismail 2012 Kim 2009 Pham 2012 Chen 2014a b, ; et al., ; et al., ; et al., , ) have
been developed over the last decades, either with ASICs (application-specific inte-
grated circuit), either with digital (based on binary representations of numbers),
analog (Graf and Jackel 1989 Mead and Ismail 2012, ; , ) (based on physical imple-
mentations of continuous values as voltages or currents) or hybrid implementations
(combining digital and analog components). In recent years more flexible FPGA
(field programmable gated array) implementations (where the particulars of the
circuit can be written on the chip after it has been built) have been developed.

Though software implementations on general-purpose processing units (CPUs
and GPUs) typically use 32 or 64 bits of precision to represent floating point
numbers, it has long been known that it was possible to use less precision, at
least at inference time (Holt and Baker 1991 Holi and Hwang 1993 Presley, ; , ;
and Haggard 1994 Simard and Graf 1994 Wawrzynek 1996 Savich, ; , ; et al., ; et al.,
2007). This has become a more pressing issue in recent years as deep learning
has gained in popularity in industrial products, and as the great impact of faster
hardware was demonstrated with GPUs. Another factor that motivates current
research on specialized hardware for deep networks is that the rate of progress of
a single CPU or GPU core has slowed down, and most recent improvements in
computing speed have come from parallelization across cores (either in CPUs or
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GPUs). This is very different from the situation of the 1990s (the previous neural
network era) where the hardware implementations of neural networks (which might
take two years from inception to availability of a chip) could not keep up with
the rapid progress and low prices of general-purpose CPUs. Building specialized
hardware is thus a way to push the envelope further, at a time when new hardware
designs are being developed for low-power devices such as phones, aiming for
general-public applications of deep learning (e.g., with speech, computer vision or
natural language).

Recent work on low-precision implementations of backprop-based neural nets

(Vanhoucke 2011 Courbariaux 2015 Gupta 2015et al., ; et al., ; et al., ) suggests
that between 8 and 16 bits of precision can suffice for using or training deep
neural networks with back-propagation. What is clear is that more precision is
required during training than at inference time, and that some forms of dynamic
fixed point representation of numbers can be used to reduce how many bits are
required per number. Traditional fixed point numbers are restricted to a fixed
range (which corresponds to a given exponent in a floating point representation).
Dynamic fixed point representations share that range among a set of numbers
(such as all the weights in one layer). Using fixed point rather than floating point
representations and using less bits per number reduces the hardware surface area,
power requirements and computing time needed for performing multiplications,

and multiplications are the most demanding of the operations needed to use or
train a modern deep network with backprop.

12.2 Computer Vision

Computer vision has traditionally been one of the most active research areas for
deep learning applications, because vision is a task that is effortless for humans
and many animals but challenging for computers ( , ). Many ofBallard et al. 1983
the most popular standard benchmark tasks for deep learning algorithms are forms
of object recognition or optical character recognition.

Computer vision is a very broad field encompassing a wide variety of ways
of processing images, and an amazing diversity of applications. Applications of
computer vision range from reproducing human visual abilities, such as recognizing
faces, to creating entirely new categories of visual abilities. As an example of
the latter category, one recent computer vision application is to recognize sound
waves from the vibrations they induce in objects visible in a video ( ,Davis et al.
2014). Most deep learning research on computer vision has not focused on such
exotic applications that expand the realm of what is possible with imagery but
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rather a small core of AI goals aimed at replicating human abilities. Most deep
learning for computer vision is used for object recognition or detection of some
form, whether this means reporting which object is present in an image, annotating
an image with bounding boxes around each object, transcribing a sequence of
symbols from an image, or labeling each pixel in an image with the identity of the
object it belongs to. Because generative modeling has been a guiding principle
of deep learning research, there is also a large body of work on image synthesis
using deep models. While image synthesis is usually not considered aex nihilo
computer vision endeavor, models capable of image synthesis are usually useful for

image restoration, a computer vision task involving repairing defects in images or
removing objects from images.

12.2.1 Preprocessing

Many application areas require sophisticated preprocessing because the original
input comes in a form that is difficult for many deep learning architectures to
represent. Computer vision usually requires relatively little of this kind of prepro-
cessing. The images should be standardized so that their pixels all lie in the same,

reasonable range, like [0,1] or [-1, 1]. Mixing images that lie in [0,1] with images
that lie in [0, 255] will usually result in failure. Formatting images to have the same
scale is the only kind of preprocessing that is strictly necessary. Many computer
vision architectures require images of a standard size, so images must be cropped or
scaled to fit that size. However, even this rescaling is not always strictly necessary.
Some convolutional models accept variably-sized inputs and dynamically adjust
the size of their pooling regions to keep the output size constant (Waibel et al.,
1989). Other convolutional models have variable-sized output that automatically
scales in size with the input, such as models that denoise or label each pixel in an
image ( , ).Hadsell et al. 2007

Dataset augmentation may be seen as a way of preprocessing the training set

only. Dataset augmentation is an excellent way to reduce the generalization error
of most computer vision models. A related idea applicable at test time is to show
the model many different versions of the same input (for example, the same image
cropped at slightly different locations) and have the different instantiations of the
model vote to determine the output. This latter idea can be interpreted as an
ensemble approach, and helps to reduce generalization error.

Other kinds of preprocessing are applied to both the train and the test set with
the goal of putting each example into a more canonical form in order to reduce the
amount of variation that the model needs to account for. Reducing the amount of
variation in the data can both reduce generalization error and reduce the size of
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the model needed to fit the training set. Simpler tasks may be solved by smaller
models, and simpler solutions are more likely to generalize well. Preprocessing
of this kind is usually designed to remove some kind of variability in the input
data that is easy for a human designer to describe and that the human designer
is confident has no relevance to the task. When training with large datasets and
large models, this kind of preprocessing is often unnecessary, and it is best to just
let the model learn which kinds of variability it should become invariant to. For
example, the AlexNet system for classifying ImageNet only has one preprocessing
step: subtracting the mean across training examples of each pixel (Krizhevsky

et al., ).2012

One of the most obvious sources of variation that can be safely removed for
many tasks is the amount of contrast in the image. Contrast simply refers to the
magnitude of the difference between the bright and the dark pixels in an image.
There are many ways of quantifying the contrast of an image. In the context of
deep learning, contrast usually refers to the standard deviation of the pixels in an
image or region of an image. Suppose we have an image represented by a tensor

∈ , with being the red intensity at row i and column j , giving
the green intensity and giving the blue intensity. Then the contrast of the
entire image is given by

1

3rc
− ¯ (12.1)

where ¯ is the mean intensity of the entire image:

¯ =
1

3rc
. (12.2)

Global contrast normalization (GCN) aims to prevent images from having
varying amounts of contrast by subtracting the mean from each image, then
rescaling it so that the standard deviation across its pixels is equal to some
constant s. This approach is complicated by the fact that no scaling factor can
change the contrast of a zero-contrast image (one whose pixels all have equal
intensity). Images with very low but non-zero contrast often have little information
content. Dividing by the true standard deviation usually accomplishes nothing
more than amplifying sensor noise or compression artifacts in such cases. This
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motivates introducing a small, positive regularization parameter λ to bias the
estimate of the standard deviation. Alternately, one can constrain the denominator
to be at least . Given an input image , GCN produces an output image ,
defined such that

= s
− ¯

max , λ+ − ¯
. (12.3)

Datasets consisting of large images cropped to interesting objects are unlikely
to contain any images with nearly constant intensity. In these cases, it is safe
to practically ignore the small denominator problem by setting λ = 0 and avoid
division by 0 in extremely rare cases by setting  to an extremely low value like
10 . This is the approach used by ( ) on the CIFAR-10Goodfellow et al. 2013a
dataset. Small images cropped randomly are more likely to have nearly constant
intensity, making aggressive regularization more useful. ( ) usedCoates et al. 2011
 λ= 0 and = 10 on small, randomly selected patches drawn from CIFAR-10.

The scale parameter s can usually be set to , as done by ( ),1 Coates et al. 2011
or chosen to make each individual pixel have standard deviation across examples

close to 1, as done by ( ).Goodfellow et al. 2013a

The standard deviation in Eq. is just a rescaling of the12.3 L norm of the
image (assuming the mean of the image has already been removed). It is preferable
to define GCN in terms of standard deviation rather than L norm because the
standard deviation includes division by the number of pixels, so GCN based on
standard deviation allows the same s to be used regardless of image size. However,
the observation that the L norm is proportional to the standard deviation can
help build a useful intuition. One can understand GCN as mapping examples to
a spherical shell. See Fig. for an illustration. This can be a useful property12.1
because neural networks are often better at responding to directions in space rather
than exact locations. Responding to multiple distances in the same direction

requires hidden units with collinear weight vectors but different biases. Such
coordination can be difficult for the learning algorithm to discover. Additionally,
many shallow graphical models have problems with representing multiple separated
modes along the same line. GCN avoids these problems by reducing each example
to a direction rather than a direction and a distance.

Counterintuitively, there is a preprocessing operation known as and itsphering
is not the same operation as GCN. Sphering does not refer to making the data lie
on a spherical shell, but rather to rescaling the principal components to have equal
variance, so that the multivariate normal distribution used by PCA has spherical
contours. Sphering is more commonly known as .whitening
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λ = 0
s= 1  = 10

L
λ > 0

s 

Global contrast normalization will often fail to highlight image features we
would like to stand out, such as edges and corners. If we have a scene with a large
dark area and a large bright area (such as a city square with half the image in
the shadow of a building) then global contrast normalization will ensure there is a
large difference between the brightness of the dark area and the brightness of the
light area. It will not, however, ensure that edges within the dark region stand out.

This motivates local contrast normalization. Local contrast normalization
ensures that the contrast is normalized across each small window, rather than over
the image as a whole. See Fig. for a comparison of global and local contrast12.2

normalization.

Various definitions of local contrast normalization are possible. In all cases,
one modifies each pixel by subtracting a mean of nearby pixels and dividing by
a standard deviation of nearby pixels. In some cases, this is literally the mean
and standard deviation of all pixels in a rectangular window centered on the
pixel to be modified ( , ). In other cases, this is a weighted meanPinto et al. 2008
and weighted standard deviation using Gaussian weights centered on the pixel to
be modified. In the case of color images, some strategies process different color
channels separately while others combine information from different channels to
normalize each pixel ( , ).Sermanet et al. 2012
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Input image GCN LCN

Local contrast normalization can usually be implemented efficiently by using
separable convolution (see Sec. ) to compute feature maps of local means and9.8
local standard deviations, then using element-wise subtraction and element-wise
division on different feature maps.

Local contrast normalization is a differentiable operation and can also be used as
a nonlinearity applied to the hidden layers of a network, as well as a preprocessing
operation applied to the input.

As with global contrast normalization, we typically need to regularize local
contrast normalization to avoid division by zero. In fact, because local contrast
normalization typically acts on smaller windows, it is even more important to
regularize. Smaller windows are more likely to contain values that are all nearly
the same as each other, and thus more likely to have zero standard deviation.

As described in Sec. , it is easy to improve the generalization of a classifier7.4
by increasing the size of the training set by adding extra copies of the training
examples that have been modified with transformations that do not change the
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class. Object recognition is a classification task that is especially amenable to
this form of dataset augmentation because the class is invariant to so many
transformations and the input can be easily transformed with many geometric
operations. As described before, classifiers can benefit from random translations,
rotations, and in some cases, flips of the input to augment the dataset. In specialized
computer vision applications, more advanced transformations are commonly used
for dataset augmentation. These schemes include random perturbation of the
colors in an image ( , ) and nonlinear geometric distortions ofKrizhevsky et al. 2012
the input ( , ).LeCun et al. 1998b

12.3 Speech Recognition

The task of speech recognition is to map an acoustic signal containing a spoken
natural language utterance into the corresponding sequence of words intended by
the speaker. Let = ( , , . . . , ) denote the sequence of acoustic input
vectors (traditionally produced by splitting the audio into 20ms frames). Most
speech recognition systems preprocess the input using specialized hand-designed
features, but some ( , ) deep learning systems learn featuresJaitly and Hinton 2011
from raw input. Let = (y , y , . . . , y ) denote the target output sequence (usually

a sequence of words or characters). The automatic speech recognition (ASR) task
consists of creating a function f that computes the most probable linguistic

sequence given the acoustic sequence :

f ( ) = arg max P ( = )| (12.4)

where P is the true conditional distribution relating the inputs to the targets

.

Since the 1980s and until about 2009–2012, state-of-the art speech recognition

systems primarily combined hidden Markov models (HMMs) and Gaussian mixture
models (GMMs). GMMs modeled the association between acoustic features and
phonemes ( , ), while HMMs modeled the sequence of phonemes.Bahl et al. 1987
The GMM-HMM model family treats acoustic waveforms as being generated
by the following process: first an HMM generates a sequence of phonemes and
discrete sub-phonemic states (such as the beginning, middle, and end of each
phoneme), then a GMM transforms each discrete symbol into a brief segment of
audio waveform. Although GMM-HMM systems dominated ASR until recently,
speech recognition was actually one of the first areas where neural networks were
applied, and numerous ASR systems from the late 1980s and early 1990s used
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neural nets (Bourlard and Wellekens 1989 Waibel 1989 Robinson and, ; et al., ;
Fallside 1991 Bengio 1991 1992 Konig 1996, ; et al., , ; et al., ). At the time, the
performance of ASR based on neural nets approximately matched the performance
of GMM-HMM systems. For example, Robinson and Fallside 1991( ) achieved
26% phoneme error rate on the TIMIT ( , ) corpus (with 39Garofolo et al. 1993
phonemes to discriminate between), which was better than or comparable to
HMM-based systems. Since then, TIMIT has been a benchmark for phoneme
recognition, playing a role similar to the role MNIST plays for object recognition.
However, because of the complex engineering involved in software systems for

speech recognition and the effort that had been invested in building these systems
on the basis of GMM-HMMs, the industry did not see a compelling argument
for switching to neural networks. As a consequence, until the late 2000s, both
academic and industrial research in using neural nets for speech recognition mostly
focused on using neural nets to learn extra features for GMM-HMM systems.

Later, with and much larger datasets,
recognition accuracy was dramatically improved by using neural networks to
replace GMMs for the task of associating acoustic features to phonemes (or sub-
phonemic states). Starting in 2009, speech researchers applied a form of deep
learning based on unsupervised learning to speech recognition. This approach
to deep learning was based on training undirected probabilistic models called

restricted Boltzmann machines (RBMs) to model the input data. RBMs will be
described in Part . To solve speech recognition tasks, unsupervised pretrainingIII
was used to build deep feedforward networks whose layers were each initialized
by training an RBM. These networks take spectral acoustic representations in
a fixed-size input window (around a center frame) and predict the conditional
probabilities of HMM states for that center frame. Training such deep networks
helped to significantly improve the recognition rate on TIMIT ( ,Mohamed et al.
2009 2012a, ), bringing down the phoneme error rate from about 26% to 20.7%.
See ( ) for an analysis of reasons for the success of theseMohamed et al. 2012b
models. Extensions to the basic phone recognition pipeline included the addition
of speaker-adaptive features ( , ) that further reduced theMohamed et al. 2011
error rate. This was quickly followed up by work to expand the architecture from

phoneme recognition (which is what TIMIT is focused on) to large-vocabulary
speech recognition ( , ), which involves not just recognizing phonemesDahl et al. 2012
but also recognizing sequences of words from a large vocabulary. Deep networks
for speech recognition eventually shifted from being based on pretraining and
Boltzmann machines to being based on techniques such as rectified linear units and
dropout ( , ; , ). By that time, several of the majorZeiler et al. 2013 Dahl et al. 2013
speech groups in industry had started exploring deep learning in collaboration with
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academic researchers. ( ) describe the breakthroughs achievedHinton et al. 2012a
by these collaborators, which are now deployed in products such as mobile phones.

Later, as these groups explored larger and larger labeled datasets and incorpo-
rated some of the methods for initializing, training, and setting up the architecture
of deep nets, they realized that the unsupervised pretraining phase was either
unnecessary or did not bring any significant improvement.

These breakthroughs in recognition performance for word error rate in speech
recognition were unprecedented (around 30% improvement) and were following a

long period of about ten years during which error rates did not improve much with
the traditional GMM-HMM technology, in spite of the continuously growing size
of training sets (see Fig. 2.4 of Deng and Yu 2014( )). This created a rapid shift in
the speech recognition community towards deep learning. In a matter of roughly
two years, most of the industrial products for speech recognition incorporated deep
neural networks and this success spurred a new wave of research into deep learning
algorithms and architectures for ASR, which is still ongoing today.

One of these innovations was the use of convolutional networks ( ,Sainath et al.
2013) that replicate weights across time and frequency, improving over the earlier
time-delay neural networks that replicated weights only across time. The new
two-dimensional convolutional models regard the input spectrogram not as one
long vector but as an image, with one axis corresponding to time and the other to

frequency of spectral components.

Another important push, still ongoing, has been towards end-to-end deep
learning speech recognition systems that completely remove the HMM. The first
major breakthrough in this direction came from Graves 2013et al. ( ) who trained a
deep LSTM RNN (see Sec. ), using MAP inference over the frame-to-phoneme10.10
alignment, as in ( ) and in the CTC framework (LeCun et al. 1998b Graves et al.,
2006 Graves 2012 Graves 2013; , ). A deep RNN ( et al., ) has state variables from
several layers at each time step, giving the unfolded graph two kinds of depth:
ordinary depth due to a stack of layers, and depth due to time unfolding. This
work brought the phoneme error rate on TIMIT to a record low of 17.7%. See
Pascanu 2014a Chung 2014et al. ( ) and et al. ( ) for other variants of deep RNNs,

applied in other settings.

Another contemporary step toward end-to-end deep learning ASR is to let the
system learn how to “align” the acoustic-level information with the phonetic-level
information ( , ; , ).Chorowski et al. 2014 Lu et al. 2015
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12.4 Natural Language Processing

Natural language processing (NLP) is the use of human languages, such as English
or French, by a computer. Computer programs typically read and emit specialized
languages designed to allow efficient and unambiguous parsing by simple programs.
More naturally occurring languages are often ambiguous and defy formal description.
Natural language processing includes applications such as machine translation,

in which the learner must read a sentence in one human language and emit an
equivalent sentence in another human language. Many NLP applications are based
on language models that define a probability distribution over sequences of words,
characters or bytes in a natural language.

As with the other applications discussed in this chapter, very generic neural
network techniques can be successfully applied to natural language processing.
However, to achieve excellent performance and to scale well to large applications,
some domain-specific strategies become important. To build an efficient model of
natural language, we must usually use techniques that are specialized for processing
sequential data. In many cases, we choose to regard natural language as a sequence
of words, rather than a sequence of individual characters or bytes. Because the total
number of possible words is so large, word-based language models must operate on

an extremely high-dimensional and sparse discrete space. Several strategies have
been developed to make models of such a space efficient, both in a computational
and in a statistical sense.

12.4.1 -grams

A language model defines a probability distribution over sequences of tokens in
a natural language. Depending on how the model is designed, a token may be
a word, a character, or even a byte. Tokens are always discrete entities. The
earliest successful language models were based on models of fixed-length sequences
of tokens called -grams. An -gram is a sequence of tokens.n n n

Models based on n-grams define the conditional probability of the n-th token
given the preceding n− 1 tokens. The model uses products of these conditional
distributions to define the probability distribution over longer sequences:

P x( , . . . , x ) = (P x , . . . , x ) P x( | x , . . . , x ). (12.5)

This decomposition is justified by the chain rule of probability. The probability
distribution over the initial sequence P (x , . . . , x ) may be modeled by a different
model with a smaller value of .n
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Training n-gram models is straightforward because the maximum likelihood
estimate can be computed simply by counting how many times each possible n
gram occurs in the training set. Models based on n-grams have been the core
building block of statistical language modeling for many decades (Jelinek and
Mercer 1980 Katz 1987 Chen and Goodman 1999, ; , ; , ).

For small values of n , models have particular names: unigram for n=1, bigram
for n=2, and trigram for n=3. These names derive from the Latin prefixes for the
corresponding numbers and the Greek suffix “-gram” denoting something that is
written.

Usually we train both an n-gram model and an n−1 gram model simultaneously.
This makes it easy to compute

P x( | x , . . . , x ) =
P (x , . . . , x )

P (x , . . . , x )
(12.6)

simply by looking up two stored probabilities. For this to exactly reproduce
inference in P , we must omit the final character from each sequence when we
train P .

As an example, we demonstrate how a trigram model computes the probability
of the sentence “ .” The first words of the sentence cannot be
handled by the default formula based on conditional probability because there is no
context at the beginning of the sentence. Instead, we must use the marginal prob-
ability over words at the start of the sentence. We thus evaluate P ( ).
Finally, the last word may be predicted using the typical case, of using the con-
ditional distribution P( | ). Putting this together with Eq. , we12.6
obtain:

P P( ) = ( )P( )/P( ).
(12.7)

A fundamental limitation of maximum likelihood for n-gram models is that P
as estimated from training set counts is very likely to be zero in many cases, even
though the tuple (x , . . . , x ) may appear in the test set. This can cause two
different kinds of catastrophic outcomes. When P is zero, the ratio is undefined,
so the model does not even produce a sensible output. When P is non-zero but
P is zero, the test log-likelihood is −∞. To avoid such catastrophic outcomes,
most n-gram models employ some form of smoothing. Smoothing techniques shift
probability mass from the observed tuples to unobserved ones that are similar.
See ( ) for a review and empirical comparisons. One basicChen and Goodman 1999
technique consists of adding non-zero probability mass to all of the possible next
symbol values. This method can be justified as Bayesian inference with a uniform
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or Dirichlet prior over the count parameters. Another very popular idea is to form
a mixture model containing higher-order and lower-order n-gram models, with the
higher-order models providing more capacity and the lower-order models being
more likely to avoid counts of zero. Back-off methods look-up the lower-order
n-grams if the frequency of the context x , . . . , x is too small to use the
higher-order model. More formally, they estimate the distribution over x by using
contexts x , . . . , x , for increasing k, until a sufficiently reliable estimate is
found.

Classical n-gram models are particularly vulnerable to the curse of dimension-

ality. There are | | possible n-grams and | | is often very large. Even with a
massive training set and modest n , most n-grams will not occur in the training set.
One way to view a classical n-gram model is that it is performing nearest-neighbor
lookup. In other words, it can be viewed as a local non-parametric predictor,
similar to k-nearest neighbors. The statistical problems facing these extremely
local predictors are described in Sec. . The problem for a language model is5.11.2
even more severe than usual, because any two different words have the same dis-
tance from each other in one-hot vector space. It is thus difficult to leverage much
information from any “neighbors”—only training examples that repeat literally the
same context are useful for local generalization. To overcome these problems, a
language model must be able to share knowledge between one word and other

semantically similar words.

To improve the statistical efficiency of n-gram models, class-based language
models (Brown 1992 Ney and Kneser 1993 Niesler 1998et al., ; , ; et al., ) introduce
the notion of word categories and then share statistical strength between words that
are in the same category. The idea is to use a clustering algorithm to partition the
set of words into clusters or classes, based on their co-occurrence frequencies with
other words. The model can then use word class IDs rather than individual word
IDs to represent the context on the right side of the conditioning bar. Composite
models combining word-based and class-based models via mixing or back-off are
also possible. Although word classes provide a way to generalize between sequences
in which some word is replaced by another of the same class, much information is

lost in this representation.

12.4.2 Neural Language Models

Neural language models or NLMs are a class of language model designed to overcome
the curse of dimensionality problem for modeling natural language sequences by
using a distributed representation of words ( , ). Unlike class-Bengio et al. 2001
based n -gram models, neural language models are able to recognize that two words
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are similar without losing the ability to encode each word as distinct from the
other. Neural language models share statistical strength between one word (and
its context) and other similar words and contexts. The distributed representation
the model learns for each word enables this sharing by allowing the model to treat
words that have features in common similarly. For example, if the word and
the word map to representations that share many attributes, then sentences
that contain the word can inform the predictions that will be made by the
model for sentences that contain the word , and vice-versa. Because there are
many such attributes, there are many ways in which generalization can happen,

transferring information from each training sentence to an exponentially large
number of semantically related sentences. The curse of dimensionality requires the
model to generalize to a number of sentences that is exponential in the sentence
length. The model counters this curse by relating each training sentence to an
exponential number of similar sentences.

We sometimes call these word representations word embeddings. In this inter-
pretation, we view the raw symbols as points in a space of dimension equal to the
vocabulary size. The word representations embed those points in a feature space
of lower dimension. In the original space, every word is represented by a one-hot
vector, so every pair of words is at Euclidean distance

√
2 from each other. In the

embedding space, words that frequently appear in similar contexts (or any pair

of words sharing some “features” learned by the model) are close to each other.
This often results in words with similar meanings being neighbors. Fig. zooms12.3
in on specific areas of a learned word embedding space to show how semantically
similar words map to representations that are close to each other.

Neural networks in other domains also define embeddings. For example, a
hidden layer of a convolutional network provides an “image embedding.” Usually
NLP practitioners are much more interested in this idea of embeddings because
natural language does not originally lie in a real-valued vector space. The hidden
layer has provided a more qualitatively dramatic change in the way the data is
represented.

The basic idea of using distributed representations to improve models for

natural language processing is not restricted to neural networks. It may also be
used with graphical models that have distributed representations in the form of
multiple latent variables (Mnih and Hinton 2007, ).
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12.4.3 High-Dimensional Outputs

In many natural language applications, we often want our models to produce
words (rather than characters) as the fundamental unit of the output. For large

vocabularies, it can be very computationally expensive to represent an output
distribution over the choice of a word, because the vocabulary size is large. In many
applications, contains hundreds of thousands of words. The naive approach to
representing such a distribution is to apply an affine transformation from a hidden
representation to the output space, then apply the softmax function. Suppose
we have a vocabulary with size | |. The weight matrix describing the linear
component of this affine transformation is very large, because its output dimension
is | |. This imposes a high memory cost to represent the matrix, and a high
computational cost to multiply by it. Because the softmax is normalized across all
| | outputs, it is necessary to perform the full matrix multiplication at training
time as well as test time—we cannot calculate only the dot product with the weight

vector for the correct output. The high computational costs of the output layer
thus arise both at training time (to compute the likelihood and its gradient) and
at test time (to compute probabilities for all or selected words). For specialized
loss functions, the gradient can be computed efficiently ( , ), butVincent et al. 2015
the standard cross-entropy loss applied to a traditional softmax output layer poses
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many difficulties.

Suppose that is the top hidden layer used to predict the output probabilities
ˆ. If we parametrize the transformation from to ˆ with learned weights
and learned biases , then the affine-softmax output layer performs the following
computations:

a = b + W h ∀ ∈ { | |}i 1, . . . , , (12.8)

ŷ =
e

e
. (12.9)

If contains n elements then the above operation is O(| |n ). With n in the
thousands and | | in the hundreds of thousands, this operation dominates the

computation of most neural language models.

The first neural language models ( , , ) dealt with the high costBengio et al. 2001 2003
of using a softmax over a large number of output words by limiting the vocabulary
size to 10,000 or 20,000 words. Schwenk and Gauvain 2002 Schwenk 2007( ) and ( )
built upon this approach by splitting the vocabulary into a shortlist of most
frequent words (handled by the neural net) and a tail = \ of more rare words
(handled by an n-gram model). To be able to combine the two predictions, the
neural net also has to predict the probability that a word appearing after context
C belongs to the tail list. This may be achieved by adding an extra sigmoid output
unit to provide an estimate of P (i C∈ | ). The extra output can then be used to
achieve an estimate of the probability distribution over all words in as follows:

P y i C( = | ) =1 P y i C, i P i C( = | ∈ −)(1 ( ∈ | )) (12.10)

+ 1 P y i C, i P i C( = | ∈ ) ( ∈ | ) (12.11)

where P (y = i C, i| ∈ ) is provided by the neural language model and P(y = i |
C, i ∈ ) is provided by the n-gram model. With slight modification, this approach
can also work using an extra output value in the neural language model’s softmax
layer, rather than a separate sigmoid unit.

An obvious disadvantage of the short list approach is that the potential gener-
alization advantage of the neural language models is limited to the most frequent
words, where, arguably, it is the least useful. This disadvantage has stimulated
the exploration of alternative methods to deal with high-dimensional outputs,
described below.
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A classical approach ( , ) to reducing the computational burdenGoodman 2001
of high-dimensional output layers over large vocabulary sets is to decompose

probabilities hierarchically. Instead of necessitating a number of computations
proportional to | | (and also proportional to the number of hidden units, n ),
the | | factor can be reduced to as low as log | |. ( ) andBengio 2002 Morin and
Bengio 2005( ) introduced this factorized approach to the context of neural language
models.

One can think of this hierarchy as building categories of words, then categories
of categories of words, then categories of categories of categories of words, etc.
These nested categories form a tree, with words at the leaves. In a balanced tree,
the tree has depth O(log | |). The probability of a choosing a word is given by the
product of the probabilities of choosing the branch leading to that word at every
node on a path from the root of the tree to the leaf containing the word. Fig. 12.4

illustrates a simple example. ( ) also describe how to useMnih and Hinton 2009
multiple paths to identify a single word in order to better model words that have
multiple meanings. Computing the probability of a word then involves summation
over all of the paths that lead to that word.

To predict the conditional probabilities required at each node of the tree, we
typically use a logistic regression model at each node of the tree, and provide the
same context C as input to all of these models. Because the correct output is
encoded in the training set, we can use supervised learning to train the logistic
regression models. This is typically done using a standard cross-entropy loss,
corresponding to maximizing the log-likelihood of the correct sequence of decisions.

Because the output log-likelihood can be computed efficiently (as low as log | |
rather than | | ), its gradients may also be computed efficiently. This includes not
only the gradient with respect to the output parameters but also the gradients
with respect to the hidden layer activations.

It is possible but usually not practical to optimize the tree structure to minimize
the expected number of computations. Tools from information theory specify how
to choose the optimal binary code given the relative frequencies of the words. To
do so, we could structure the tree so that the number of bits associated with a word
is approximately equal to the logarithm of the frequency of that word. However, in
practice, the computational savings are typically not worth the effort because the
computation of the output probabilities is only one part of the total computation
in the neural language model. For example, suppose there are l fully connected

hidden layers of width n . Let n be the weighted average of the number of bits
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w , . . . , w

(0)
(0 ,0) (0 ,1) {w ,w }
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| | | |
O(log | | )

y

y b (y) i
y

(1 , 0)
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P w( = ) = (P = 1, = 0, = 0)
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required to identify a word, with the weighting given by the frequency of these
words. In this example, the number of operations needed to compute the hidden
activations grows as as O(ln ) while the output computations grow as O(n n ).
As long as n ≤ ln , we can reduce computation more by shrinking n than by
shrinking n . Indeed, n is often small. Because the size of the vocabulary rarely
exceeds a million words and log (10 )≈ 20, it is possible to reduce n to about ,20
but n is often much larger, around 10 or more. Rather than carefully optimizing
a tree with a branching factor of , one can instead define a tree with depth two2
and a branching factor of | |. Such a tree corresponds to simply defining a set

of mutually exclusive word classes. The simple approach based on a tree of depth
two captures most of the computational benefit of the hierarchical strategy.

One question that remains somewhat open is how to best define these word
classes, or how to define the word hierarchy in general. Early work used existing
hierarchies ( , ) but the hierarchy can also be learned, ideallyMorin and Bengio 2005
jointly with the neural language model. Learning the hierarchy is difficult. An exact
optimization of the log-likelihood appears intractable because the choice of a word
hierarchy is a discrete one, not amenable to gradient-based optimization. However,
one could use discrete optimization to approximately optimize the partition of
words into word classes.

An important advantage of the hierarchical softmax is that it brings computa-

tional benefits both at training time and at test time, if at test time we want to
compute the probability of specific words.

Of course, computing the probability of all | | words will remain expensive
even with the hierarchical softmax. Another important operation is selecting the
most likely word in a given context. Unfortunately the tree structure does not
provide an efficient and exact solution to this problem.

A disadvantage is that in practice the hierarchical softmax tends to give worse
test results than sampling-based methods we will describe next. This may be due
to a poor choice of word classes.

One way to speed up the training of neural language models is to avoid explicitly
computing the contribution of the gradient from all of the words that do not appear
in the next position. Every incorrect word should have low probability under the
model. It can be computationally costly to enumerate all of these words. Instead,

it is possible to sample only a subset of the words. Using the notation introduced
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in Eq. , the gradient can be written as follows:12.8

∂ P y Clog ( | )

∂θ
=
∂ log softmax ( )

∂θ
(12.14)

=
∂

∂θ
log

e

e
(12.15)

=
∂

∂θ
(a − log e ) (12.16)

=
∂a

∂θ
− P y i C( = | )

∂a

∂θ
(12.17)

where is the vector of pre-softmax activations (or scores), with one element
per word. The first term is the positive phase term (pushing a up) while the

second term is the negative phase term (pushing a down for all i, with weight
P(i C| ). Since the negative phase term is an expectation, we can estimate it with
a Monte Carlo sample. However, that would require sampling from the model itself.
Sampling from the model requires computing P (i C| ) for all i in the vocabulary,
which is precisely what we are trying to avoid.

Instead of sampling from the model, one can sample from another distribution,
called the proposal distribution (denoted q ), and use appropriate weights to correct
for the bias introduced by sampling from the wrong distribution (Bengio and
Sénécal 2003 Bengio and Sénécal 2008, ; , ). This is an application of a more general
technique called importance sampling, which will be described in more detail in
Sec. . Unfortunately, even exact importance sampling is not efficient because it17.2

requires computing weights p /q , where p = P (i C| ), which can only be computed
if all the scores a are computed. The solution adopted for this application is called
biased importance sampling, where the importance weights are normalized to sum
to 1. When negative word n is sampled, the associated gradient is weighted by

w =
p /q

p /q
. (12.18)

These weights are used to give the appropriate importance to the m negative
samples from q used to form the estimated negative phase contribution to the
gradient:

P i C( | )
∂a

∂θ
≈ 1

m
w
∂a

∂θ
. (12.19)

A unigram or a bigram distribution works well as the proposal distribution q . It is
easy to estimate the parameters of such a distribution from data. After estimating
the parameters, it is also possible to sample from such a distribution very efficiently.
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Importance sampling is not only useful for speeding up models with large
softmax outputs. More generally, it is useful for accelerating training with large
sparse output layers, where the output is a sparse vector rather than a -of-1 n
choice. An example is a bag of words. A bag of words is a sparse vector where v
indicates the presence or absence of word i from the vocabulary in the document.
Alternately, v can indicate the number of times that word i appears. Machine
learning models that emit such sparse vectors can be expensive to train for a
variety of reasons. Early in learning, the model may not actually choose to make
the output truly sparse. Moreover, the loss function we use for training might

most naturally be described in terms of comparing every element of the output to
every element of the target. This means that it is not always clear that there is a
computational benefit to using sparse outputs, because the model may choose to
make the majority of the output non-zero and all of these non-zero values need to
be compared to the corresponding training target, even if the training target is zero.
Dauphin 2011et al. ( ) demonstrated that such models can be accelerated using
importance sampling. The efficient algorithm minimizes the loss reconstruction for
the “positive words” (those that are non-zero in the target) and an equal number
of “negative words.” The negative words are chosen randomly, using a heuristic to
sample words that are more likely to be mistaken. The bias introduced by this
heuristic oversampling can then be corrected using importance weights.

In all of these cases, the computational complexity of gradient estimation for
the output layer is reduced to be proportional to the number of negative samples
rather than proportional to the size of the output vector.

Other approaches based on sampling have been proposed to reduce the computa-
tional cost of training neural language models with large vocabularies. An early
example is the ranking loss proposed by Collobert and Weston 2008a( ), which
views the output of the neural language model for each word as a score and tries to
make the score of the correct word a be ranked high in comparison to the other
scores a . The ranking loss proposed then is

L = max(0 1, − a + a ). (12.20)

The gradient is zero for the i-th term if the score of the observed word, a , is
greater than the score of the negative word a by a margin of 1. One issue with
this criterion is that it does not provide estimated conditional probabilities, which
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are useful in some applications, including speech recognition and text generation
(including conditional text generation tasks such as translation).

A more recently used training objective for neural language model is noise-
contrastive estimation, which is introduced in Sec. . This approach has been18.6
successfully applied to neural language models (Mnih and Teh 2012 Mnih and, ;
Kavukcuoglu 2013, ).

12.4.4 Combining Neural Language Models with -grams

A major advantage of n-gram models over neural networks is that n-gram models
achieve high model capacity (by storing the frequencies of very many tuples)
while requiring very little computation to process an example (by looking up
only a few tuples that match the current context). If we use hash tables or trees
to access the counts, the computation used for n-grams is almost independent
of capacity. In comparison, doubling a neural network’s number of parameters
typically also roughly doubles its computation time. Exceptions include models
that avoid using all parameters on each pass. Embedding layers index only a single

embedding in each pass, so we can increase the vocabulary size without increasing
the computation time per example. Some other models, such as tiled convolutional
networks, can add parameters while reducing the degree of parameter sharing
in order to maintain the same amount of computation. However, typical neural
network layers based on matrix multiplication use an amount of computation
proportional to the number of parameters.

One easy way to add capacity is thus to combine both approaches in an ensemble
consisting of a neural language model and an n-gram language model (Bengio
et al., , ). As with any ensemble, this technique can reduce test error if2001 2003
the ensemble members make independent mistakes. The field of ensemble learning
provides many ways of combining the ensemble members’ predictions, including

uniform weighting and weights chosen on a validation set. Mikolov 2011aet al. ( )
extended the ensemble to include not just two models but a large array of models.
It is also possible to pair a neural network with a maximum entropy model and
train both jointly (Mikolov 2011bet al., ). This approach can be viewed as training
a neural network with an extra set of inputs that are connected directly to the
output, and not connected to any other part of the model. The extra inputs are
indicators for the presence of particular n-grams in the input context, so these
variables are very high-dimensional and very sparse. The increase in model capacity
is huge—the new portion of the architecture contains up to | |sV parameters—but
the amount of added computation needed to process an input is minimal because
the extra inputs are very sparse.
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12.4.5 Neural Machine Translation

Machine translation is the task of reading a sentence in one natural language and
emitting a sentence with the equivalent meaning in another language. Machine

translation systems often involve many components. At a high level, there is
often one component that proposes many candidate translations. Many of these
translations will not be grammatical due to differences between the languages. For
example, many languages put adjectives after nouns, so when translated to English
directly they yield phrases such as “apple red.” The proposal mechanism suggests
many variants of the suggested translation, ideally including “red apple.” A second
component of the translation system, a language model, evaluates the proposed
translations, and can score “red apple” as better than “apple red.”

The earliest use of neural networks for machine translation was to upgrade the
language model of a translation system by using a neural language model (Schwenk
et al., ;2006 Schwenk 2010, ). Previously, most machine translation systems had

used an n-gram model for this component. The n-gram based models used for
machine translation include not just traditional back-off n-gram models (Jelinek
and Mercer 1980 Katz 1987 Chen and Goodman 1999, ; , ; , ) but also maximum
entropy language models ( , ), in which an affine-softmax layerBerger et al. 1996
predicts the next word given the presence of frequent -grams in the context.n

Traditional language models simply report the probability of a natural language
sentence. Because machine translation involves producing an output sentence given
an input sentence, it makes sense to extend the natural language model to be
conditional. As described in Sec. , it is straightforward to extend a model6.2.1.1
that defines a marginal distribution over some variable to define a conditional
distribution over that variable given a context C, where C might be a single variable

or a list of variables. ( ) beat the state-of-the-art in some statisticalDevlin et al. 2014
machine translation benchmarks by using an MLP to score a phrase t , t , . . . , t
in the target language given a phrase s , s , . . . , s in the source language. The
MLP estimates P (t , t , . . . , t | s , s , . . . , s ). The estimate formed by this MLP
replaces the estimate provided by conditional -gram models.n

A drawback of the MLP-based approach is that it requires the sequences to be
preprocessed to be of fixed length. To make the translation more flexible, we would
like to use a model that can accommodate variable length inputs and variable
length outputs. An RNN provides this ability. Sec. describes several ways10.2.4
of constructing an RNN that represents a conditional distribution over a sequence
given some input, and Sec. describes how to accomplish this conditioning10.4

when the input is a sequence. In all cases, one model first reads the input sequence
and emits a data structure that summarizes the input sequence. We call this
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summary the “context” C. The context C may be a list of vectors, or it may be a
vector or tensor. The model that reads the input to produce C may be an RNN
( , ;Cho et al. 2014a Sutskever 2014 Jean 2014et al., ; et al., ) or a convolutional
network (Kalchbrenner and Blunsom 2013, ). A second model, usually an RNN,
then reads the context C and generates a sentence in the target language. This
general idea of an encoder-decoder framework for machine translation is illustrated
in Fig. .12.5

In order to generate an entire sentence conditioned on the source sentence, the
model must have a way to represent the entire source sentence. Earlier models

were only able to represent individual words or phrases. From a representation
learning point of view, it can be useful to learn a representation in which sentences
that have the same meaning have similar representations regardless of whether
they were written in the source language or the target language. This strategy was
explored first using a combination of convolutions and RNNs (Kalchbrenner and
Blunsom 2013, ). Later work introduced the use of an RNN for scoring proposed
translations ( , ) and for generating translated sentences (Cho et al. 2014a Sutskever
et al. et al., ).2014 Jean ( ) scaled these models to larger vocabularies.2014
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Using a fixed-size representation to capture all the semantic details of a very
long sentence of say 60 words is very difficult. It can be achieved by training a
sufficiently large RNN well enough and for long enough, as demonstrated by Cho
et al. ( ) and2014a Sutskever 2014et al. ( ). However, a more efficient approach is
to read the whole sentence or paragraph (to get the context and the gist of what
is being expressed), then produce the translated words one at a time, each time
focusing on a different part of the input sentence in order to gather the semantic
details that are required to produce the next output word. That is exactly the
idea that ( ) first introduced. The attention mechanism usedBahdanau et al. 2015
to focus on specific parts of the input sequence at each time step is illustrated in

Fig. .12.6

We can think of an attention-based system as having three components:
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1. A process that “reads” raw data (such as source words in a source sentence),
and converts them into distributed representations, with one feature vector
associated with each word position.

2. A list of feature vectors storing the output of the reader. This can be
understood as a “ ” containing a sequence of facts, which can bememory
retrieved later, not necessarily in the same order, without having to visit all
of them.

3. A process that “ ” the content of the memory to sequentially performexploits
a task, at each time step having the ability put attention on the content of
one memory element (or a few, with a different weight).

The third component generates the translated sentence.

When words in a sentence written in one language are aligned with correspond-
ing words in a translated sentence in another language, it becomes possible to relate
the corresponding word embeddings. Earlier work showed that one could learn a
kind of translation matrix relating the word embeddings in one language with the
word embeddings in another (Kočiský 2014et al., ), yielding lower alignment error
rates than traditional approaches based on the frequency counts in the phrase table.
There is even earlier work on learning cross-lingual word vectors (Klementiev et al.,
2012). Many extensions to this approach are possible. For example, more efficient
cross-lingual alignment ( , ) allows training on larger datasets.Gouws et al. 2014

12.4.6 Historical Perspective

The idea of distributed representations for symbols was introduced by Rumelhart
et al. ( ) in one of the first explorations of back-propagation, with symbols1986a
corresponding to the identity of family members and the neural network capturing
the relationships between family members, with training examples forming triplets

such as (Colin, Mother, Victoria). The first layer of the neural network learned
a representation of each family member. For example, the features for Colin
might represent which family tree Colin was in, what branch of that tree he was
in, what generation he was from, etc. One can think of the neural network as
computing learned rules relating these attributes together in order to obtain the
desired predictions. The model can then make predictions such as inferring who is
the mother of Colin.

The idea of forming an embedding for a symbol was extended to the idea of an
embedding for a word by Deerwester 1990et al. ( ). These embeddings were learned
using the SVD. Later, embeddings would be learned by neural networks.
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The history of natural language processing is marked by transitions in the
popularity of different ways of representing the input to the model. Following
this early work on symbols or words, some of the earliest applications of neural
networks to NLP ( , ;Miikkulainen and Dyer 1991 Schmidhuber 1996, ) represented
the input as a sequence of characters.

Bengio 2001et al. ( ) returned the focus to modeling words and introduced
neural language models, which produce interpretable word embeddings. These
neural models have scaled up from defining representations of a small set of symbols
in the 1980s to millions of words (including proper nouns and misspellings) in

modern applications. This computational scaling effort led to the invention of the
techniques described above in Sec. .12.4.3

Initially, the use of words as the fundamental units of language models yielded
improved language modeling performance ( , ). To this day,Bengio et al. 2001
new techniques continually push both character-based models (Sutskever et al.,
2011) and word-based models forward, with recent work ( , ) evenGillick et al. 2015
modeling individual bytes of Unicode characters.

The ideas behind neural language models have been extended into several
natural language processing applications, such as parsing ( , , ;Henderson 2003 2004
Collobert 2011, ), part-of-speech tagging, semantic role labeling, chunking, etc,
sometimes using a single multi-task learning architecture (Collobert and Weston,

2008a Collobert 2011a; et al., ) in which the word embeddings are shared across
tasks.

Two-dimensional visualizations of embeddings became a popular tool for an-
alyzing language models following the development of the t-SNE dimensionality
reduction algorithm (van der Maaten and Hinton 2008, ) and its high-profile appli-
cation to visualization word embeddings by Joseph Turian in 2009.

12.5 Other Applications

In this section we cover a few other types of applications of deep learning that

are different from the standard object recognition, speech recognition and natural
language processing tasks discussed above. Part of this book will expandIII
that scope even further to include tasks requiring the ability to generate rich
high-dimensional samples (unlike “the next word,” in language models).
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12.5.1 Recommender Systems

One of the major families of applications of machine learning in the information
technology sector is the ability to make recommendations of items to potential

users or customers. Two major types of applications can be distinguished: online
advertising and item recommendations (often these recommendations are still for
the purpose of selling a product). Both rely on predicting the association between
a user and an item, either to predict the probability of some action (the user
buying the product, or some proxy for this action) or the expected gain (which
may depend on the value of the product) if an ad is shown or a recommendation is
made regarding that product to that user. The internet is currently financed in
great part by various forms of online advertising. There are major parts of the
economy that rely on online shopping. Companies including Amazon and eBay
use machine learning, including deep learning, for their product recommendations.
Sometimes, the items are not products that are actually for sale. Examples include

selecting posts to display on social network news feeds, recommending movies to
watch, recommending jokes, recommending advice from experts, matching players
for video games, or matching people in dating services.

Often, this association problem is handled like a supervised learning problem:
given some information about the item and about the user, predict the proxy of
interest (user clicks on ad, user enters a rating, user clicks on a “like” button, user
buys product, user spends some amount of money on the product, user spends
time visiting a page for the product, etc). This often ends up being either a
regression problem (predicting some conditional expected value) or a probabilistic
classification problem (predicting the conditional probability of some discrete
event).

The early work on recommender systems relied on minimal information as
inputs for these predictions: the user ID and the item ID. In this context, the only
way to generalize is to rely on the similarity between the patterns of values of the
target variable for different users or for different items. Suppose that user 1 and
user 2 both like items A, B and C. From this, we may infer that user 1 and user 2
have similar tastes. If user 1 likes item D, then this should be a strong cue that
user 2 will also like D. Algorithms based on this principle come under the name of
collaborative filtering. Both non-parametric approaches (such as nearest-neighbor
methods based on the estimated similarity between patterns of preferences) and
parametric methods are possible. Parametric methods often rely on learning a
distributed representation (also called an embedding) for each user and for each

item. Bilinear prediction of the target variable (such as a rating) is a simple
parametric method that is highly successful and often found as a component of
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state-of-the-art systems. The prediction is obtained by the dot product between
the user embedding and the item embedding (possibly corrected by constants that
depend only on either the user ID or the item ID). Let ˆ be the matrix containing
our predictions, a matrix with user embeddings in its rows and a matrix with
item embeddings in its columns. Let and be vectors that contain respectively
a kind of bias for each user (representing how grumpy or positive that user is
in general) and for each item (representing its general popularity). The bilinear
prediction is thus obtained as follows:

R̂ = b + c + A B . (12.21)

Typically one wants to minimize the squared error between predicted ratings
R̂ and actual ratings R . User embeddings and item embeddings can then be
conveniently visualized when they are first reduced to a low dimension (two or
three), or they can be used to compare users or items against each other, just
like word embeddings. One way to obtain these embeddings is by performing a
singular value decomposition of the matrix of actual targets (such as ratings).

This corresponds to factorizing = (or a normalized variant) into the
product of two factors, the lower rank matrices = and = . One
problem with the SVD is that it treats the missing entries in an arbitrary way,
as if they corresponded to a target value of 0. Instead we would like to avoid
paying any cost for the predictions made on missing entries. Fortunately, the
sum of squared errors on the observed ratings can also be easily minimized by
gradient-based optimization. The SVD and the bilinear prediction of Eq. both12.21
performed very well in the competition for the Netflix prize ( ,Bennett and Lanning
2007), aiming at predicting ratings for films, based only on previous ratings by
a large set of anonymous users. Many machine learning experts participated in
this competition, which took place between 2006 and 2009. It raised the level of
research in recommender systems using advanced machine learning and yielded

improvements in recommender systems. Even though it did not win by itself,
the simple bilinear prediction or SVD was a component of the ensemble models
presented by most of the competitors, including the winners ( , ;Töscher et al. 2009
Koren 2009, ).

Beyond these bilinear models with distributed representations, one of the first
uses of neural networks for collaborative filtering is based on the RBM undirected
probabilistic model (Salakhutdinov 2007et al., ). RBMs were an important element
of the ensemble of methods that won the Netflix competition (Töscher 2009et al., ;
Koren 2009, ). More advanced variants on the idea of factorizing the ratings matrix
have also been explored in the neural networks community (Salakhutdinov and
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Mnih 2008, ).

However, there is a basic limitation of collaborative filtering systems: when a
new item or a new user is introduced, its lack of rating history means that there
is no way to evaluate its similarity with other items or users (respectively), or
the degree of association between, say, that new user and existing items. This
is called the problem of cold-start recommendations. A general way of solving
the cold-start recommendation problem is to introduce extra information about
the individual users and items. For example, this extra information could be user
profile information or features of each item. Systems that use such information are

called content-based recommender systems. The mapping from a rich set of user
features or item features to an embedding can be learned through a deep learning
architecture ( , ;Huang et al. 2013 Elkahky 2015et al., ).

Specialized deep learning architectures such as convolutional networks have also
been applied to learn to extract features from rich content such as from musical
audio tracks, for music recommendation (van den Oörd 2013et al., ). In that work,
the convolutional net takes acoustic features as input and computes an embedding
for the associated song. The dot product between this song embedding and the
embedding for a user is then used to predict whether a user will listen to the song.

When making recommendations to users, an issue arises that goes beyond ordinary
supervised learning and into the realm of reinforcement learning. Many recommen-
dation problems are most accurately described theoretically as contextual bandits
( , ; , ). The issue is that when we use theLangford and Zhang 2008 Lu et al. 2010
recommendation system to collect data, we get a biased and incomplete view of
the preferences of users: we only see the responses of users to the items they were
recommended and not to the other items. In addition, in some cases we may not

get any information on users for whom no recommendation has been made (for
example, with ad auctions, it may be that the price proposed for an ad was below
a minimum price threshold, or does not win the auction, so the ad is not shown at
all). More importantly, we get no information about what outcome would have
resulted from recommending any of the other items. This would be like training a
classifier by picking one class ŷ for each training example (typically the class
with the highest probability according to the model) and then only getting as
feedback whether this was the correct class or not. Clearly, each example conveys
less information than in the supervised case where the true label y is directly
accessible, so more examples are necessary. Worse, if we are not careful, we could
end up with a system that continues picking the wrong decisions even as more
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and more data is collected, because the correct decision initially had a very low
probability: until the learner picks that correct decision, it does not learn about
the correct decision. This is similar to the situation in reinforcement learning
where only the reward for the selected action is observed. In general, reinforcement
learning can involve a sequence of many actions and many rewards. The bandits
scenario is a special case of reinforcement learning, in which the learner takes only
a single action and receives a single reward. The bandit problem is easier in the
sense that the learner knows which reward is associated with which action. In
the general reinforcement learning scenario, a high reward or a low reward might

have been caused by a recent action or by an action in the distant past. The term
contextual bandits refers to the case where the action is taken in the context of
some input variable that can inform the decision. For example, we at least know
the user identity, and we want to pick an item. The mapping from context to
action is also called a policy. The feedback loop between the learner and the data
distribution (which now depends on the actions of the learner) is a central research
issue in the reinforcement learning and bandits literature.

Reinforcement learning requires choosing a tradeoff between exploration and
exploitation. Exploitation refers to taking actions that come from the current, best
version of the learned policy—actions that we know will achieve a high reward.
Exploration refers to taking actions specifically in order to obtain more training

data. If we know that given context , action a gives us a reward of 1, we do not
know whether that is the best possible reward. We may want to exploit our current
policy and continue taking action a in order to be relatively sure of obtaining a
reward of 1. However, we may also want to explore by trying action a . We do not
know what will happen if we try action a . We hope to get a reward of , but we2
run the risk of getting a reward of . Either way, we at least gain some knowledge.0

Exploration can be implemented in many ways, ranging from occasionally
taking random actions intended to cover the entire space of possible actions, to
model-based approaches that compute a choice of action based on its expected
reward and the model’s amount of uncertainty about that reward.

Many factors determine the extent to which we prefer exploration or exploitation.

One of the most prominent factors is the time scale we are interested in. If the
agent has only a short amount of time to accrue reward, then we prefer more
exploitation. If the agent has a long time to accrue reward, then we begin with
more exploration so that future actions can be planned more effectively with more
knowledge. As time progresses and our learned policy improves, we move toward
more exploitation.

Supervised learning has no tradeoff between exploration and exploitation
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because the supervision signal always specifies which output is correct for each
input. There is no need to try out different outputs to determine if one is better
than the model’s current output—we always know that the label is the best output.

Another difficulty arising in the context of reinforcement learning, besides the
exploration-exploitation trade-off, is the difficulty of evaluating and comparing
different policies. Reinforcement learning involves interaction between the learner
and the environment. This feedback loop means that it is not straightforward to
evaluate the learner’s performance using a fixed set of test set input values. The
policy itself determines which inputs will be seen. ( ) presentDudik et al. 2011

techniques for evaluating contextual bandits.

12.5.2 Knowledge Representation, Reasoning and Question An-
swering

Deep learning approaches have been very successful in language modeling, machine
translation and natural language processing due to the use of embeddings for
symbols ( , ) and words ( , ; ,Rumelhart et al. 1986a Deerwester et al. 1990 Bengio et al.
2001). These embeddings represent semantic knowledge about individual words
and concepts. A research frontier is to develop embeddings for phrases and for
relations between words and facts. Search engines already use machine learning for
this purpose but much more remains to be done to improve these more advanced

representations.

indexRelations One interesting research direction is determining how distributed

representations can be trained to capture the relations between two entities. These
relations allow us to formalize facts about objects and how objects interact with
each other.

In mathematics, a binary relation is a set of ordered pairs of objects. Pairs
that are in the set are said to have the relation while those who are not in the set
do not. For example, we can define the relation “is less than” on the set of entities
{1, 2,3} by defining the set of ordered pairs = {(1,2), (1, 3),(2 ,3)}. Once this
relation is defined, we can use it like a verb. Because (1 ,2)∈ , we say that 1 is
less than 2. Because (2,1) 6∈ , we can not say that 2 is less than 1. Of course, the
entities that are related to one another need not be numbers. We could define a
relation containing tuples like ( , ).

In the context of AI, we think of a relation as a sentence in a syntactically
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simple and highly structured language. The relation plays the role of a verb,
while two arguments to the relation play the role of its subject and object. These
sentences take the form of a triplet of tokens

(subject verb object), , (12.22)

with values
(entity , relation , entity ). (12.23)

We can also define an , a concept analogous to a relation, but takingattribute
only one argument:

(entity , attribute ). (12.24)

For example, we could define the attribute, and apply it to entities like
.

Many applications require representing relations and reasoning about them.

How should we best do this within the context of neural networks?

Machine learning models of course require training data. We can infer relations
between entities from training datasets consisting of unstructured natural language.
There are also structured databases that identify relations explicitly. A common
structure for these databases is the relational database, which stores this same
kind of information, albeit not formatted as three token sentences. When a
database is intended to convey commonsense knowledge about everyday life or
expert knowledge about an application area to an artificial intelligence system,
we call the database a knowledge base. Knowledge bases range from general
ones like , , , or , etc. to more specialized
knowledge bases, like . Representations for entities and relations

can be learned by considering each triplet in a knowledge base as a training example
and maximizing a training objective that captures their joint distribution (Bordes
et al., ).2013a

In addition to training data, we also need to define a model family to train.
A common approach is to extend neural language models to model entities and
relations. Neural language models learn a vector that provides a distributed
representation of each word. They also learn about interactions between words,
such as which word is likely to come after a sequence of words, by learning functions
of these vectors. We can extend this approach to entities and relations by learning
an embedding vector for each relation. In fact, the parallel between modeling

Respectively available from these web sites: , ,

,
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language and modeling knowledge encoded as relations is so close that researchers
have trained representations of such entities by using both andknowledge bases
natural language sentences ( , , ;Bordes et al. 2011 2012 Wang 2014aet al., ) or
combining data from multiple relational databases ( , ). ManyBordes et al. 2013b
possibilities exist for the particular parametrization associated with such a model.
Early work on learning about relations between entities ( ,Paccanaro and Hinton
2000) posited highly constrained parametric forms (“linear relational embeddings”),
often using a different form of representation for the relation than for the entities.
For example, ( ) and ( ) used vectors forPaccanaro and Hinton 2000 Bordes et al. 2011

entities and matrices for relations, with the idea that a relation acts like an operator
on entities. Alternatively, relations can be considered as any other entity (Bordes
et al., ), allowing us to make statements about relations, but more flexibility is2012
put in the machinery that combines them in order to model their joint distribution.

A practical short-term application of such models is link prediction: predicting
missing arcs in the knowledge graph. This is a form of generalization to new
facts, based on old facts. Most of the knowledge bases that currently exist have
been constructed through manual labor, which tends to leave many and probably
the majority of true relations absent from the knowledge base. See Wang et al.
( ), ( ) and ( ) for examples of such an2014b Lin et al. 2015 Garcia-Duran et al. 2015
application.

Evaluating the performance of a model on a link prediction task is difficult
because we have only a dataset of positive examples (facts that are known to
be true). If the model proposes a fact that is not in the dataset, we are unsure
whether the model has made a mistake or discovered a new, previously unknown
fact. The metrics are thus somewhat imprecise and are based on testing how the
model ranks a held-out of set of known true positive facts compared to other facts
that are less likely to be true. A common way to construct interesting examples
that are probably negative (facts that are probably false) is to begin with a true
fact and create corrupted versions of that fact, for example by replacing one entity
in the relation with a different entity selected at random. The popular precision at
10% metric counts how many times the model ranks a “correct” fact among the

top 10% of all corrupted versions of that fact.

Another application of knowledge bases and distributed representations for
them is word-sense disambiguation (Navigli and Velardi 2005 Bordes 2012, ; et al., ),
which is the task of deciding which of the senses of a word is the appropriate one,
in some context.

Eventually, knowledge of relations combined with a reasoning process and
understanding of natural language could allow us to build a general question
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answering system. A general question answering system must be able to process
input information and remember important facts, organized in a way that enables
it to retrieve and reason about them later. This remains a difficult open problem
which can only be solved in restricted “toy” environments. Currently, the best
approach to remembering and retrieving specific declarative facts is to use an
explicit memory mechanism, as described in Sec. . Memory networks were10.12
first proposed to solve a toy question answering task (Weston 2014 Kumaret al., ).
et al. ( ) have proposed an extension that uses GRU recurrent nets to read2015
the input into the memory and to produce the answer given the contents of the

memory.

Deep learning has been applied to many other applications besides the ones
described here, and will surely be applied to even more after this writing. It would
be impossible to describe anything remotely resembling a comprehensive coverage
of such a topic. This survey provides a representative sample of what is possible
as of this writing.

This concludes Part , which has described modern practices involving deepII
networks, comprising all of the most successful methods. Generally speaking, these
methods involve using the gradient of a cost function to find the parameters of a
model that approximates some desired function. With enough training data, this
approach is extremely powerful. We now turn to Part , in which we step into theIII

territory of research—methods that are designed to work with less training data
or to perform a greater variety of tasks, where the challenges are more difficult
and not as close to being solved as the situations we have described so far.
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Deep Learning Research
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This part of the book describes the more ambitious and advanced approaches
to deep learning, currently pursued by the research community.

In the previous parts of the book, we have shown how to solve supervised
learning problems—how to learn to map one vector to another, given enough
examples of the mapping.

Not all problems we might want to solve fall into this category. We may
wish to generate new examples, or determine how likely some point is, or handle
missing values and take advantage of a large set of unlabeled examples or examples

from related tasks. A shortcoming of the current state of the art for industrial
applications is that our learning algorithms require large amounts of supervised
data to achieve good accuracy. In this part of the book, we discuss some of
the speculative approaches to reducing the amount of labeled data necessary
for existing models to work well and be applicable across a broader range of
tasks. Accomplishing these goals usually requires some form of unsupervised or
semi-supervised learning.

Many deep learning algorithms have been designed to tackle unsupervised
learning problems, but none have truly solved the problem in the same way that
deep learning has largely solved the supervised learning problem for a wide variety of
tasks. In this part of the book, we describe the existing approaches to unsupervised
learning and some of the popular thought about how we can make progress in this

field.

A central cause of the difficulties with unsupervised learning is the high di-
mensionality of the random variables being modeled. This brings two distinct
challenges: a statistical challenge and a computational challenge. The statistical
challenge regards generalization: the number of configurations we may want to
distinguish can grow exponentially with the number of dimensions of interest, and
this quickly becomes much larger than the number of examples one can possibly
have (or use with bounded computational resources). The computational challenge
associated with high-dimensional distributions arises because many algorithms for
learning or using a trained model (especially those based on estimating an explicit
probability function) involve intractable computations that grow exponentially

with the number of dimensions.

With probabilistic models, this computational challenge arises from the need to
perform intractable inference or simply from the need to normalize the distribution.

• Intractable inference: inference is discussed mostly in Chapter . It19
regards the question of guessing the probable values of some variables a,
given other variables b, with respect to a model that captures the joint
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distribution between a, b and c. In order to even compute such conditional
probabilities one needs to sum over the values of the variables c, as well as
compute a normalization constant which sums over the values of a and c.

• Intractable normalization constants (the partition function): the
partition function is discussed mostly in Chapter . Normalizing constants18
of probability functions come up in inference (above) as well as in learning.
Many probabilistic models involve such a normalizing constant. Unfortu-
nately, learning such a model often requires computing the gradient of the
logarithm of the partition function with respect to the model parameters.
That computation is generally as intractable as computing the partition

function itself. Monte Carlo Markov chain (MCMC) methods (Chapter )17
are often used to deal with the partition function (computing it or its gradi-
ent). Unfortunately, MCMC methods suffer when the modes of the model
distribution are numerous and well-separated, especially in high-dimensional
spaces (Sec. ).17.5

One way to confront these intractable computations is to approximate them,
and many approaches have been proposed as discussed in this third part of the
book. Another interesting way, also discussed here, would be to avoid these
intractable computations altogether by design, and methods that do not require
such computations are thus very appealing. Several generative models have been
proposed in recent years, with that motivation. A wide variety of contemporary

approaches to generative modeling are discussed in Chapter .20

Part is the most important for a researcher—someone who wants to un-III
derstand the breadth of perspectives that have been brought to the field of deep
learning, and push the field forward towards true artificial intelligence.
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Chapter 13

Linear Factor Models

Many of the research frontiers in deep learning involve building a probabilistic model
of the input, pmodel(x). Such a model can, in principle, use probabilistic inference to
predict any of the variables in its environment given any of the other variables. Many
of these models also have latent variables h, with pmodel( ) = x Ehpmodel( )x h| .

These latent variables provide another means of representing the data. Distributed
representations based on latent variables can obtain all of the advantages of
representation learning that we have seen with deep feedforward and recurrent
networks.

In this chapter, we describe some of the simplest probabilistic models with
latent variables: linear factor models. These models are sometimes used as building
blocks of mixture models (Hinton 1995a Ghahramani and Hinton 1996et al., ; , ;
Roweis 2002 Tang 2012et al., ) or larger, deep probabilistic models ( et al., ). They
also show many of the basic approaches necessary to build generative models that
the more advanced deep models will extend further.

A linear factor model is defined by the use of a stochastic, linear decoder

function that generates by adding noise to a linear transformation of .x h

These models are interesting because they allow us to discover explanatory
factors that have a simple joint distribution. The simplicity of using a linear decoder
made these models some of the first latent variable models to be extensively studied.

A linear factor model describes the data generation process as follows. First,
we sample the explanatory factors from a distributionh

h ∼ p ,( )h (13.1)

where p(h) is a factorial distribution, with p(h) =

Qi p(hi), so that it is easy to
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sample from. Next we sample the real-valued observable variables given the factors:

x Wh b= + + noise (13.2)

where the noise is typically Gaussian and diagonal (independent across dimensions).
This is illustrated in Fig. .13.1

h1h1 h2h2 h3h3

x1x1 x2x2 x3x3

x h n ois ex h n ois e=W + +b=W + +b

Figure 13.1: The directed graphical model describing the linear factor model family, in
which we assume that an observed data vector x is obtained by a linear combination of
independent latent factors h, plus some noise. Different models, such as probabilistic
PCA, factor analysis or ICA, make different choices about the form of the noise and of
the prior .p( )h

13.1 Probabilistic PCA and Factor Analysis

Probabilistic PCA (principal components analysis), factor analysis and other linear
factor models are special cases of the above equations ( and ) and only13.1 13.2
differ in the choices made for the model’s prior over latent variables h before
observing and noise distributions.x

In ( , ; , ), the latent variablefactor analysis Bartholomew 1987 Basilevsky 1994
prior is just the unit variance Gaussian

h 0∼ N ( ;h , I) (13.3)

while the observed variables xi are assumed to be conditionally independent, givenh.

Specifically, the noise is assumed to be drawn from a diagonal covariance Gaussian
distribution, with covariance matrix ψ = diag(σ2), with σ2 = [σ21, σ

2
2 , . . . , σ

2
n]
> a

vector of per-variable variances.

The role of the latent variables is thus to capture the dependencies between
the different observed variables x i. Indeed, it can easily be shown that x is just a
multivariate normal random variable, with

x ∼ N ( ;x b WW, > + )ψ . (13.4)
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In order to cast PCA in a probabilistic framework, we can make a slight
modification to the factor analysis model, making the conditional variances σ2i
equal to each other. In that case the covariance of x is just WW > + σ2I , where
σ2 is now a scalar. This yields the conditional distribution

x ∼ N ( ;x b WW, > + σ 2I) (13.5)

or equivalently
x h z= W + +b σ (13.6)

where z ∼ N(z ;0, I) is Gaussian noise. ( ) then show anTipping and Bishop 1999
iterative EM algorithm for estimating the parameters andW σ2 .

This probabilistic PCA model takes advantage of the observation that most
variations in the data can be captured by the latent variables h, up to some
small residual reconstruction error σ2. As shown by ( ),Tipping and Bishop 1999
probabilistic PCA becomes PCA as σ → 0. In that case, the conditional expected
value of h given x becomes an orthogonal projection of x b− onto the space
spanned by the columns of , like in PCA.d W

As σ → 0, the density model defined by probabilistic PCA becomes very sharp
around these d dimensions spanned by the columns of W . This can make the

model assign very low likelihood to the data if the data does not actually cluster
near a hyperplane.

13.2 Independent Component Analysis (ICA)

Independent component analysis (ICA) is among the oldest representation learning
algorithms ( , ; , ; , ;Herault and Ans 1984 Jutten and Herault 1991 Comon 1994
Hyvärinen 1999 Hyvärinen 2001a Hinton 2001 Teh 2003, ; et al., ; et al., ; et al., ).
It is an approach to modeling linear factors that seeks to separate an observed
signal into many underlying signals that are scaled and added together to form
the observed data. These signals are intended to be fully independent, rather than
merely decorrelated from each other.1

Many different specific methodologies are referred to as ICA. The variant
that is most similar to the other generative models we have described here is a
variant ( , ) that trains a fully parametric generative model. ThePham et al. 1992

prior distribution over the underlying factors, p(h), must be fixed ahead of time by
the user. The model then deterministically generates x =Wh. We can perform

1See Sec. for a discussion of the difference between uncorrelated variables and independent3.8
variables.
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a nonlinear change of variables (using Eq. ) to determine3.47 p(x). Learning the
model then proceeds as usual, using maximum likelihood.

The motivation for this approach is that by choosing p(h) to be independent,
we can recover underlying factors that are as close as possible to independent.
This is commonly used, not to capture high-level abstract causal factors, but to
recover low-level signals that have been mixed together. In this setting, each
training example is one moment in time, each xi is one sensor’s observation of
the mixed signals, and each hi is one estimate of one of the original signals. For
example, we might have n people speaking simultaneously. If we have n different

microphones placed in different locations, ICA can detect the changes in the volume
between each speaker as heard by each microphone, and separate the signals so
that each hi contains only one person speaking clearly. This is commonly used
in neuroscience for electroencephalography, a technology for recording electrical
signals originating in the brain. Many electrode sensors placed on the subject’s
head are used to measure many electrical signals coming from the body. The
experimenter is typically only interested in signals from the brain, but signals from
the subject’s heart and eyes are strong enough to confound measurements taken
at the subject’s scalp. The signals arrive at the electrodes mixed together, so
ICA is necessary to separate the electrical signature of the heart from the signals
originating in the brain, and to separate signals in different brain regions from

each other.

As mentioned before, many variants of ICA are possible. Some add some noise
in the generation of x rather than using a deterministic decoder. Most do not
use the maximum likelihood criterion, but instead aim to make the elements of
h =W−1x independent from each other. Many criteria that accomplish this goal
are possible. Eq. requires taking the determinant of3.47 W , which can be an
expensive and numerically unstable operation. Some variants of ICA avoid this
problematic operation by constraining to be orthonormal.W

All variants of ICA require that p(h) be non-Gaussian. This is because if p(h)
is an independent prior with Gaussian components, then W is not identifiable.
We can obtain the same distribution over p(x) for many values ofW . This is very

different from other linear factor models like probabilistic PCA and factor analysis,
that often require p(h) to be Gaussian in order to make many operations on the
model have closed form solutions. In the maximum likelihood approach where the
user explicitly specifies the distribution, a typical choice is to use p(hi) =

d
dhi
σ(hi).

Typical choices of these non-Gaussian distributions have larger peaks near 0 than
does the Gaussian distribution, so we can also see most implementations of ICA
as learning sparse features.
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Many variants of ICA are not generative models in the sense that we use the
phrase. In this book, a generative model either represents p(x) or can draw samples
from it. Many variants of ICA only know how to transform between x and h, but
do not have any way of representing p(h), and thus do not impose a distribution
over p(x). For example, many ICA variants aim to increase the sample kurtosis of
h =W−1x, because high kurtosis indicates that p(h) is non-Gaussian, but this is
accomplished without explicitly representing p(h). This is because ICA is more
often used as an analysis tool for separating signals, rather than for generating
data or estimating its density.

Just as PCA can be generalized to the nonlinear autoencoders described in
Chapter , ICA can be generalized to a nonlinear generative model, in which14
we use a nonlinear function f to generate the observed data. See Hyvärinen
and Pajunen 1999( ) for the initial work on nonlinear ICA and its successful
use with ensemble learning by Roberts and Everson 2001 Lappalainen( ) and 
et al. ( ). Another nonlinear extension of ICA is the approach of2000 nonlinear
independent components estimation, or NICE ( , ), which stacks aDinh et al. 2014
series of invertible transformations (encoder stages) that have the property that
the determinant of the Jacobian of each transformation can be computed efficiently.
This makes it possible to compute the likelihood exactly and, like ICA, attempts
to transform the data into a space where it has a factorized marginal distribution,

but is more likely to succeed thanks to the nonlinear encoder. Because the encoder
is associated with a decoder that is its perfect inverse, it is straightforward to
generate samples from the model (by first sampling from p(h) and then applying
the decoder).

Another generalization of ICA is to learn groups of features, with statistical
dependence allowed within a group but discouraged between groups (Hyvärinen
and Hoyer 1999 Hyvärinen 2001b, ; et al., ). When the groups of related units are
chosen to be non-overlapping, this is called independent subspace analysis. It is also
possible to assign spatial coordinates to each hidden unit and form overlapping
groups of spatially neighboring units. This encourages nearby units to learn similar
features. When applied to natural images, this topographic ICA approach learns

Gabor filters, such that neighboring features have similar orientation, location or
frequency. Many different phase offsets of similar Gabor functions occur within
each region, so that pooling over small regions yields translation invariance.

13.3 Slow Feature Analysis

Slow feature analysis (SFA) is a linear factor model that uses information from
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time signals to learn invariant features ( , ).Wiskott and Sejnowski 2002

Slow feature analysis is motivated by a general principle called the slowness
principle. The idea is that the important characteristics of scenes change very
slowly compared to the individual measurements that make up a description of a
scene. For example, in computer vision, individual pixel values can change very
rapidly. If a zebra moves from left to right across the image, an individual pixel
will rapidly change from black to white and back again as the zebra’s stripes pass
over the pixel. By comparison, the feature indicating whether a zebra is in the
image will not change at all, and the feature describing the zebra’s position will

change slowly. We therefore may wish to regularize our model to learn features
that change slowly over time.

The slowness principle predates slow feature analysis and has been applied
to a wide variety of models ( , ; , ; , ;Hinton 1989 Földiák 1989 Mobahi et al. 2009
Bergstra and Bengio 2009, ). In general, we can apply the slowness principle to any
differentiable model trained with gradient descent. The slowness principle may be
introduced by adding a term to the cost function of the form

λ
X
t

L f( (x( +1)t ) (, f x( )t )) (13.7)

where λ is a hyperparameter determining the strength of the slowness regularization
term, t is the index into a time sequence of examples, f is the feature extractor
to be regularized, and L is a loss function measuring the distance between f(x( )t )
and f(x ( +1)t ). A common choice for is the mean squared difference.L

Slow feature analysis is a particularly efficient application of the slowness
principle. It is efficient because it is applied to a linear feature extractor, and can
thus be trained in closed form. Like some variants of ICA, SFA is not quite a
generative model per se, in the sense that it defines a linear map between input
space and feature space but does not define a prior over feature space and thus
does not impose a distribution on input space.p( )x

The SFA algorithm (Wiskott and Sejnowski 2002, ) consists of defining f (x;θ)
to be a linear transformation, and solving the optimization problem

min
θ

Et( (f x( +1)t )i − f(x( )t )i)
2 (13.8)

subject to the constraints
Etf(x( )t )i= 0 (13.9)

and
Et[ (f x( )t )2i ] = 1. (13.10)
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The constraint that the learned feature have zero mean is necessary to make the
problem have a unique solution; otherwise we could add a constant to all feature
values and obtain a different solution with equal value of the slowness objective.
The constraint that the features have unit variance is necessary to prevent the
pathological solution where all features collapse to . Like PCA, the SFA features0
are ordered, with the first feature being the slowest. To learn multiple features, we
must also add the constraint

∀i < j,Et [ (f x( )t )if(x( )t )j ] = 0. (13.11)

This specifies that the learned features must be linearly decorrelated from each

other. Without this constraint, all of the learned features would simply capture the
one slowest signal. One could imagine using other mechanisms, such as minimizing
reconstruction error, to force the features to diversify, but this decorrelation
mechanism admits a simple solution due to the linearity of SFA features. The SFA
problem may be solved in closed form by a linear algebra package.

SFA is typically used to learn nonlinear features by applying a nonlinear basis
expansion to x before running SFA. For example, it is common to replace x by the
quadratic basis expansion, a vector containing elements xixj for all i and j. Linear
SFA modules may then be composed to learn deep nonlinear slow feature extractors
by repeatedly learning a linear SFA feature extractor, applying a nonlinear basis
expansion to its output, and then learning another linear SFA feature extractor on

top of that expansion.

When trained on small spatial patches of videos of natural scenes, SFA with
quadratic basis expansions learns features that share many characteristics with
those of complex cells in V1 cortex (Berkes and Wiskott 2005, ). When trained
on videos of random motion within 3-D computer rendered environments, deep
SFA learns features that share many characteristics with the features represented
by neurons in rat brains that are used for navigation (Franzius 2007et al., ). SFA
thus seems to be a reasonably biologically plausible model.

A major advantage of SFA is that it is possibly to theoretically predict which
features SFA will learn, even in the deep, nonlinear setting. To make such theoretical
predictions, one must know about the dynamics of the environment in terms of

configuration space (e.g., in the case of random motion in the 3-D rendered
environment, the theoretical analysis proceeds from knowledge of the probability
distribution over position and velocity of the camera). Given the knowledge of how
the underlying factors actually change, it is possible to analytically solve for the
optimal functions expressing these factors. In practice, experiments with deep SFA
applied to simulated data seem to recover the theoretically predicted functions.
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This is in comparison to other learning algorithms where the cost function depends
highly on specific pixel values, making it much more difficult to determine what
features the model will learn.

Deep SFA has also been used to learn features for object recognition and pose
estimation (Franzius 2008et al., ). So far, the slowness principle has not become
the basis for any state of the art applications. It is unclear what factor has limited
its performance. We speculate that perhaps the slowness prior is too strong, and
that, rather than imposing a prior that features should be approximately constant,
it would be better to impose a prior that features should be easy to predict from

one time step to the next. The position of an object is a useful feature regardless of
whether the object’s velocity is high or low, but the slowness principle encourages
the model to ignore the position of objects that have high velocity.

13.4 Sparse Coding

Sparse coding ( , ) is a linear factor model that hasOlshausen and Field 1996
been heavily studied as an unsupervised feature learning and feature extraction
mechanism. Strictly speaking, the term “sparse coding” refers to the process of

inferring the value of h in this model, while “sparse modeling” refers to the process
of designing and learning the model, but the term “sparse coding” is often used to
refer to both.

Like most other linear factor models, it uses a linear decoder plus noise to
obtain reconstructions of x, as specified in Eq. . More specifically, sparse13.2
coding models typically assume that the linear factors have Gaussian noise with
isotropic precision :β

p ,( ) = ( ; +x h| N x Wh b
1

β
I). (13.12)

The distribution p(h) is chosen to be one with sharp peaks near 0 (Olshausen

and Field 1996, ). Common choices include factorized Laplace, Cauchy or factorized
Student-t distributions. For example, the Laplace prior parametrized in terms of
the sparsity penalty coefficient is given byλ

p h( i) = Laplace(hi; 0,
2

λ
) =

λ

4
e− λ h| i| (13.13)

and the Student- prior byt

p h( i) ∝
1

(1 +
h i
ν )

ν
. (13.14)
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Training sparse coding with maximum likelihood is intractable. Instead, the
training alternates between encoding the data and training the decoder to better
reconstruct the data given the encoding. This approach will be justified further as
a principled approximation to maximum likelihood later, in Sec. .19.3

For models such as PCA, we have seen the use of a parametric encoder function
that predicts h and consists only of multiplication by a weight matrix. The encoder
that we use with sparse coding is not a parametric encoder. Instead, the encoder
is an optimization algorithm, that solves an optimization problem in which we seek
the single most likely code value:

h∗ = ( ) = arg maxf x
h

p .( )h x| (13.15)

When combined with Eq. and Eq. , this yields the following optimization13.13 13.12
problem:

arg max
h

p( )h x| (13.16)

= arg max
h

log ( )p h x| (13.17)

= arg min
h

λ|| ||h 1 + β|| − ||x Wh 2
2 , (13.18)

where we have dropped terms not depending on h and divided by positive scaling
factors to simplify the equation.

Due to the imposition of an L1 norm on h, that this procedure will yield a
sparse h∗ (See Sec. ).7.1.2

To train the model rather than just perform inference, we alternate between
minimization with respect to h and minimization with respect to W. In this
presentation, we treat β as a hyperparameter. Typically it is set to 1 because its
role in this optimization problem is shared with λ and there is no need for both

hyperparameters. In principle, we could also treat β as a parameter of the model
and learn it. Our presentation here has discarded some terms that do not depend
on h but do depend on β. To learn β, these terms must be included, or β will
collapse to .0

Not all approaches to sparse coding explicitly build a p(h) and a p(x h| ).
Often we are just interested in learning a dictionary of features with activation
values that will often be zero when extracted using this inference procedure.

If we sample h from a Laplace prior, it is in fact a zero probability event for
an element of h to actually be zero. The generative model itself is not especially
sparse, only the feature extractor is. ( ) describe approximateGoodfellow et al. 2013d
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inference in a different model family, the spike and slab sparse coding model, for
which samples from the prior usually contain true zeros.

The sparse coding approach combined with the use of the non-parametric
encoder can in principle minimize the combination of reconstruction error and
log-prior better than any specific parametric encoder. Another advantage is that
there is no generalization error to the encoder. A parametric encoder must learn
how to map x to h in a way that generalizes. For unusual x that do not resemble
the training data, a learned, parametric encoder may fail to find an h that results
in accurate reconstruction or a sparse code. For the vast majority of formulations

of sparse coding models, where the inference problem is convex, the optimization
procedure will always find the optimal code (unless degenerate cases such as
replicated weight vectors occur). Obviously, the sparsity and reconstruction costs
can still rise on unfamiliar points, but this is due to generalization error in the
decoder weights, rather than generalization error in the encoder. The lack of
generalization error in sparse coding’s optimization-based encoding process may
result in better generalization when sparse coding is used as a feature extractor for
a classifier than when a parametric function is used to predict the code. Coates
and Ng 2011( ) demonstrated that sparse coding features generalize better for
object recognition tasks than the features of a related model based on a parametric
encoder, the linear-sigmoid autoencoder. Inspired by their work, Goodfellow et al.

( ) showed that a variant of sparse coding generalizes better than other feature2013d
extractors in the regime where extremely few labels are available (twenty or fewer
labels per class).

The primary disadvantage of the non-parametric encoder is that it requires
greater time to compute h given x because the non-parametric approach requires
running an iterative algorithm. The parametric autoencoder approach, developed
in Chapter , uses only a fixed number of layers, often only one. Another14
disadvantage is that it is not straight-forward to back-propagate through the
non-parametric encoder, which makes it difficult to pretrain a sparse coding model
with an unsupervised criterion and then fine-tune it using a supervised criterion.
Modified versions of sparse coding that permit approximate derivatives do exist

but are not widely used ( , ).Bagnell and Bradley 2009

Sparse coding, like other linear factor models, often produces poor samples,
as shown in Fig. . This happens even when the model is able to reconstruct13.2
the data well and provide useful features for a classifier. The reason is that each
individual feature may be learned well, but the factorial prior on the hidden code
results in the model including random subsets of all of the features in each generated
sample. This motivates the development of deeper models that can impose a non-
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Figure 13.2: Example samples and weights from a spike and slab sparse coding model
trained on the MNIST dataset. The samples from the model do not resemble the
training examples. At first glance, one might assume the model is poorly fit. The
weight vectors of the model have learned to represent penstrokes and sometimes complete
digits. The model has thus learned useful features. The problem is that the factorial prior
over features results in random subsets of features being combined. Few such subsets
are appropriate to form a recognizable MNIST digit. This motivates the development of
generative models that have more powerful distributions over their latent codes. Figure
reproduced with permission from Goodfellow 2013d( ).

factorial distribution on the deepest code layer, as well as the development of more
sophisticated shallow models.

13.5 Manifold Interpretation of PCA

Linear factor models including PCA and factor analysis can be interpreted as
learning a manifold ( , ). We can view probabilistic PCA asHinton et al. 1997
defining a thin pancake-shaped region of high probability—a Gaussian distribution
that is very narrow along some axes, just as a pancake is very flat along its vertical

axis, but is elongated along other axes, just as a pancake is wide along its horizontal
axes. This is illustrated in Fig. . PCA can be interpreted as aligning this13.3
pancake with a linear manifold in a higher-dimensional space. This interpretation
applies not just to traditional PCA but also to any linear autoencoder that learns
matricesW and V with the goal of making the reconstruction of x lie as close to
x as possible,

Let the encoder be
h x W= (f ) = >( )x µ− . (13.19)
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The encoder computes a low-dimensional representation of h. With the autoencoder
view, we have a decoder computing the reconstruction

x̂ h b V h= (g ) = + . (13.20)

Figure 13.3: Flat Gaussian capturing probability concentration near a low-dimensional
manifold. The figure shows the upper half of the “pancake” above the “manifold plane”
which goes through its middle. The variance in the direction orthogonal to the manifold is
very small (arrow pointing out of plane) and can be considered like “noise,” while the other
variances are large (arrows in the plane) and correspond to “signal,” and a coordinate
system for the reduced-dimension data.

The choices of linear encoder and decoder that minimize reconstruction error

E[|| −x x̂||2] (13.21)

correspond to V =W , µ =b = E[x] and the columns of W form an orthonormal
basis which spans the same subspace as the principal eigenvectors of the covariance
matrix

C x µ x µ= [(E − )( − )>]. (13.22)

In the case of PCA, the columns of W are these eigenvectors, ordered by the
magnitude of the corresponding eigenvalues (which are all real and non-negative).

One can also show that eigenvalue λi of C corresponds to the variance of x
in the direction of eigenvector v( )i . If x ∈ RD and h ∈ Rd with d < D, then the
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optimal reconstruction error (choosing , , and as above) isµ b V W

min [E || −x x̂||2] =
DX

i d= +1

λi. (13.23)

Hence, if the covariance has rank d , the eigenvalues λd+1 to λD are 0 and recon-
struction error is 0.

Furthermore, one can also show that the above solution can be obtained by
maximizing the variances of the elements of , under orthonormal , instead ofh W
minimizing reconstruction error.

Linear factor models are some of the simplest generative models and some of the
simplest models that learn a representation of data. Much as linear classifiers and
linear regression models may be extended to deep feedforward networks, these linear
factor models may be extended to autoencoder networks and deep probabilistic
models that perform the same tasks but with a much more powerful and flexible

model family.
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Chapter 14

Autoencoders

An autoencoder is a neural network that is trained to attempt to copy its input
to its output. Internally, it has a hidden layer h that describes a code used to
represent the input. The network may be viewed as consisting of two parts: an
encoder function h = f (x) and a decoder that produces a reconstruction r = g(h).

This architecture is presented in Fig. . If an autoencoder succeeds in simply14.1
learning to set g(f (x)) = x everywhere, then it is not especially useful. Instead,
autoencoders are designed to be unable to learn to copy perfectly. Usually they are
restricted in ways that allow them to copy only approximately, and to copy only
input that resembles the training data. Because the model is forced to prioritize
which aspects of the input should be copied, it often learns useful properties of the
data.

Modern autoencoders have generalized the idea of an encoder and a de-
coder beyond deterministic functions to stochastic mappings pencoder(h x| ) and
pdecoder( )x h| .

The idea of autoencoders has been part of the historical landscape of neural

networks for decades ( , ; , ; ,LeCun 1987 Bourlard and Kamp 1988 Hinton and Zemel
1994). Traditionally, autoencoders were used for dimensionality reduction or
feature learning. Recently, theoretical connections between autoencoders and
latent variable models have brought autoencoders to the forefront of generative
modeling, as we will see in Chapter . Autoencoders may be thought of as being20
a special case of feedforward networks, and may be trained with all of the same
techniques, typically minibatch gradient descent following gradients computed
by back-propagation. Unlike general feedforward networks, autoencoders may
also be trained using recirculation ( , ), a learningHinton and McClelland 1988
algorithm based on comparing the activations of the network on the original input
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to the activations on the reconstructed input. Recirculation is regarded as more
biologically plausible than back-propagation, but is rarely used for machine learning
applications.

xx rr

hh

f g

Figure 14.1: The general structure an autoencoder, mapping an input x to an output
(called reconstruction) r through an internal representation or code h . The autoencoder
has two components: the encoder f (mapping x to h) and the decoder g (mapping h to
r).

14.1 Undercomplete Autoencoders

Copying the input to the output may sound useless, but we are typically not
interested in the output of the decoder. Instead, we hope that training the
autoencoder to perform the input copying task will result in h taking on useful
properties.

One way to obtain useful features from the autoencoder is to constrain h to
have smaller dimension than x. An autoencoder whose code dimension is less
than the input dimension is called undercomplete. Learning an undercomplete
representation forces the autoencoder to capture the most salient features of the

training data.

The learning process is described simply as minimizing a loss function

L , g f(x ( ( )))x (14.1)

where L is a loss function penalizing g(f (x)) for being dissimilar from x, such as
the mean squared error.

When the decoder is linear and L is the mean squared error, an undercomplete
autoencoder learns to span the same subspace as PCA. In this case, an autoencoder
trained to perform the copying task has learned the principal subspace of the
training data as a side-effect.

Autoencoders with nonlinear encoder functions f and nonlinear decoder func-
tions g can thus learn a more powerful nonlinear generalization of PCA. Unfortu-
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nately, if the encoder and decoder are allowed too much capacity, the autoencoder
can learn to perform the copying task without extracting useful information about
the distribution of the data. Theoretically, one could imagine that an autoencoder
with a one-dimensional code but a very powerful nonlinear encoder could learn to
represent each training example x( )i with the code i. The decoder could learn to
map these integer indices back to the values of specific training examples. This
specific scenario does not occur in practice, but it illustrates clearly that an autoen-
coder trained to perform the copying task can fail to learn anything useful about
the dataset if the capacity of the autoencoder is allowed to become too great.

14.2 Regularized Autoencoders

Undercomplete autoencoders, with code dimension less than the input dimension,
can learn the most salient features of the data distribution. We have seen that
these autoencoders fail to learn anything useful if the encoder and decoder are
given too much capacity.

A similar problem occurs if the hidden code is allowed to have dimension equal
to the input, and in the overcomplete case in which the hidden code has dimension
greater than the input. In these cases, even a linear encoder and linear decoder

can learn to copy the input to the output without learning anything useful about
the data distribution.

Ideally, one could train any architecture of autoencoder successfully, choosing
the code dimension and the capacity of the encoder and decoder based on the
complexity of distribution to be modeled. Regularized autoencoders provide the
ability to do so. Rather than limiting the model capacity by keeping the encoder
and decoder shallow and the code size small, regularized autoencoders use a loss
function that encourages the model to have other properties besides the ability
to copy its input to its output. These other properties include sparsity of the
representation, smallness of the derivative of the representation, and robustness
to noise or to missing inputs. A regularized autoencoder can be nonlinear and

overcomplete but still learn something useful about the data distribution even if
the model capacity is great enough to learn a trivial identity function.

In addition to the methods described here which are most naturally interpreted
as regularized autoencoders, nearly any generative model with latent variables
and equipped with an inference procedure (for computing latent representations
given input) may be viewed as a particular form of autoencoder. Two generative
modeling approaches that emphasize this connection with autoencoders are the
descendants of the Helmholtz machine ( , ), such as the variationalHinton et al. 1995b
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autoencoder (Sec. ) and the generative stochastic networks (Sec. ).20.10.3 20.12
These models naturally learn high-capacity, overcomplete encodings of the input
and do not require regularization for these encodings to be useful. Their encodings
are naturally useful because the models were trained to approximately maximize
the probability of the training data rather than to copy the input to the output.

14.2.1 Sparse Autoencoders

A sparse autoencoder is simply an autoencoder whose training criterion involves a
sparsity penalty Ω(h) on the code layer h, in addition to the reconstruction error:

L , g f(x ( ( ))) + Ω( )x h (14.2)

where g (h) is the decoder output and typically we have h = f (x), the encoder
output.

Sparse autoencoders are typically used to learn features for another task such
as classification. An autoencoder that has been regularized to be sparse must
respond to unique statistical features of the dataset it has been trained on, rather
than simply acting as an identity function. In this way, training to perform the

copying task with a sparsity penalty can yield a model that has learned useful
features as a byproduct.

We can think of the penalty Ω(h) simply as a regularizer term added to
a feedforward network whose primary task is to copy the input to the output
(unsupervised learning objective) and possibly also perform some supervised task
(with a supervised learning objective) that depends on these sparse features.
Unlike other regularizers such as weight decay, there is not a straightforward
Bayesian interpretation to this regularizer. As described in Sec. , training5.6.1
with weight decay and other regularization penalties can be interpreted as a
MAP approximation to Bayesian inference, with the added regularizing penalty
corresponding to a prior probability distribution over the model parameters. In

this view, regularized maximum likelihood corresponds to maximizing p(θ x| ),
which is equivalent to maximizing log p(x θ| ) + log p(θ). The log p(x θ| ) term
is the usual data log-likelihood term and the log p(θ) term, the log-prior over
parameters, incorporates the preference over particular values of θ. This view
was described in Sec. . Regularized autoencoders defy such an interpretation5.6
because the regularizer depends on the data and is therefore by definition not a
prior in the formal sense of the word. We can still think of these regularization
terms as implicitly expressing a preference over functions.

Rather than thinking of the sparsity penalty as a regularizer for the copying
task, we can think of the entire sparse autoencoder framework as approximating
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maximum likelihood training of a generative model that has latent variables.
Suppose we have a model with visible variables x and latent variables h, with
an explicit joint distribution pmodel(x h, ) = pmodel(h)pmodel(x h| ). We refer to
pmodel(h) as the model’s prior distribution over the latent variables, representing
the model’s beliefs prior to seeing x. This is different from the way we have
previously used the word “prior,” to refer to the distribution p(θ) encoding our
beliefs about the model’s parameters before we have seen the training data. The
log-likelihood can be decomposed as

log pmodel( ) = logx pmodel ( )h x, . (14.3)

We can think of the autoencoder as approximating this sum with a point estimate
for just one highly likely value for h. This is similar to the sparse coding generative
model (Sec. ), but with13.4 h being the output of the parametric encoder rather
than the result of an optimization that infers the most likely h. From this point of
view, with this chosen , we are maximizingh

log pmodel( ) = logh x, pmodel( ) + logh pmodel ( )x h| . (14.4)

The log pmodel( )h term can be sparsity-inducing. For example, the Laplace prior,

pmodel(hi ) =
λ

2
e λ h , (14.5)

corresponds to an absolute value sparsity penalty. Expressing the log-prior as an
absolute value penalty, we obtain

Ω( ) = h λ
i

|hi | (14.6)

− log pmodel ( ) =h
i

λ h| i| − log
λ

2
= Ω( ) + consth (14.7)

where the constant term depends only on λ and not h. We typically treat λ as a
hyperparameter and discard the constant term since it does not affect the parameter
learning. Other priors such as the Student-t prior can also induce sparsity. From
this point of view of sparsity as resulting from the effect of pmodel(h) on approximate
maximum likelihood learning, the sparsity penalty is not a regularization term at
all. It is just a consequence of the model’s distribution over its latent variables.
This view provides a different motivation for training an autoencoder: it is a way

of approximately training a generative model. It also provides a different reason for
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why the features learned by the autoencoder are useful: they describe the latent
variables that explain the input.

Early work on sparse autoencoders ( , , ) exploredRanzato et al. 2007a 2008
various forms of sparsity and proposed a connection between the sparsity penalty
and the logZ term that arises when applying maximum likelihood to an undirected
probabilistic model p(x) = 1

Z p̃(x). The idea is that minimizing logZ prevents a
probabilistic model from having high probability everywhere, and imposing sparsity
on an autoencoder prevents the autoencoder from having low reconstruction
error everywhere. In this case, the connection is on the level of an intuitive

understanding of a general mechanism rather than a mathematical correspondence.
The interpretation of the sparsity penalty as corresponding to log pmodel(h) in a
directed model pmodel ( )h pmodel( )x h| is more mathematically straightforward.

One way to achieve actual zeros in h for sparse (and denoising) autoencoders
was introduced in ( ). The idea is to use rectified linear units toGlorot et al. 2011b
produce the code layer. With a prior that actually pushes the representations to
zero (like the absolute value penalty), one can thus indirectly control the average
number of zeros in the representation.

14.2.2 Denoising Autoencoders

Rather than adding a penalty to the cost function, we can obtain an autoencoderΩ 
that learns something useful by changing the reconstruction error term of the cost
function.

Traditionally, autoencoders minimize some function

L , g f(x ( ( )))x (14.8)

where L is a loss function penalizing g(f (x)) for being dissimilar from x, such as
the L2 norm of their difference. This encourages g f◦ to learn to be merely an
identity function if they have the capacity to do so.

A denoising autoencoder DAEor instead minimizes

L , g f(x ( (x̃))), (14.9)

where x̃ is a copy of x that has been corrupted by some form of noise. Denoising
autoencoders must therefore undo this corruption rather than simply copying their
input.

Denoising training forces f and g to implicitly learn the structure of pdata(x),
as shown by ( ) and ( ). DenoisingAlain and Bengio 2013 Bengio et al. 2013c
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autoencoders thus provide yet another example of how useful properties can emerge
as a byproduct of minimizing reconstruction error. They are also an example of
how overcomplete, high-capacity models may be used as autoencoders so long
as care is taken to prevent them from learning the identity function. Denoising
autoencoders are presented in more detail in Sec. .14.5

14.2.3 Regularizing by Penalizing Derivatives

Another strategy for regularizing an autoencoder is to use a penalty as in sparseΩ

autoencoders,
L , g f , ,(x ( ( ))) + Ω(x h x) (14.10)

but with a different form of :Ω

Ω( ) = h x, λ
i

||∇ hi ||2 . (14.11)

This forces the model to learn a function that does not change much when x
changes slightly. Because this penalty is applied only at training examples, it forces
the autoencoder to learn features that capture information about the training
distribution.

An autoencoder regularized in this way is called a contractive autoencoder
or . This approach has theoretical connections to denoising autoencoders,CAE
manifold learning and probabilistic modeling. The CAE is described in more detail
in Sec. .14.7

14.3 Representational Power, Layer Size and Depth

Autoencoders are often trained with only a single layer encoder and a single layer
decoder. However, this is not a requirement. In fact, using deep encoders and
decoders offers many advantages.

Recall from Sec. that there are many advantages to depth in a feedforward6.4.1
network. Because autoencoders are feedforward networks, these advantages also
apply to autoencoders. Moreover, the encoder is itself a feedforward network as
is the decoder, so each of these components of the autoencoder can individually

benefit from depth.

One major advantage of non-trivial depth is that the universal approximator
theorem guarantees that a feedforward neural network with at least one hidden
layer can represent an approximation of any function (within a broad class) to an
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arbitrary degree of accuracy, provided that it has enough hidden units. This means
that an autoencoder with a single hidden layer is able to represent the identity
function along the domain of the data arbitrarily well. However, the mapping from
input to code is shallow. This means that we are not able to enforce arbitrary
constraints, such as that the code should be sparse. A deep autoencoder, with at
least one additional hidden layer inside the encoder itself, can approximate any
mapping from input to code arbitrarily well, given enough hidden units.

Depth can exponentially reduce the computational cost of representing some
functions. Depth can also exponentially decrease the amount of training data

needed to learn some functions. See Sec. for a review of the advantages of6.4.1
depth in feedforward networks.

Experimentally, deep autoencoders yield much better compression than corre-
sponding shallow or linear autoencoders (Hinton and Salakhutdinov 2006, ).

A common strategy for training a deep autoencoder is to greedily pretrain
the deep architecture by training a stack of shallow autoencoders, so we often
encounter shallow autoencoders, even when the ultimate goal is to train a deep
autoencoder.

14.4 Stochastic Encoders and Decoders

Autoencoders are just feedforward networks. The same loss functions and output
unit types that can be used for traditional feedforward networks are also used for
autoencoders.

As described in Sec. , a general strategy for designing the output units6.2.2.4
and the loss function of a feedforward network is to define an output distribution
p(y x| ) and minimize the negative log-likelihood − log p(y x| ). In that setting, y
was a vector of targets, such as class labels.

In the case of an autoencoder, x is now the target as well as the input. However,
we can still apply the same machinery as before. Given a hidden code h, we may
think of the decoder as providing a conditional distribution pdecoder (x h| ). We

may then train the autoencoder by minimizing − log pdecoder( )x h| . The exact
form of this loss function will change depending on the form of pdecoder . As with
traditional feedforward networks, we usually use linear output units to parametrize
the mean of a Gaussian distribution if x is real-valued. In that case, the negative
log-likelihood yields a mean squared error criterion. Similarly, binary x values
correspond to a Bernoulli distribution whose parameters are given by a sigmoid
output unit, discrete x values correspond to a softmax distribution, and so on.
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Typically, the output variables are treated as being conditionally independent
given h so that this probability distribution is inexpensive to evaluate, but some
techniques such as mixture density outputs allow tractable modeling of outputs
with correlations.

Figure 14.2: The structure of a stochastic autoencoder, in which both the encoder and the
decoder are not simple functions but instead involve some noise injection, meaning that
their output can be seen as sampled from a distribution, p (h x| ) for the encoder
and p ( )x h| for the decoder.

To make a more radical departure from the feedforward networks we have seen
previously, we can also generalize the notion of an encoding function f(x) to an
encoding distribution pencoder( )h x| , as illustrated in Fig. .14.2

Any latent variable model pmodel ( )h x, defines a stochastic encoder

pencoder( ) = h x| pmodel( )h x| (14.12)

and a stochastic decoder

pdecoder( ) = x h| pmodel( )x h| . (14.13)

In general, the encoder and decoder distributions are not necessarily conditional
distributions compatible with a unique joint distribution pmodel(x h, ). Alain et al.
( ) showed that training the encoder and decoder as a denoising autoencoder2015
will tend to make them compatible asymptotically (with enough capacity and
examples).

14.5 Denoising Autoencoders

The denoising autoencoder (DAE) is an autoencoder that receives a corrupted data
point as input and is trained to predict the original, uncorrupted data point as its
output.

The DAE training procedure is illustrated in Fig. . We introduce a14.3
corruption process C (˜ | ) which represents a conditional distribution over
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Figure 14.3: The computational graph of the cost function for a denoising autoencoder,
which is trained to reconstruct the clean data point x from its corrupted version x̃.
This is accomplished by minimizing the loss L = − log p (x h| = f(x̃)), where
x̃ is a corrupted version of the data example x, obtained through a given corruption
process C(x̃ x| ). Typically the distribution p is a factorial distribution whose mean
parameters are emitted by a feedforward network .g

corrupted samples ˜ , given a data sample . The autoencoder then learns a
reconstruction distribution preconstruct( | ˜) (estimated from training pairs x, x̃),
as follows:

1. Sample a training example from the training data.x

2. Sample a corrupted version x̃ from C(˜ | = )x .

3. Use (x,x̃) as a training example for estimating the autoencoder reconstruction
distribution preconstruct(x | x̃) = pdecoder(x h| ) with h the output of encoder
f(x̃) and p decoder typically defined by a decoder .g( )h

Typically we can simply perform gradient-based approximate minimization (such
as minibatch gradient descent) on the negative log-likelihood − log pdecoder(x h| ).
So long as the encoder is deterministic, the denoising autoencoder is a feedforward
network and may be trained with exactly the same techniques as any other
feedforward network.

We can therefore view the DAE as performing stochastic gradient descent on

the following expectation:

−
p̂ ( ) ˜ C( ˜ )

log pdecoder( = (x h| f x̃)) (14.14)

where p̂data( ) is the training distribution.
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Figure 14.4: A denoising autoencoder is trained to map a corrupted data point x̃ back to
the original data point x. We illustrate training examples x as red crosses lying near a
low-dimensional manifold illustrated with the bold black line. We illustrate the corruption
processC (x̃ x| ) with a gray circle of equiprobable corruptions. A gray arrow demonstrates
how one training example is transformed into one sample from this corruption process.
When the denoising autoencoder is trained to minimize the average of squared errors
||g(f (x̃)) − ||x , the reconstruction g(f (x̃)) estimates [ | x̃]. The vector
g(f(x̃)) −x̃ points approximately towards the nearest point on the manifold, since g(f(x̃))
estimates the center of mass of the clean points x which could have given rise to x̃. The
autoencoder thus learns a vector field g(f(x)) − x indicated by the green arrows. This
vector field estimates the score ∇ log p (x) up to a multiplicative factor that is the
average root mean square reconstruction error.
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14.5.1 Estimating the Score

Score matching ( , ) is an alternative to maximum likelihood. ItHyvärinen 2005
provides a consistent estimator of probability distributions based on encouraging

the model to have the same score as the data distribution at every training point
x. In this context, the score is a particular gradient field:

∇ log ( )p x . (14.15)

Score matching is discussed further in Sec. . For the present discussion18.4
regarding autoencoders, it is sufficient to understand that learning the gradient
field of log pdata is one way to learn the structure of pdata itself.

A very important property of DAEs is that their training criterion (with
conditionally Gaussian p(x h| )) makes the autoencoder learn a vector field
(g(f(x)) − x) that estimates the score of the data distribution. This is illustrated
in Fig. .14.4

Denoising training of a specific kind of autoencoder (sigmoidal hidden units,

linear reconstruction units) using Gaussian noise and mean squared error as the
reconstruction cost is equivalent ( , ) to training a specific kind ofVincent 2011
undirected probabilistic model called an RBM with Gaussian visible units. This
kind of model will be described in detail in Sec. ; for the present discussion20.5.1
it suffices to know that it is a model that provides an explicit pmodel (x;θ). When
the RBM is trained using denoising score matching ( , ),Kingma and LeCun 2010
its learning algorithm is equivalent to denoising training in the corresponding
autoencoder. With a fixed noise level, regularized score matching is not a consistent
estimator; it instead recovers a blurred version of the distribution. However, if
the noise level is chosen to approach 0 when the number of examples approaches
infinity, then consistency is recovered. Denoising score matching is discussed in

more detail in Sec. .18.5

Other connections between autoencoders and RBMs exist. Score matching
applied to RBMs yields a cost function that is identical to reconstruction error
combined with a regularization term similar to the contractive penalty of the
CAE (Swersky 2011 Bengio and Delalleau 2009et al., ). ( ) showed that an autoen-
coder gradient provides an approximation to contrastive divergence training of
RBMs.

For continuous-valued x, the denoising criterion with Gaussian corruption and
reconstruction distribution yields an estimator of the score that is applicable to
general encoder and decoder parametrizations ( , ). ThisAlain and Bengio 2013
means a generic encoder-decoder architecture may be made to estimate the score
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by training with the squared error criterion

||g f( (x̃ x)) − ||2 (14.16)

and corruption
C(˜ = x̃ x| ) = (N x̃ x; = µ , σΣ = 2I) (14.17)

with noise variance σ 2. See Fig. for an illustration of how this works.14.5

Figure 14.5: Vector field learned by a denoising autoencoder around a 1-D curved manifold
near which the data concentrates in a 2-D space. Each arrow is proportional to the
reconstruction minus input vector of the autoencoder and points towards higher probability
according to the implicitly estimated probability distribution. The vector field has zeros
at both maxima of the estimated density function (on the data manifolds) and at minima
of that density function. For example, the spiral arm forms a one-dimensional manifold of
local maxima that are connected to each other. Local minima appear near the middle of
the gap between two arms. When the norm of reconstruction error (shown by the length
of the arrows) is large, it means that probability can be significantly increased by moving
in the direction of the arrow, and that is mostly the case in places of low probability.
The autoencoder maps these low probability points to higher probability reconstructions.
Where probability is maximal, the arrows shrink because the reconstruction becomes more
accurate.

In general, there is no guarantee that the reconstruction g(f (x)) minus the
input x corresponds to the gradient of any function, let alone to the score. That is
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why the early results ( , ) are specialized to particular parametrizationsVincent 2011
where g(f(x)) − x may be obtained by taking the derivative of another function.
Kamyshanska and Memisevic 2015 Vincent 2011( ) generalized the results of ( ) by
identifying a family of shallow autoencoders such that g(f(x))− x corresponds to
a score for all members of the family.

So far we have described only how the denoising autoencoder learns to represent
a probability distribution. More generally, one may want to use the autoencoder as
a generative model and draw samples from this distribution. This will be described
later, in Sec. .20.11

The idea of using MLPs for denoising dates back to the work of ( )LeCun 1987
and ( ).Gallinari et al. 1987 Behnke 2001( ) also used recurrent networks to denoise

images. Denoising autoencoders are, in some sense, just MLPs trained to denoise.
However, the name “denoising autoencoder” refers to a model that is intended not
merely to learn to denoise its input but to learn a good internal representation
as a side effect of learning to denoise. This idea came much later (Vincent
et al., , ). The learned representation may then be used to pretrain a2008 2010
deeper unsupervised network or a supervised network. Like sparse autoencoders,
sparse coding, contractive autoencoders and other regularized autoencoders, the
motivation for DAEs was to allow the learning of a very high-capacity encoder
while preventing the encoder and decoder from learning a useless identity function.

Prior to the introduction of the modern DAE, Inayoshi and Kurita 2005( )
explored some of the same goals with some of the same methods. Their approach

minimizes reconstruction error in addition to a supervised objective while injecting
noise in the hidden layer of a supervised MLP, with the objective to improve
generalization by introducing the reconstruction error and the injected noise.
However, their method was based on a linear encoder and could not learn function
families as powerful as can the modern DAE.

14.6 Learning Manifolds with Autoencoders

Like many other machine learning algorithms, autoencoders exploit the idea
that data concentrates around a low-dimensional manifold or a small set of such
manifolds, as described in Sec. . Some machine learning algorithms exploit5.11.3

this idea only insofar as that they learn a function that behaves correctly on the
manifold but may have unusual behavior if given an input that is off the manifold.

518



CHAPTER 14. AUTOENCODERS

Autoencoders take this idea further and aim to learn the structure of the manifold.

To understand how autoencoders do this, we must present some important
characteristics of manifolds.

An important characterization of a manifold is the set of its . Attangent planes
a point x on a d-dimensional manifold, the tangent plane is given by d basis vectors
that span the local directions of variation allowed on the manifold. As illustrated
in Fig. , these local directions specify how one can change14.6 x infinitesimally
while staying on the manifold.

All autoencoder training procedures involve a compromise between two forces:

1. Learning a representation h of a training example x such that x can be
approximately recovered from h through a decoder. The fact that x is drawn
from the training data is crucial, because it means the autoencoder need
not successfully reconstruct inputs that are not probable under the data
generating distribution.

2. Satisfying the constraint or regularization penalty. This can be an architec-
tural constraint that limits the capacity of the autoencoder, or it can be
a regularization term added to the reconstruction cost. These techniques
generally prefer solutions that are less sensitive to the input.

Clearly, neither force alone would be useful—copying the input to the output
is not useful on its own, nor is ignoring the input. Instead, the two forces together
are useful because they force the hidden representation to capture information
about the structure of the data generating distribution. The important principle
is that the autoencoder can afford to represent only the variations that are needed
to reconstruct training examples. If the data generating distribution concentrates
near a low-dimensional manifold, this yields representations that implicitly capture
a local coordinate system for this manifold: only the variations tangent to the

manifold around x need to correspond to changes in h = f (x). Hence the encoder
learns a mapping from the input space x to a representation space, a mapping that
is only sensitive to changes along the manifold directions, but that is insensitive to
changes orthogonal to the manifold.

A one-dimensional example is illustrated in Fig. , showing that by making14.7
the reconstruction function insensitive to perturbations of the input around the
data points we recover the manifold structure.

To understand why autoencoders are useful for manifold learning, it is instruc-
tive to compare them to other approaches. What is most commonly learned to
characterize a manifold is a representation of the data points on (or near) the
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Figure 14.6: An illustration of the concept of a tangent hyperplane. Here we create a
one-dimensional manifold in 784-dimensional space. We take an MNIST image with 784
pixels and transform it by translating it vertically. The amount of vertical translation
defines a coordinate along a one-dimensional manifold that traces out a curved path
through image space. This plot shows a few points along this manifold. For visualization,
we have projected the manifold into two dimensional space using PCA. An n-dimensional
manifold has an n-dimensional tangent plane at every point. This tangent plane touches
the manifold exactly at that point and is oriented parallel to the surface at that point.
It defines the space of directions in which it is possible to move while remaining on
the manifold. This one-dimensional manifold has a single tangent line. We indicate an
example tangent line at one point, with an image showing how this tangent direction
appears in image space. Gray pixels indicate pixels that do not change as we move along
the tangent line, white pixels indicate pixels that brighten, and black pixels indicate pixels
that darken.
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Figure 14.7: If the autoencoder learns a reconstruction function that is invariant to small
perturbations near the data points, it captures the manifold structure of the data. Here
the manifold structure is a collection of -dimensional manifolds. The dashed diagonal0
line indicates the identity function target for reconstruction. The optimal reconstruction
function crosses the identity function wherever there is a data point. The horizontal
arrows at the bottom of the plot indicate the r(x) − x reconstruction direction vector
at the base of the arrow, in input space, always pointing towards the nearest “manifold”
(a single datapoint, in the 1-D case). The denoising autoencoder explicitly tries to make
the derivative of the reconstruction function r(x) small around the data points. The
contractive autoencoder does the same for the encoder. Although the derivative of r(x) is
asked to be small around the data points, it can be large between the data points. The
space between the data points corresponds to the region between the manifolds, where
the reconstruction function must have a large derivative in order to map corrupted points
back onto the manifold.

manifold. Such a representation for a particular example is also called its em-
bedding. It is typically given by a low-dimensional vector, with less dimensions
than the “ambient” space of which the manifold is a low-dimensional subset. Some
algorithms (non-parametric manifold learning algorithms, discussed below) directly
learn an embedding for each training example, while others learn a more general
mapping, sometimes called an encoder, or representation function, that maps any
point in the ambient space (the input space) to its embedding.

Manifold learning has mostly focused on unsupervised learning procedures that

attempt to capture these manifolds. Most of the initial machine learning research
on learning nonlinear manifolds has focused on non-parametric methods based on
the nearest-neighbor graph. This graph has one node per training example and
edges connecting near neighbors to each other. These methods (Schölkopf et al.,
1998 Roweis and Saul 2000 Tenenbaum 2000 Brand 2003 Belkin and; , ; et al., ; , ;
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Figure 14.8: Non-parametric manifold learning procedures build a nearest neighbor graph
whose nodes are training examples and arcs connect nearest neighbors. Various procedures
can thus obtain the tangent plane associated with a neighborhood of the graph as well
as a coordinate system that associates each training example with a real-valued vector
position, or . It is possible to generalize such a representation to new examples
by a form of interpolation. So long as the number of examples is large enough to cover
the curvature and twists of the manifold, these approaches work well. Images from the
QMUL Multiview Face Dataset ( , ).Gong 2000

Niyogi 2003 Donoho and Grimes 2003 Weinberger and Saul 2004 Hinton and, ; , ; , ;
Roweis 2003 van der Maaten and Hinton 2008, ; , ) associate each of nodes with a
tangent plane that spans the directions of variations associated with the difference

vectors between the example and its neighbors, as illustrated in Fig. .14.8

A global coordinate system can then be obtained through an optimization or
solving a linear system. Fig. illustrates how a manifold can be tiled by a14.9
large number of locally linear Gaussian-like patches (or “pancakes,” because the
Gaussians are flat in the tangent directions).

However, there is a fundamental difficulty with such local non-parametric
approaches to manifold learning, raised in ( ): if theBengio and Monperrus 2005
manifolds are not very smooth (they have many peaks and troughs and twists),
one may need a very large number of training examples to cover each one of these
variations, with no chance to generalize to unseen variations. Indeed, these methods
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Figure 14.9: If the tangent planes (see Fig. ) at each location are known, then they14.6
can be tiled to form a global coordinate system or a density function. Each local patch
can be thought of as a local Euclidean coordinate system or as a locally flat Gaussian, or

, with a very small variance in the directions orthogonal to the pancake and a
very large variance in the directions defining the coordinate system on the pancake. A
mixture of these Gaussians provides an estimated density function, as in the manifold
Parzen window algorithm ( , ) or its non-local neural-net basedVincent and Bengio 2003
variant ( , ).Bengio 2006c

can only generalize the shape of the manifold by interpolating between neighboring
examples. Unfortunately, the manifolds involved in AI problems can have very
complicated structure that can be difficult to capture from only local interpolation.
Consider for example the manifold resulting from translation shown in Fig. . If14.6

we watch just one coordinate within the input vector, xi, as the image is translated,
we will observe that one coordinate encounters a peak or a trough in its value
once for every peak or trough in brightness in the image. In other words, the
complexity of the patterns of brightness in an underlying image template drives
the complexity of the manifolds that are generated by performing simple image
transformations. This motivates the use of distributed representations and deep
learning for capturing manifold structure.
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14.7 Contractive Autoencoders

The contractive autoencoder ( , , ) introduces an explicit regularizerRifai et al. 2011a b
on the code h= f (x), encouraging the derivatives of f to be as small as possible:

Ω( ) = h λ
∂f( )x

∂x

2

F

. (14.18)

The penalty Ω(h) is the squared Frobenius norm (sum of squared elements) of the
Jacobian matrix of partial derivatives associated with the encoder function.

There is a connection between the denoising autoencoder and the contractive
autoencoder: ( ) showed that in the limit of small GaussianAlain and Bengio 2013
input noise, the denoising reconstruction error is equivalent to a contractive
penalty on the reconstruction function that maps x to r = g (f (x)). In other
words, denoising autoencoders make the reconstruction function resist small but
finite-sized perturbations of the input, while contractive autoencoders make the
feature extraction function resist infinitesimal perturbations of the input. When
using the Jacobian-based contractive penalty to pretrain features f (x) for use

with a classifier, the best classification accuracy usually results from applying the
contractive penalty to f(x) rather than to g(f (x)). A contractive penalty on f (x)
also has close connections to score matching, as discussed in Sec. .14.5.1

The name contractive arises from the way that the CAE warps space. Specifi-
cally, because the CAE is trained to resist perturbations of its input, it is encouraged
to map a neighborhood of input points to a smaller neighborhood of output points.
We can think of this as contracting the input neighborhood to a smaller output
neighborhood.

To clarify, the CAE is contractive only locally—all perturbations of a training
point x are mapped near to f (x). Globally, two different points x and x may be
mapped to f(x) and f (x ) points that are farther apart than the original points.

It is plausible that f be expanding in-between or far from the data manifolds (see
for example what happens in the 1-D toy example of Fig. ). When the14.7 Ω(h)
penalty is applied to sigmoidal units, one easy way to shrink the Jacobian is to
make the sigmoid units saturate to or . This encourages the CAE to encode0 1
input points with extreme values of the sigmoid that may be interpreted as a
binary code. It also ensures that the CAE will spread its code values throughout
most of the hypercube that its sigmoidal hidden units can span.

We can think of the Jacobian matrix J at a point x as approximating the
nonlinear encoder f (x) as being a linear operator. This allows us to use the word
“contractive” more formally. In the theory of linear operators, a linear operator
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is said to be contractive if the norm of Jx remains less than or equal to for1
all unit-norm x. In other words, J is contractive if it shrinks the unit sphere.
We can think of the CAE as penalizing the Frobenius norm of the local linear
approximation of f (x) at every training point x in order to encourage each of
these local linear operator to become a contraction.

As described in Sec. , regularized autoencoders learn manifolds by balancing14.6
two opposing forces. In the case of the CAE, these two forces are reconstruction
error and the contractive penalty Ω(h). Reconstruction error alone would encourage
the CAE to learn an identity function. The contractive penalty alone would

encourage the CAE to learn features that are constant with respect to x. The
compromise between these two forces yields an autoencoder whose derivatives
∂f ( )
∂ are mostly tiny. Only a small number of hidden units, corresponding to a

small number of directions in the input, may have significant derivatives.

The goal of the CAE is to learn the manifold structure of the data. Directions
x with large Jx rapidly change h, so these are likely to be directions which
approximate the tangent planes of the manifold. Experiments by ( )Rifai et al. 2011a
and ( ) show that training the CAE results in most singular valuesRifai et al. 2011b
of J dropping below in magnitude and therefore becoming contractive. However,1
some singular values remain above , because the reconstruction error penalty1
encourages the CAE to encode the directions with the most local variance. The

directions corresponding to the largest singular values are interpreted as the tangent
directions that the contractive autoencoder has learned. Ideally, these tangent
directions should correspond to real variations in the data. For example, a CAE
applied to images should learn tangent vectors that show how the image changes as
objects in the image gradually change pose, as shown in Fig. . Visualizations of14.6
the experimentally obtained singular vectors do seem to correspond to meaningful
transformations of the input image, as shown in Fig. .14.10

One practical issue with the CAE regularization criterion is that although it
is cheap to compute in the case of a single hidden layer autoencoder, it becomes
much more expensive in the case of deeper autoencoders. The strategy followed by
Rifai 2011aet al. ( ) is to separately train a series of single-layer autoencoders, each

trained to reconstruct the previous autoencoder’s hidden layer. The composition
of these autoencoders then forms a deep autoencoder. Because each layer was
separately trained to be locally contractive, the deep autoencoder is contractive
as well. The result is not the same as what would be obtained by jointly training
the entire architecture with a penalty on the Jacobian of the deep model, but it
captures many of the desirable qualitative characteristics.

Another practical issue is that the contraction penalty can obtain useless results
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Figure 14.10: Illustration of tangent vectors of the manifold estimated by local PCA
and by a contractive autoencoder. The location on the manifold is defined by the input
image of a dog drawn from the CIFAR-10 dataset. The tangent vectors are estimated
by the leading singular vectors of the Jacobian matrix of the input-to-code mapping.
Although both local PCA and the CAE can capture local tangents, the CAE is able to
form more accurate estimates from limited training data because it exploits parameter
sharing across different locations that share a subset of active hidden units. The CAE
tangent directions typically correspond to moving or changing parts of the object (such as
the head or legs).

if we do not impose some sort of scale on the decoder. For example, the encoder
could consist of multiplying the input by a small constant  and the decoder
could consist of dividing the code by . As  approaches , the encoder drives the0
contractive penalty Ω(h) to approach without having learned anything about the0
distribution. Meanwhile, the decoder maintains perfect reconstruction. In Rifai
et al. ( ), this is prevented by tying the weights of2011a f and g. Both f and g are
standard neural network layers consisting of an affine transformation followed by

an element-wise nonlinearity, so it is straightforward to set the weight matrix of g
to be the transpose of the weight matrix of .f

14.8 Predictive Sparse Decomposition

Predictive sparse decomposition (PSD) is a model that is a hybrid of sparse
coding and parametric autoencoders (Kavukcuoglu 2008et al., ). A parametric
encoder is trained to predict the output of iterative inference. PSD has been
applied to unsupervised feature learning for object recognition in images and video
(Kavukcuoglu 2009 2010 Jarrett 2009 Farabet 2011et al., , ; et al., ; et al., ), as well
as for audio ( , ). The model consists of an encoderHenaff et al. 2011 f (x) and a

decoder g(h) that are both parametric. During training, h is controlled by the

526



CHAPTER 14. AUTOENCODERS

optimization algorithm. Training proceeds by minimizing

|| − ||x g( )h 2+ λ| |h 1 + ( )γ f|| −h x ||2. (14.19)

Like in sparse coding, the training algorithm alternates between minimization with
respect to h and minimization with respect to the model parameters. Minimization
with respect to h is fast because f(x) provides a good initial value of h and the
cost function constrains h to remain near f (x) anyway. Simple gradient descent
can obtain reasonable values of in as few as ten steps.h

The training procedure used by PSD is different from first training a sparse
coding model and then training f(x) to predict the values of the sparse coding

features. The PSD training procedure regularizes the decoder to use parameters
for which can infer good code values.f( )x

Predictive sparse coding is an example of learned approximate inference. In Sec.
19.5, this topic is developed further. The tools presented in Chapter make it19
clear that PSD can be interpreted as training a directed sparse coding probabilistic
model by maximizing a lower bound on the log-likelihood of the model.

In practical applications of PSD, the iterative optimization is only used during
training. The parametric encoder f is used to compute the learned features when
the model is deployed. Evaluating f is computationally inexpensive compared to
inferring h via gradient descent. Because f is a differentiable parametric function,
PSD models may be stacked and used to initialize a deep network to be trained

with another criterion.

14.9 Applications of Autoencoders

Autoencoders have been successfully applied to dimensionality reduction and infor-
mation retrieval tasks. Dimensionality reduction was one of the first applications
of representation learning and deep learning. It was one of the early motivations
for studying autoencoders. For example, Hinton and Salakhutdinov 2006( ) trained
a stack of RBMs and then used their weights to initialize a deep autoencoder
with gradually smaller hidden layers, culminating in a bottleneck of 30 units. The

resulting code yielded less reconstruction error than PCA into 30 dimensions and
the learned representation was qualitatively easier to interpret and relate to the
underlying categories, with these categories manifesting as well-separated clusters.

Lower-dimensional representations can improve performance on many tasks,
such as classification. Models of smaller spaces consume less memory and runtime.
Many forms of dimensionality reduction place semantically related examples near
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each other, as observed by Salakhutdinov and Hinton 2007b Torralba( ) and et al.
( ). The hints provided by the mapping to the lower-dimensional space aid2008
generalization.

One task that benefits even more than usual from dimensionality reduction
is information retrieval, the task of finding entries in a database that resemble a
query entry. This task derives the usual benefits from dimensionality reduction
that other tasks do, but also derives the additional benefit that search can become
extremely efficient in certain kinds of low dimensional spaces. Specifically, if
we train the dimensionality reduction algorithm to produce a code that is low-

dimensional and , then we can store all database entries in a hash table
mapping binary code vectors to entries. This hash table allows us to perform
information retrieval by returning all database entries that have the same binary
code as the query. We can also search over slightly less similar entries very
efficiently, just by flipping individual bits from the encoding of the query. This
approach to information retrieval via dimensionality reduction and binarization
is called (semantic hashing Salakhutdinov and Hinton 2007b 2009b, , ), and has
been applied to both textual input (Salakhutdinov and Hinton 2007b 2009b, , ) and
images (Torralba 2008 Weiss 2008 Krizhevsky and Hinton 2011et al., ; et al., ; , ).

To produce binary codes for semantic hashing, one typically uses an encoding
function with sigmoids on the final layer. The sigmoid units must be trained to be

saturated to nearly 0 or nearly 1 for all input values. One trick that can accomplish
this is simply to inject additive noise just before the sigmoid nonlinearity during
training. The magnitude of the noise should increase over time. To fight that
noise and preserve as much information as possible, the network must increase the
magnitude of the inputs to the sigmoid function, until saturation occurs.

The idea of learning a hashing function has been further explored in several
directions, including the idea of training the representations so as to optimize
a loss more directly linked to the task of finding nearby examples in the hash
table ( , ).Norouzi and Fleet 2011
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Chapter 15

Representation Learning

In this chapter, we first discuss what it means to learn representations and how
the notion of representation can be useful to design deep architectures. We discuss
how learning algorithms share statistical strength across different tasks, including
using information from unsupervised tasks to perform supervised tasks. Shared

representations are useful to handle multiple modalities or domains, or to transfer
learned knowledge to tasks for which few or no examples are given but a task
representation exists. Finally, we step back and argue about the reasons for the
success of representation learning, starting with the theoretical advantages of
distributed representations (Hinton 1986et al., ) and deep representations and
ending with the more general idea of underlying assumptions about the data
generating process, in particular about underlying causes of the observed data.

Many information processing tasks can be very easy or very difficult depending
on how the information is represented. This is a general principle applicable to
daily life, computer science in general, and to machine learning. For example, it
is straightforward for a person to divide 210 by 6 using long division. The task
becomes considerably less straightforward if it is instead posed using the Roman

numeral representation of the numbers. Most modern people asked to divide CCX
by VI would begin by converting the numbers to the Arabic numeral representation,
permitting long division procedures that make use of the place value system. More
concretely, we can quantify the asymptotic runtime of various operations using
appropriate or inappropriate representations. For example, inserting a number
into the correct position in a sorted list of numbers is an O(n) operation if the
list is represented as a linked list, but only O(log n) if the list is represented as a
red-black tree.

In the context of machine learning, what makes one representation better than
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another? Generally speaking, a good representation is one that makes a subsequent
learning task easier. The choice of representation will usually depend on the choice
of the subsequent learning task.

We can think of feedforward networks trained by supervised learning as per-
forming a kind of representation learning. Specifically, the last layer of the network
is typically a linear classifier, such as a softmax regression classifier. The rest of
the network learns to provide a representation to this classifier. Training with a
supervised criterion naturally leads to the representation at every hidden layer (but
more so near the top hidden layer) taking on properties that make the classification

task easier. For example, classes that were not linearly separable in the input
features may become linearly separable in the last hidden layer. In principle, the
last layer could be another kind of model, such as a nearest neighbor classifier
(Salakhutdinov and Hinton 2007a, ). The features in the penultimate layer should
learn different properties depending on the type of the last layer.

Supervised training of feedforward networks does not involve explicitly imposing
any condition on the learned intermediate features. Other kinds of representation
learning algorithms are often explicitly designed to shape the representation in
some particular way. For example, suppose we want to learn a representation that
makes density estimation easier. Distributions with more independences are easier
to model, so we could design an objective function that encourages the elements

of the representation vector h to be independent. Just like supervised networks,
unsupervised deep learning algorithms have a main training objective but also
learn a representation as a side effect. Regardless of how a representation was
obtained, it can can be used for another task. Alternatively, multiple tasks (some
supervised, some unsupervised) can be learned together with some shared internal
representation.

Most representation learning problems face a tradeoff between preserving as
much information about the input as possible and attaining nice properties (such
as independence).

Representation learning is particularly interesting because it provides one
way to perform unsupervised and semi-supervised learning. We often have very

large amounts of unlabeled training data and relatively little labeled training
data. Training with supervised learning techniques on the labeled subset often
results in severe overfitting. Semi-supervised learning offers the chance to resolve
this overfitting problem by also learning from the unlabeled data. Specifically,
we can learn good representations for the unlabeled data, and then use these
representations to solve the supervised learning task.

Humans and animals are able to learn from very few labeled examples. We do
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not yet know how this is possible. Many factors could explain improved human
performance—for example, the brain may use very large ensembles of classifiers
or Bayesian inference techniques. One popular hypothesis is that the brain is
able to leverage unsupervised or semi-supervised learning. There are many ways
to leverage unlabeled data. In this chapter, we focus on the hypothesis that the
unlabeled data can be used to learn a good representation.

15.1 Greedy Layer-Wise Unsupervised Pretraining

Unsupervised learning played a key historical role in the revival of deep neural
networks, allowing for the first time to train a deep supervised network without
requiring architectural specializations like convolution or recurrence. We call this
procedure unsupervised pretraining, or more precisely, greedy layer-wise unsuper-
vised pretraining. This procedure is a canonical example of how a representation
learned for one task (unsupervised learning, trying to capture the shape of the
input distribution) can sometimes be useful for another task (supervised learning
with the same input domain).

Greedy layer-wise unsupervised pretraining relies on a single-layer represen-
tation learning algorithm such as an RBM, a single-layer autoencoder, a sparse

coding model, or another model that learns latent representations. Each layer is
pretrained using unsupervised learning, taking the output of the previous layer
and producing as output a new representation of the data, whose distribution (or
its relation to other variables such as categories to predict) is hopefully simpler.
See Algorithm for a formal description.15.1

Greedy layer-wise training procedures based on unsupervised criteria have long
been used to sidestep the difficulty of jointly training the layers of a deep neural net
for a supervised task. This approach dates back at least as far as the Neocognitron
(Fukushima 1975, ). The deep learning renaissance of 2006 began with the discovery
that this greedy learning procedure could be used to find a good initialization for
a joint learning procedure over all the layers, and that this approach could be used

to successfully train even fully connected architectures (Hinton 2006 Hintonet al., ;
and Salakhutdinov 2006 Hinton 2006 Bengio 2007 Ranzato 2007a, ; , ; et al., ; et al., ).
Prior to this discovery, only convolutional deep networks or networks whose depth
resulted from recurrence were regarded as feasible to train. Today, we now know
that greedy layer-wise pretraining is not required to train fully connected deep
architectures, but the unsupervised pretraining approach was the first method to
succeed.

Greedy layer-wise pretraining is called greedy greedy algorithmbecause it is a ,
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meaning that it optimizes each piece of the solution independently, one piece at a
time, rather than jointly optimizing all pieces. It is called because theselayer-wise
independent pieces are the layers of the network. Specifically, greedy layer-wise
pretraining proceeds one layer at a time, training the k-th layer while keeping the
previous ones fixed. In particular, the lower layers (which are trained first) are not
adapted after the upper layers are introduced. It is called unsupervised because each
layer is trained with an unsupervised representation learning algorithm. However
it is also called pretraining, because it is supposed to be only a first step before
a joint training algorithm is applied to all the layers together. In thefine-tune

context of a supervised learning task, it can be viewed as a regularizer (in some
experiments, pretraining decreases test error without decreasing training error)
and a form of parameter initialization.

It is common to use the word “pretraining” to refer not only to the pretraining
stage itself but to the entire two phase protocol that combines the pretraining
phase and a supervised learning phase. The supervised learning phase may involve
training a simple classifier on top of the features learned in the pretraining phase,
or it may involve supervised fine-tuning of the entire network learned in the
pretraining phase. No matter what kind of unsupervised learning algorithm or
what model type is employed, in the vast majority of cases, the overall training
scheme is nearly the same. While the choice of unsupervised learning algorithm

will obviously impact the details, most applications of unsupervised pretraining
follow this basic protocol.

Greedy layer-wise unsupervised pretraining can also be used as initialization
for other unsupervised learning algorithms, such as deep autoencoders (Hinton
and Salakhutdinov 2006, ) and probabilistic models with many layers of latent
variables. Such models include deep belief networks ( , ) and deepHinton et al. 2006
Boltzmann machines (Salakhutdinov and Hinton 2009a, ). These deep generative
models will be described in Chapter .20

As discussed in Sec. , it is also possible to have greedy layer-wise8.7.4 super-
vised pretraining. This builds on the premise that training a shallow network is
easier than training a deep one, which seems to have been validated in several

contexts ( , ).Erhan et al. 2010

15.1.1 When and Why Does Unsupervised Pretraining Work?

On many tasks, greedy layer-wise unsupervised pretraining can yield substantial
improvements in test error for classification tasks. This observation was responsible
for the renewed interested in deep neural networks starting in 2006 (Hinton et al.,
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.
Given the following: Unsupervised feature learning algorithm , which takes a
training set of examples and returns an encoder or feature function f . The raw
input data is X , with one row per example and f (X) is the output of the first
stage encoder on X and the dataset used by the second level unsupervised feature
learner. In the case where fine-tuning is performed, we use a learner which takes
an initial function f, input examples X (and in the supervised fine-tuning case,
associated targets ), and returns a tuned function. The number of stages is .Y m

f Identity function
X̃ X= 

k , . . . , m= 1
f = (X̃)

f f f
˜
X f (X̃)

fine-tuning

f f, ,( X Y )

f

2006 Bengio 2007 Ranzato 2007a; et al., ; et al., ). On many other tasks, however,
unsupervised pretraining either does not confer a benefit or even causes noticeable
harm. ( ) studied the effect of pretraining on machine learningMa et al. 2015
models for chemical activity prediction and found that, on average, pretraining was
slightly harmful, but for many tasks was significantly helpful. Because unsupervised
pretraining is sometimes helpful but often harmful it is important to understand
when and why it works in order to determine whether it is applicable to a particular
task.

At the outset, it is important to clarify that most of this discussion is restricted
to greedy unsupervised pretraining in particular. There are other, completely
different paradigms for performing semi-supervised learning with neural networks,
such as virtual adversarial training described in Sec. . It is also possible to7.13
train an autoencoder or generative model at the same time as the supervised model.
Examples of this single-stage approach include the discriminative RBM (Larochelle
and Bengio 2008, ) and the ladder network ( , ), in which the totalRasmus et al. 2015
objective is an explicit sum of the two terms (one using the labels and one only
using the input).

Unsupervised pretraining combines two different ideas. First, it makes use of
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the idea that the choice of initial parameters for a deep neural network can have
a significant regularizing effect on the model (and, to a lesser extent, that it can
improve optimization). Second, it makes use of the more general idea that learning
about the input distribution can help to learn about the mapping from inputs to
outputs.

Both of these ideas involve many complicated interactions between several
parts of the machine learning algorithm that are not entirely understood.

The first idea, that the choice of initial parameters for a deep neural network

can have a strong regularizing effect on its performance, is the least well understood.
At the time that pretraining became popular, it was understood as initializing the
model in a location that would cause it to approach one local minimum rather than
another. Today, local minima are no longer considered to be a serious problem
for neural network optimization. We now know that our standard neural network
training procedures usually do not arrive at a critical point of any kind. It remains
possible that pretraining initializes the model in a location that would otherwise
be inaccessible—for example, a region that is surrounded by areas where the cost
function varies so much from one example to another that minibatches give only
a very noisy estimate of the gradient, or a region surrounded by areas where the
Hessian matrix is so poorly conditioned that gradient descent methods must use
very small steps. However, our ability to characterize exactly what aspects of the

pretrained parameters are retained during the supervised training stage is limited.
This is one reason that modern approaches typically use simultaneous unsupervised
learning and supervised learning rather than two sequential stages. One may
also avoid struggling with these complicated ideas about how optimization in the
supervised learning stage preserves information from the unsupervised learning
stage by simply freezing the parameters for the feature extractors and using
supervised learning only to add a classifier on top of the learned features.

The other idea, that a learning algorithm can use information learned in the
unsupervised phase to perform better in the supervised learning stage, is better
understood. The basic idea is that some features that are useful for the unsupervised
task may also be useful for the supervised learning task. For example, if we train

a generative model of images of cars and motorcycles, it will need to know about
wheels, and about how many wheels should be in an image. If we are fortunate,
the representation of the wheels will take on a form that is easy for the supervised
learner to access. This is not yet understood at a mathematical, theoretical level,
so it is not always possible to predict which tasks will benefit from unsupervised
learning in this way. Many aspects of this approach are highly dependent on
the specific models used. For example, if we wish to add a linear classifier on
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top of pretrained features, the features must make the underlying classes linearly
separable. These properties often occur naturally but do not always do so. This
is another reason that simultaneous supervised and unsupervised learning can be
preferable—the constraints imposed by the output layer are naturally included
from the start.

From the point of view of unsupervised pretraining as learning a representation,
we can expect unsupervised pretraining to be more effective when the initial
representation is poor. One key example of this is the use of word embeddings.
Words represented by one-hot vectors are not very informative because every two

distinct one-hot vectors are the same distance from each other (squared L distance
of ). Learned word embeddings naturally encode similarity between words by their2
distance from each other. Because of this, unsupervised pretraining is especially
useful when processing words. It is less useful when processing images, perhaps
because images already lie in a rich vector space where distances provide a low
quality similarity metric.

From the point of view of unsupervised pretraining as a regularizer, we can
expect unsupervised pretraining to be most helpful when the number of labeled
examples is very small. Because the source of information added by unsupervised
pretraining is the unlabeled data, we may also expect unsupervised pretraining
to perform best when the number of unlabeled examples is very large. The

advantage of semi-supervised learning via unsupervised pretraining with many
unlabeled examples and few labeled examples was made particularly clear in
2011 with unsupervised pretraining winning two international transfer learning
competitions ( , ; , ), in settings where theMesnil et al. 2011 Goodfellow et al. 2011
number of labeled examples in the target task was small (from a handful to dozens
of examples per class). These effects were also documented in carefully controlled
experiments by Paine 2014et al. ( ).

Other factors are likely to be involved. For example, unsupervised pretraining
is likely to be most useful when the function to be learned is extremely complicated.
Unsupervised learning differs from regularizers like weight decay because it does not
bias the learner toward discovering a simple function but rather toward discovering

feature functions that are useful for the unsupervised learning task. If the true
underlying functions are complicated and shaped by regularities of the input
distribution, unsupervised learning can be a more appropriate regularizer.

These caveats aside, we now analyze some success cases where unsupervised
pretraining is known to cause an improvement, and explain what is known about
why this improvement occurs. Unsupervised pretraining has usually been used
to improve classifiers, and is usually most interesting from the point of view of
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reducing test set error. However, unsupervised pretraining can help tasks other
than classification, and can act to improve optimization rather than being merely
a regularizer. For example, it can improve both train and test reconstruction error
for deep autoencoders (Hinton and Salakhutdinov 2006, ).

Erhan 2010et al. ( ) performed many experiments to explain several successes of
unsupervised pretraining. Both improvements to training error and improvements
to test error may be explained in terms of unsupervised pretraining taking the
parameters into a region that would otherwise be inaccessible. Neural network
training is non-deterministic, and converges to a different function every time it

is run. Training may halt at a point where the gradient becomes small, a point
where early stopping ends training to prevent overfitting, or at a point where the
gradient is large but it is difficult to find a downhill step due to problems such as
stochasticity or poor conditioning of the Hessian. Neural networks that receive
unsupervised pretraining consistently halt in the same region of function space,
while neural networks without pretraining consistently halt in another region. See
Fig. for a visualization of this phenomenon. The region where pretrained15.1
networks arrive is smaller, suggesting that pretraining reduces the variance of the
estimation process, which can in turn reduce the risk of severe over-fitting. In
other words, unsupervised pretraining initializes neural network parameters into
a region that they do not escape, and the results following this initialization are

more consistent and less likely to be very bad than without this initialization.

Erhan 2010et al. ( ) also provide some answers as to pretraining works
best—the mean and variance of the test error were most reduced by pretraining for
deeper networks. Keep in mind that these experiments were performed before the
invention and popularization of modern techniques for training very deep networks
(rectified linear units, dropout and batch normalization) so less is known about the
effect of unsupervised pretraining in conjunction with contemporary approaches.

An important question is how unsupervised pretraining can act as a regularizer.
One hypothesis is that pretraining encourages the learning algorithm to discover
features that relate to the underlying causes that generate the observed data.
This is an important idea motivating many other algorithms besides unsupervised

pretraining, and is described further in Sec. .15.3

Compared to other ways of incorporating this belief by using unsupervised
learning, unsupervised pretraining has the disadvantage that it operates with
two separate training phases. One reason that these two training phases are
disadvantageous is that there is not a single hyperparameter that predictably
reduces or increases the strength of the regularization arising from the unsupervised
pretraining. Instead, there are very many hyperparameters, whose effect may be
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measured after the fact but is often difficult to predict ahead of time. When we
perform unsupervised and supervised learning simultaneously, instead of using the
pretraining strategy, there is a single hyperparameter, usually a coefficient attached
to the unsupervised cost, that determines how strongly the unsupervised objective
will regularize the supervised model. One can always predictably obtain less
regularization by decreasing this coefficient. In the case of unsupervised pretraining,
there is not a way of flexibly adapting the strength of the regularization—either
the supervised model is initialized to pretrained parameters, or it is not.

Another disadvantage of having two separate training phases is that each phase

has its own hyperparameters. The performance of the second phase usually cannot
be predicted during the first phase, so there is a long delay between proposing
hyperparameters for the first phase and being able to update them using feedback
from the second phase. The most principled approach is to use validation set error
in the supervised phase in order to select the hyperparameters of the pretraining
phase, as discussed in ( ). In practice, some hyperparameters,Larochelle et al. 2009
like the number of pretraining iterations, are more conveniently set during the
pretraining phase, using early stopping on the unsupervised objective, which is
not ideal but computationally much cheaper than using the supervised objective.

Today, unsupervised pretraining has been largely abandoned, except in the
field of natural language processing, where the natural representation of words as

one-hot vectors conveys no similarity information and where very large unlabeled
sets are available. In that case, the advantage of pretraining is that one can pretrain
once on a huge unlabeled set (for example with a corpus containing billions of
words), learn a good representation (typically of words, but also of sentences), and
then use this representation or fine-tune it for a supervised task for which the
training set contains substantially fewer examples. This approach was pioneered
by by Collobert and Weston 2008b Turian 2010 Collobert( ), et al. ( ), and et al.
( ) and remains in common use today.2011a

Deep learning techniques based on supervised learning, regularized with dropout
or batch normalization, are able to achieve human-level performance on very many
tasks, but only with extremely large labeled datasets. These same techniques

outperform unsupervised pretraining on medium-sized datasets such as CIFAR-10
and MNIST, which have roughly 5,000 labeled examples per class. On extremely
small datasets, such as the alternative splicing dataset, Bayesian methods outper-
form methods based on unsupervised pretraining (Srivastava 2013, ). For these
reasons, the popularity of unsupervised pretraining has declined. Nevertheless,
unsupervised pretraining remains an important milestone in the history of deep
learning research and continues to influence contemporary approaches. The idea of
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pretraining has been generalized to supervised pretraining discussed in Sec. ,8.7.4
as a very common approach for transfer learning. Supervised pretraining for
transfer learning is popular ( , ;Oquab et al. 2014 Yosinski 2014et al., ) for use with
convolutional networks pretrained on the ImageNet dataset. Practitioners publish
the parameters of these trained networks for this purpose, just like pretrained word
vectors are published for natural language tasks ( , ;Collobert et al. 2011a Mikolov
et al., ).2013a

15.2 Transfer Learning and Domain Adaptation

Transfer learning and domain adaptation refer to the situation where what has been
learned in one setting (i.e., distribution P ) is exploited to improve generalization
in another setting (say distribution P ). This generalizes the idea presented in the
previous section, where we transferred representations between an unsupervised
learning task and a supervised learning task.

In transfer learning, the learner must perform two or more different tasks,
but we assume that many of the factors that explain the variations in P are
relevant to the variations that need to be captured for learning P . This is typically
understood in a supervised learning context, where the input is the same but the

target may be of a different nature. For example, we may learn about one set of
visual categories, such as cats and dogs, in the first setting, then learn about a
different set of visual categories, such as ants and wasps, in the second setting. If
there is significantly more data in the first setting (sampled from P ), then that
may help to learn representations that are useful to quickly generalize from only
very few examples drawn from P . Many visual categories low-level notions
of edges and visual shapes, the effects of geometric changes, changes in lighting, etc.
In general, transfer learning, multi-task learning (Sec. ), and domain adaptation7.7
can be achieved via representation learning when there exist features that are
useful for the different settings or tasks, corresponding to underlying factors that
appear in more than one setting. This is illustrated in Fig. , with shared lower7.2
layers and task-dependent upper layers.

However, sometimes, what is shared among the different tasks is not the
semantics of the input but the semantics of the output. For example, a speech
recognition system needs to produce valid sentences at the output layer, but
the earlier layers near the input may need to recognize very different versions of
the same phonemes or sub-phonemic vocalizations depending on which person
is speaking. In cases like these, it makes more sense to share the upper layers
(near the output) of the neural network, and have a task-specific preprocessing, as
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illustrated in Fig. .15.2

In the related case of , the task (and the optimal input-to-domain adaptation
output mapping) remains the same between each setting, but the input distribution
is slightly different. For example, consider the task of sentiment analysis, which
consists of determining whether a comment expresses positive or negative sentiment.
Comments posted on the web come from many categories. A domain adaptation
scenario can arise when a sentiment predictor trained on customer reviews of
media content such as books, videos and music is later used to analyze comments
about consumer electronics such as televisions or smartphones. One can imagine
that there is an underlying function that tells whether any statement is positive,
neutral or negative, but of course the vocabulary and style may vary from one
domain to another, making it more difficult to generalize across domains. Simple
unsupervised pretraining (with denoising autoencoders) has been found to be very

successful for sentiment analysis with domain adaptation ( , ).Glorot et al. 2011b

A related problem is that of concept drift, which we can view as a form of transfer
learning due to gradual changes in the data distribution over time. Both concept
drift and transfer learning can be viewed as particular forms of multi-task learning.
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While the phrase “multi-task learning” typically refers to supervised learning tasks,
the more general notion of transfer learning is applicable to unsupervised learning
and reinforcement learning as well.

In all of these cases, the objective is to take advantage of data from the first
setting to extract information that may be useful when learning or even when
directly making predictions in the second setting. The core idea of representation
learning is that the same representation may be useful in both settings. Using the
same representation in both settings allows the representation to benefit from the
training data that is available for both tasks.

As mentioned before, unsupervised deep learning for transfer learning has found
success in some machine learning competitions ( , ;Mesnil et al. 2011 Goodfellow
et al., ). In the first of these competitions, the experimental setup is the2011
following. Each participant is first given a dataset from the first setting (from
distribution P ), illustrating examples of some set of categories. The participants
must use this to learn a good feature space (mapping the raw input to some
representation), such that when we apply this learned transformation to inputs
from the transfer setting (distribution P ), a linear classifier can be trained and
generalize well from very few labeled examples. One of the most striking results
found in this competition is that as an architecture makes use of deeper and
deeper representations (learned in a purely unsupervised way from data collected

in the first setting, P ), the learning curve on the new categories of the second
(transfer) setting P becomes much better. For deep representations, fewer labeled
examples of the transfer tasks are necessary to achieve the apparently asymptotic
generalization performance.

Two extreme forms of transfer learning are one-shot learning zero-shotand
learning zero-data learning, sometimes also called . Only one labeled example of
the transfer task is given for one-shot learning, while no labeled examples are given
at all for the zero-shot learning task.

One-shot learning (Fei-Fei 2006et al., ) is possible because the representation
learns to cleanly separate the underlying classes during the first stage. During the
transfer learning stage, only one labeled example is needed to infer the label of many

possible test examples that all cluster around the same point in representation
space. This works to the extent that the factors of variation corresponding to
these invariances have been cleanly separated from the other factors, in the learned
representation space, and we have somehow learned which factors do and do not
matter when discriminating objects of certain categories.

As an example of a zero-shot learning setting, consider the problem of having
a learner read a large collection of text and then solve object recognition problems.
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It may be possible to recognize a specific object class even without having seen an
image of that object, if the text describes the object well enough. For example,
having read that a cat has four legs and pointy ears, the learner might be able to
guess that an image is a cat, without having seen a cat before.

Zero-data learning (Larochelle 2008 Palatucciet al., ) and zero-shot learning (
et al. et al., ;2009 Socher , ) are only possible because additional information2013b
has been exploited during training. We can think of the zero-data learning scenario
as including three random variables: the traditional inputs x, the traditional
outputs or targets y , and an additional random variable describing the task, T .

The model is trained to estimate the conditional distribution p(y x, T ) where
T is a description of the task we wish the model to perform. In our example of
recognizing cats after having read about cats, the output is a binary variable y
with y= 1 indicating “yes” and y = 0 indicating “no.” The task variable T then
represents questions to be answered such as “Is there a cat in this image?” If we
have a training set containing unsupervised examples of objects that live in the
same space as T , we may be able to infer the meaning of unseen instances of T .
In our example of recognizing cats without having seen an image of the cat, it is
important that we have had unlabeled text data containing sentences such as “cats
have four legs” or “cats have pointy ears.”

Zero-shot learning requires T to be represented in a way that allows some sort

of generalization. For example, T cannot be just a one-hot code indicating an
object category. ( ) provide instead a distributed representationSocher et al. 2013b
of object categories by using a learned word embedding for the word associated
with each category.

A similar phenomenon happens in machine translation (Klementiev 2012et al., ;
Mikolov 2013b Gouws 2014et al., ; et al., ): we have words in one language, and
the relationships between words can be learned from unilingual corpora; on the
other hand, we have translated sentences which relate words in one language with
words in the other. Even though we may not have labeled examples translating
word A in language X to word B in language Y , we can generalize and guess a
translation for word A because we have learned a distributed representation for

words in language X, a distributed representation for words in language Y , and
created a link (possibly two-way) relating the two spaces, via training examples
consisting of matched pairs of sentences in both languages. This transfer will be
most successful if all three ingredients (the two representations and the relations
between them) are learned jointly.

Zero-shot learning is a particular form of transfer learning. The same principle
explains how one can perform multi-modal learning, capturing a representation in
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one modality, a representation in the other, and the relationship (in general a joint
distribution) between pairs (x y, ) consisting of one observation x in one modality
and another observation y in the other modality (Srivastava and Salakhutdinov,
2012). By learning all three sets of parameters (from x to its representation, from
y to its representation, and the relationship between the two representations),
concepts in one representation are anchored in the other, and vice-versa, allowing
one to meaningfully generalize to new pairs. The procedure is illustrated in
Fig. .15.3

15.3 Semi-Supervised Disentangling of Causal Factors

An important question about representation learning is “what makes one repre-
sentation better than another?” One hypothesis is that an ideal representation
is one in which the features within the representation correspond to the under-
lying causes of the observed data, with separate features or directions in feature
space corresponding to different causes, so that the representation disentangles the
causes from one another. This hypothesis motivates approaches in which we first
seek a good representation for p(x). Such a representation may also be a good
representation for computing p(y x ) if y is among the most salient causes of

x. This idea has guided a large amount of deep learning research since at least
the 1990s (Becker and Hinton 1992 Hinton and Sejnowski 1999, ; , ), in more detail.
For other arguments about when semi-supervised learning can outperform pure
supervised learning, we refer the reader to Sec. 1.2 of ( ).Chapelle et al. 2006

In other approaches to representation learning, we have often been concerned
with a representation that is easy to model—for example, one whose entries are
sparse, or independent from each other. A representation that cleanly separates
the underlying causal factors may not necessarily be one that is easy to model.
However, a further part of the hypothesis motivating semi-supervised learning
via unsupervised representation learning is that for many AI tasks, these two
properties coincide: once we are able to obtain the underlying explanations for
what we observe, it generally becomes easy to isolate individual attributes from

the others. Specifically, if a representation h represents many of the underlying
causes of the observed x, and the outputs y are among the most salient causes,
then it is easy to predict from .y h

First, let us see how semi-supervised learning can fail because unsupervised
learning of p( ) is of no help to learn p( ). Consider for example the case
where p( ) is uniformly distributed and we want to learn f (x) = [ x ]. Clearly,

observing a training set of values alone gives us no information about .x p( )

544



CHAPTER 15. REPRESENTATION LEARNING
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Next, let us see a simple example of how semi-supervised learning can succeed.
Consider the situation where arises from a mixture, with one mixture component
per value of , as illustrated in Fig. . If the mixture components are well-15.4
separated, then modeling p( ) reveals precisely where each component is, and a
single labeled example of each class will then be enough to perfectly learn p ( ).

But more generally, what could make and be tied together?p( ) p( )
If is closely associated with one of the causal factors of , then p( ) and

p( ) will be strongly tied, and unsupervised representation learning that
tries to disentangle the underlying factors of variation is likely to be useful as a

semi-supervised learning strategy.

Consider the assumption that is one of the causal factors of , and let
represent all those factors. The true generative process can be conceived as

structured according to this directed graphical model, with as the parent of :

p , p p .( ) = ( ) ( ) (15.1)

As a consequence, the data has marginal probability

p( ) = x p .( )x h (15.2)

From this straightforward observation, we conclude that the best possible model
of (from a generalization point of view) is the one that uncovers the above “true”
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structure, with h as a latent variable that explains the observed variations in x.
The “ideal” representation learning discussed above should thus recover these latent
factors. If is one of these (or closely related to one of them), then it will be
very easy to learn to predict from such a representation. We also see that the
conditional distribution of given is tied by Bayes rule to the components in
the above equation:

p( ) =
p p( ) ( )

p( )
. (15.3)

Thus the marginal p( ) is intimately tied to the conditional p( ) and knowledge
of the structure of the former should be helpful to learn the latter. Therefore, in

situations respecting these assumptions, semi-supervised learning should improve
performance.

An important research problem regards the fact that most observations are
formed by an extremely large number of underlying causes. Suppose =h , but
the unsupervised learner does not know which h . The brute force solution is for
an unsupervised learner to learn a representation that captures the reasonably
salient generative factors h and disentangles them from each other, thus making

it easy to predict from , regardless of which h is associated with .

In practice, the brute force solution is not feasible because it is not possible
to capture all or most of the factors of variation that influence an observation.
For example, in a visual scene, should the representation always encode all of

the smallest objects in the background? It is a well-documented psychological
phenomenon that human beings fail to perceive changes in their environment that
are not immediately relevant to the task they are performing—see, e.g., Simons
and Levin 1998( ). An important research frontier in semi-supervised learning is
determining to encode in each situation. Currently, two of the main strategies
for dealing with a large number of underlying causes are to use a supervised learning
signal at the same time as the unsupervised learning signal so that the model will
choose to capture the most relevant factors of variation, or to use much larger
representations if using purely unsupervised learning.

An emerging strategy for unsupervised learning is to modify the definition of
which underlying causes are most salient. Historically, autoencoders and generative

models have been trained to optimize a fixed criterion, often similar to mean
squared error. These fixed criteria determine which causes are considered salient.
For example, mean squared error applied to the pixels of an image implicitly
specifies that an underlying cause is only salient if it significantly changes the
brightness of a large number of pixels. This can be problematic if the task we
wish to solve involves interacting with small objects. See Fig. for an example15.5
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Input Reconstruction

of a robotics task in which an autoencoder has failed to learn to encode a small
ping pong ball. This same robot is capable of successfully interacting with larger
objects, such as baseballs, which are more salient according to mean squared error.

Other definitions of salience are possible. For example, if a group of pixels
follow a highly recognizable pattern, even if that pattern does not involve extreme

brightness or darkness, then that pattern could be considered extremely salient.
One way to implement such a definition of salience is to use a recently developed
approach called generative adversarial networks ( , ). InGoodfellow et al. 2014c
this approach, a generative model is trained to fool a feedforward classifier. The
feedforward classifier attempts to recognize all samples from the generative model
as being fake, and all samples from the training set as being real. In this framework,
any structured pattern that the feedforward network can recognize is highly salient.
The generative adversarial network will be described in more detail in Sec. .20.10.4
For the purposes of the present discussion, it is sufficient to understand that they

how to determine what is salient. ( ) showed that modelsLotter et al. 2015
trained to generate images of human heads will often neglect to generate the ears

when trained with mean squared error, but will successfully generate the ears when
trained with the adversarial framework. Because the ears are not extremely bright
or dark compared to the surrounding skin, they are not especially salient according
to mean squared error loss, but their highly recognizable shape and consistent
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Ground Truth MSE Adversarial

position means that a feedforward network can easily learn to detect them, making
them highly salient under the generative adversarial framework. See Fig. 15.6
for example images. Generative adversarial networks are only one step toward
determining which factors should be represented. We expect that future research
will discover better ways of determining which factors to represent, and develop
mechanisms for representing different factors depending on the task.

A benefit of learning the underlying causal factors, as pointed out by Schölkopf
et al. ( ), is that if the true generative process has2012 as an effect and as
a cause, then modeling p( ) is robust to changes in p( ). If the cause-effect
relationship was reversed, this would not be true, since by Bayes rule, p( )

would be sensitive to changes in p( ). Very often, when we consider changes in
distribution due to different domains, temporal non-stationarity, or changes in
the nature of the task, (“the laws
of the universe are constant”) while the marginal distribution over the underlying
causes can change. Hence, better generalization and robustness to all kinds of
changes can be expected via learning a generative model that attempts to recover
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the causal factors and .p( )

15.4 Distributed Representation

Distributed representations of concepts—representations composed of many ele-
ments that can be set separately from each other—are one of the most important
tools for representation learning. Distributed representations are powerful because
they can use n features with k values to describe k different concepts. As we

have seen throughout this book, both neural networks with multiple hidden units
and probabilistic models with multiple latent variables make use of the strategy of
distributed representation. We now introduce an additional observation. Many
deep learning algorithms are motivated by the assumption that the hidden units
can learn to represent the underlying causal factors that explain the data, as
discussed in Sec. . Distributed representations are natural for this approach,15.3
because each direction in representation space can correspond to the value of a
different underlying configuration variable.

An example of a distributed representation is a vector of n binary features,
which can take 2 configurations, each potentially corresponding to a different
region in input space, as illustrated in Fig. . This can be compared with15.7

a symbolic representation, where the input is associated with a single symbol or
category. If there are n symbols in the dictionary, one can imagine n feature
detectors, each corresponding to the detection of the presence of the associated
category. In that case only n different configurations of the representation space
are possible, carving n different regions in input space, as illustrated in Fig. .15.8
Such a symbolic representation is also called a one-hot representation, since it can
be captured by a binary vector with n bits that are mutually exclusive (only one
of them can be active). A symbolic representation is a specific example of the
broader class of non-distributed representations, which are representations that
may contain many entries but without significant meaningful separate control over
each entry.

Examples of learning algorithms based on non-distributed representations
include:

Clustering methods, including the k-means algorithm: each input point is
assigned to exactly one cluster.

k -nearest neighbors algorithms: one or a few templates or prototype examples
are associated with a given input. In the case of k > 1, there are multiple
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values describing each input, but they can not be controlled separately from
each other, so this does not qualify as a true distributed representation.

Decision trees: only one leaf (and the nodes on the path from root to leaf) is
activated when an input is given.

Gaussian mixtures and mixtures of experts: the templates (cluster centers)
or experts are now associated with a of activation. As with the
k-nearest neighbors algorithm, each input is represented with multiple values,
but those values cannot readily be controlled separately from each other.

Kernel machines with a Gaussian kernel (or other similarly local kernel):
although the degree of activation of each “support vector” or template example
is now continuous-valued, the same issue arises as with Gaussian mixtures.

Language or translation models based on n-grams. The set of contexts

(sequences of symbols) is partitioned according to a tree structure of suffixes.
A leaf may correspond to the last two words being w and w , for example.
Separate parameters are estimated for each leaf of the tree (with some sharing
being possible).

For some of these non-distributed algorithms, the output is not constant by
parts but instead interpolates between neighboring regions. The relationship
between the number of parameters (or examples) and the number of regions they
can define remains linear.

An important related concept that distinguishes a distributed representation
from a symbolic one is that
between different concepts. As pure symbols, “ ” and “ ” are as far from each

other as any other two symbols. However, if one associates them with a meaningful
distributed representation, then many of the things that can be said about cats
can generalize to dogs and vice-versa. For example, our distributed representation
may contain entries such as “ ” or “ ” that have the same
value for the embedding of both “ ” and “ .” Neural language models that
operate on distributed representations of words generalize much better than other
models that operate directly on one-hot representations of words, as discussed
in Sec. . Distributed representations induce a rich12.4 similarity space, in which
semantically close concepts (or inputs) are close in distance, a property that is
absent from purely symbolic representations.

When and why can there be a statistical advantage from using a distributed

representation as part of a learning algorithm? Distributed representations can
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have a statistical advantage when an apparently complicated structure can be
compactly represented using a small number of parameters. Some traditional non-
distributed learning algorithms generalize only due to the smoothness assumption,
which states that if u v , then the target function f to be learned has the
property that f(u) f (v), in general. There are many ways of formalizing such an
assumption, but the end result is that if we have an example (x, y ) for which we
know that f (x) y , then we choose an estimator f̂ that approximately satisfies
these constraints while changing as little as possible when we move to a nearby
input x+ . This assumption is clearly very useful, but it suffers from the curse of

dimensionality: in order to learn a target function that increases and decreases
many times in many different regions, we may need a number of examples that is
at least as large as the number of distinguishable regions. One can think of each of
these regions as a category or symbol: by having a separate degree of freedom for
each symbol (or region), we can learn an arbitrary decoder mapping from symbol
to value. However, this does not allow us to generalize to new symbols for new
regions.

If we are lucky, there may be some regularity in the target function, besides being
smooth. For example, a convolutional network with max-pooling can recognize an
object regardless of its location in the image, even though spatial translation of
the object may not correspond to smooth transformations in the input space.

Let us examine a special case of a distributed representation learning algorithm,
that extracts binary features by thresholding linear functions of the input. Each
binary feature in this representation divides into a pair of half-spaces, as
illustrated in Fig. . The exponentially large number of intersections of15.7 n
of the corresponding half-spaces determines how many regions this distributed
representation learner can distinguish. How many regions are generated by an
arrangement of n hyperplanes in ? By applying a general result concerning the
intersection of hyperplanes ( , ), one can show (Zaslavsky 1975 Pascanu 2014bet al., )
that the number of regions this binary feature representation can distinguish is

n

j
= (O n ). (15.4)

Therefore, we see a growth that is exponential in the input size and polynomial in
the number of hidden units.

Potentially, we may want to learn a function whose behavior is distinct in exponentially many

regions: in a -dimensional space with at least 2 different values to distinguish per dimension, we

might want to differ in different regions, requiring training examples.
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This provides a geometric argument to explain the generalization power of
distributed representation: with O(nd) parameters (for n linear-threshold features
in ) we can distinctly representO (n ) regions in input space. If instead we made
no assumption at all about the data, and used a representation with one unique
symbol for each region, and separate parameters for each symbol to recognize its
corresponding portion of , then specifying O(n ) regions would require O(n )
examples. More generally, the argument in favor of the distributed representation
could be extended to the case where instead of using linear threshold units we
use nonlinear, possibly continuous, feature extractors for each of the attributes in

the distributed representation. The argument in this case is that if a parametric
transformation with k parameters can learn about r regions in input space, with

k r , and if obtaining such a representation was useful to the task of interest, then
we could potentially generalize much better in this way than in a non-distributed
setting where we would need O(r) examples to obtain the same features and
associated partitioning of the input space into r regions. Using fewer parameters to
represent the model means that we have fewer parameters to fit, and thus require
far fewer training examples to generalize well.

A further part of the argument for why models based on distributed represen-
tations generalize well is that their capacity remains limited despite being able to
distinctly encode so many different regions. For example, the VC dimension of a

neural network of linear threshold units is only O(w wlog ), where w is the number
of weights (Sontag 1998, ). This limitation arises because, while we can assign very
many unique codes to representation space, we cannot use absolutely all of the code
space, nor can we learn arbitrary functions mapping from the representation space
h to the output y using a linear classifier. The use of a distributed representation
combined with a linear classifier thus expresses a prior belief that the classes to
be recognized are linearly separable as a function of the underlying causal factors
captured by h . We will typically want to learn categories such as the set of all
images of all green objects or the set of all images of cars, but not categories that
require nonlinear, XOR logic. For example, we typically do not want to partition
the data into the set of all red cars and green trucks as one class and the set of all
green cars and red trucks as another class.

The ideas discussed so far have been abstract, but they may be experimentally
validated. ( ) find that hidden units in a deep convolutionalZhou et al. 2015
network trained on the ImageNet and Places benchmark datasets learn features
that are very often interpretable, corresponding to a label that humans would
naturally assign. In practice it is certainly not always the case that hidden units
learn something that has a simple linguistic name, but it is interesting to see this
emerge near the top levels of the best computer vision deep networks. What such
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features have in common is that one could imagine
. Radford

et al. ( ) demonstrated that a generative model can learn a representation of2015
images of faces, with separate directions in representation space capturing different
underlying factors of variation. Fig. demonstrates that one direction in15.9
representation space corresponds to whether the person is male or female, while
another corresponds to whether the person is wearing glasses. These features were
discovered automatically, not fixed a priori. There is no need to have labels for
the hidden unit classifiers: gradient descent on an objective function of interest
naturally learns semantically interesting features, so long as the task requires
such features. We can learn about the distinction between male and female, or

about the presence or absence of glasses, without having to characterize all of
the configurations of the n 1 other features by examples covering all of these
combinations of values. This form of statistical separability is what allows one to
generalize to new configurations of a person’s features that have never been seen
during training.
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15.5 Exponential Gains from Depth

We have seen in Sec. that multilayer perceptrons are universal approximators,6.4.1
and that some functions can be represented by exponentially smaller deep networks
compared to shallow networks. This decrease in model size leads to improved
statistical efficiency. In this section, we describe how similar results apply more
generally to other kinds of models with distributed hidden representations.

In Sec. , we saw an example of a generative model that learned about the15.4
explanatory factors underlying images of faces, including the person’s gender and
whether they are wearing glasses. The generative model that accomplished this
task was based on a deep neural network. It would not be reasonable to expect a
shallow network, such as a linear network, to learn the complicated relationship
between these abstract explanatory factors and the pixels in the image. In this and
other AI tasks, the factors that can be chosen almost independently in order to
generate data are more likely to be very high-level and related in highly nonlinear
ways to the input. We argue that this demands distributed representations,
where the higher level features (seen as functions of the input) or factors (seen as
generative causes) are obtained through the composition of many nonlinearities.

It has been proven in many different settings that organizing computation
through the composition of many nonlinearities and a hierarchy of reused features
can give an exponential boost to statistical efficiency, on top of the exponential
boost given by using a distributed representation. Many kinds of networks (e.g.,
with saturating nonlinearities, Boolean gates, sum/products, or RBF units) with
a single hidden layer can be shown to be universal approximators. A model
family that is a universal approximator can approximate a large class of functions
(including all continuous functions) up to any non-zero tolerance level, given enough
hidden units. However, the required number of hidden units may be very large.
Theoretical results concerning the expressive power of deep architectures state that
there are families of functions that can be represented efficiently by an architecture
of depth k, but would require an exponential number of hidden units (with respect

to the input size) with insufficient depth (depth 2 or depth ).k 1
In Sec. , we saw that deterministic feedforward networks are universal6.4.1

approximators of functions. Many structured probabilistic models with a single
hidden layer of latent variables, including restricted Boltzmann machines and deep
belief networks, are universal approximators of probability distributions (Le Roux
and Bengio 2008 2010 Montúfar and Ay 2011 Montúfar 2014 Krause, , ; , ; , ; et al.,
2013).

In Sec. , we saw that a sufficiently deep feedforward network can have an6.4.1
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exponential advantage over a network that is too shallow. Such results can also
be obtained for other models such as probabilistic models. One such probabilistic
model is the sum-product network SPNor (Poon and Domingos 2011, ). These
models use polynomial circuits to compute the probability distribution over a
set of random variables. ( ) showed that there existDelalleau and Bengio 2011
probability distributions for which a minimum depth of SPN is required to avoid
needing an exponentially large model. Later, ( )Martens and Medabalimi 2014
showed that there are significant differences between every two finite depths of
SPN, and that some of the constraints used to make SPNs tractable may limit

their representational power.

Another interesting development is a set of theoretical results for the expressive
power of families of deep circuits related to convolutional nets, highlighting an
exponential advantage for the deep circuit even when the shallow circuit is allowed
to only approximate the function computed by the deep circuit ( ,Cohen et al.
2015). By comparison, previous theoretical work made claims regarding only the
case where the shallow circuit must exactly replicate particular functions.

15.6 Providing Clues to Discover Underlying Causes

To close this chapter, we come back to one of our original questions: what makes
one representation better than another? One answer, first introduced in Sec. ,15.3
is that an ideal representation is one that disentangles the underlying causal factors
of variation that generated the data, especially those factors that are relevant to our
applications. Most strategies for representation learning are based on introducing
clues that help the learning to find these underlying factors of variations. The clues
can help the learner separate these observed factors from the others. Supervised
learning provides a very strong clue: a label y, presented with each x, that usually
specifies the value of at least one of the factors of variation directly. More generally,
to make use of abundant unlabeled data, representation learning makes use of
other, less direct, hints about the underlying factors. These hints take the form of
implicit prior beliefs that we, the designers of the learning algorithm, impose in

order to guide the learner. Results such as the no free lunch theorem show that
regularization strategies are necessary to obtain good generalization. While it is
impossible to find a universally superior regularization strategy, one goal of deep
learning is to find a set of fairly generic regularization strategies that are applicable
to a wide variety of AI tasks, similar to the tasks that people and animals are able
to solve.

We provide here a list of these generic regularization strategies. The list is
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clearly not exhaustive, but gives some concrete examples of ways that learning
algorithms can be encouraged to discover features that correspond to underlying
factors. This list was introduced in Sec. 3.1 of ( ) and has beenBengio et al. 2013d
partially expanded here.

: This is the assumption that f(x + d) f (x) for unit d
and small . This assumption allows the learner to generalize from training
examples to nearby points in input space. Many machine learning algorithms
leverage this idea, but it is insufficient to overcome the curse of dimensionality.

: Many learning algorithms assume that relationships between
some variables are linear. This allows the algorithm to make predictions even

very far from the observed data, but can sometimes lead to overly extreme
predictions. Most simple machine learning algorithms that do not make the
smoothness assumption instead make the linearity assumption. These are
in fact different assumptions—linear functions with large weights applied
to high-dimensional spaces may not be very smooth. See Goodfellow et al.
( ) for a further discussion of the limitations of the linearity assumption.2014b

: Many representation learning algorithms
are motivated by the assumption that the data is generated by multiple
underlying explanatory factors, and that most tasks can be solved easily
given the state of each of these factors. Sec. describes how this view15.3
motivates semi-supervised learning via representation learning. Learning
the structure of p(x) requires learning some of the same features that are

useful for modeling p(y x) because both refer to the same underlying
explanatory factors. Sec. describes how this view motivates the use of15.4
distributed representations, with separate directions in representation space
corresponding to separate factors of variation.

: the model is constructed in such a way that it treats the
factors of variation described by the learned representation h as the causes
of the observed data x, and not vice-versa. As discussed in Sec. , this15.3
is advantageous for semi-supervised learning and makes the learned model
more robust when the distribution over the underlying causes changes or
when we use the model for a new task.

, or : High-
level, abstract concepts can be defined in terms of simple concepts, forming a
hierarchy. From another point of view, the use of a deep architecture expresses

our belief that the task should be accomplished via a multi-step program,
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with each step referring back to the output of the processing accomplished
via previous steps.

: In the context where we have many tasks,
corresponding to different y variables sharing the same input or where
each task is associated with a subset or a function f ( ) of a global input
, the assumption is that each y is associated with a different subset from a

common pool of relevant factors . Because these subsets overlap, learning
all the P (y ) via a shared intermediate representation P ( ) allows
sharing of statistical strength between the tasks.

: Probability mass concentrates, and the regions in which it con-

centrates are locally connected and occupy a tiny volume. In the continuous
case, these regions can be approximated by low-dimensional manifolds with
a much smaller dimensionality than the original space where the data lives.
Many machine learning algorithms behave sensibly only on this manifold
( , ). Some machine learning algorithms, especiallyGoodfellow et al. 2014b
autoencoders, attempt to explicitly learn the structure of the manifold.

: Many machine learning algorithms assume that each
connected manifold in the input space may be assigned to a single class. The
data may lie on many disconnected manifolds, but the class remains constant
within each one of these. This assumption motivates a variety of learning
algorithms, including tangent propagation, double backprop, the manifold
tangent classifier and adversarial training.

: Slow feature analysis and related

algorithms make the assumption that the most important explanatory factors
change slowly over time, or at least that it is easier to predict the true
underlying explanatory factors than to predict raw observations such as pixel
values. See Sec. for further description of this approach.13.3

: Most features should presumably not be relevant to describing
most inputs—there is no need to use a feature that detects elephant trunks
when representing an image of a cat. It is therefore reasonable to impose a
prior that any feature that can be interpreted as “present” or “absent” should
be absent most of the time.

: In good high-level representations,
the factors are related to each other through simple dependencies. The
simplest possible is marginal independence, P( ) = P ( ), but linear
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dependencies or those captured by a shallow autoencoder are also reasonable
assumptions. This can be seen in many laws of physics, and is assumed
when plugging a linear predictor or a factorized prior on top of a learned
representation.

The concept of representation learning ties together all of the many forms
of deep learning. Feedforward and recurrent networks, autoencoders and deep
probabilistic models all learn and exploit representations. Learning the best
possible representation remains an exciting avenue of research.
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Structured Probabilistic Models

for Deep Learning

Deep learning draws upon many modeling formalisms that researchers can use to
guide their design efforts and describe their algorithms. One of these formalisms is
the idea of structured probabilistic models. We have already discussed structured

probabilistic models briefly in Sec. . That brief presentation was sufficient to3.14
understand how to use structured probabilistic models as a language to describe
some of the algorithms in Part . Now, in Part , structured probabilistic modelsII III
are a key ingredient of many of the most important research topics in deep learning.
In order to prepare to discuss these research ideas, this chapter describes structured
probabilistic models in much greater detail. This chapter is intended to be self-
contained; the reader does not need to review the earlier introduction before
continuing with this chapter.

A structured probabilistic model is a way of describing a probability distribution,
using a graph to describe which random variables in the probability distribution
interact with each other directly. Here we use “graph” in the graph theory sense—a

set of vertices connected to one another by a set of edges. Because the structure of
the model is defined by a graph, these models are often also referred to as graphical
models.

The graphical models research community is large and has developed many
different models, training algorithms, and inference algorithms. In this chapter, we
provide basic background on some of the most central ideas of graphical models,
with an emphasis on the concepts that have proven most useful to the deep learning
research community. If you already have a strong background in graphical models,
you may wish to skip most of this chapter. However, even a graphical model expert
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may benefit from reading the final section of this chapter, Sec. , in which we16.7
highlight some of the unique ways that graphical models are used for deep learning
algorithms. Deep learning practitioners tend to use very different model structures,
learning algorithms and inference procedures than are commonly used by the rest
of the graphical models research community. In this chapter, we identify these
differences in preferences and explain the reasons for them.

In this chapter we first describe the challenges of building large-scale proba-
bilistic models. Next, we describe how to use a graph to describe the structure
of a probability distribution. While this approach allows us to overcome many

challenges, it is not without its own complications. One of the major difficulties in
graphical modeling is understanding which variables need to be able to interact
directly, i.e., which graph structures are most suitable for a given problem. We
outline two approaches to resolving this difficulty by learning about the dependen-
cies in Sec. . Finally, we close with a discussion of the unique emphasis that16.5
deep learning practitioners place on specific approaches to graphical modeling in
Sec. .16.7

16.1 The Challenge of Unstructured Modeling

The goal of deep learning is to scale machine learning to the kinds of challenges
needed to solve artificial intelligence. This means being able to understand high-
dimensional data with rich structure. For example, we would like AI algorithms to
be able to understand natural images,1 audio waveforms representing speech, and
documents containing multiple words and punctuation characters.

Classification algorithms can take an input from such a rich high-dimensional
distribution and summarize it with a categorical label—what object is in a photo,
what word is spoken in a recording, what topic a document is about. The process
of classification discards most of the information in the input and produces a
single output (or a probability distribution over values of that single output). The
classifier is also often able to ignore many parts of the input. For example, when

recognizing an object in a photo, it is usually possible to ignore the background of
the photo.

It is possible to ask probabilistic models to do many other tasks. These tasks are
often more expensive than classification. Some of them require producing multiple
output values. Most require a complete understanding of the entire structure of

1 A natural image is an image that might be captured by a camera in a reasonably ordinary
environment, as opposed to a synthetically rendered image, a screenshot of a web page, etc.
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the input, with no option to ignore sections of it. These tasks include the following:

• Density estimation: given an input x, the machine learning system returns an
estimate of the true density p(x) under the data generating distribution. This
requires only a single output, but it does require a complete understanding
of the entire input. If even one element of the vector is unusual, the system
must assign it a low probability.

• Denoising: given a damaged or incorrectly observed input x̃, the machine
learning system returns an estimate of the original or correct x. For example,
the machine learning system might be asked to remove dust or scratches
from an old photograph. This requires multiple outputs (every element of the

estimated clean example x) and an understanding of the entire input (since
even one damaged area will still reveal the final estimate as being damaged).

• Missing value imputation: given the observations of some elements of x,
the model is asked to return estimates of or a probability distribution over
some or all of the unobserved elements of x. This requires multiple outputs.
Because the model could be asked to restore any of the elements of x, it
must understand the entire input.

• Sampling: the model generates new samples from the distribution p(x).
Applications include speech synthesis, i.e. producing new waveforms that
sound like natural human speech. This requires multiple output values and a
good model of the entire input. If the samples have even one element drawn
from the wrong distribution, then the sampling process is wrong.

For an example of a sampling task using small natural images, see Fig. .16.1

Modeling a rich distribution over thousands or millions of random variables is a
challenging task, both computationally and statistically. Suppose we only wanted
to model binary variables. This is the simplest possible case, and yet already it
seems overwhelming. For a small, 32 × 32 2pixel color (RGB) image, there are 3072

possible binary images of this form. This number is over 10800 times larger than
the estimated number of atoms in the universe.

In general, if we wish to model a distribution over a random vector x containing
n discrete variables capable of taking on k values each, then the naive approach of
representing P (x) by storing a lookup table with one probability value per possible
outcome requires kn parameters!

This is not feasible for several reasons:
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Figure 16.1: Probabilistic modeling of natural images. (Top) Example 32 × 32 pixel color
images from the CIFAR-10 dataset ( , ). SamplesKrizhevsky and Hinton 2009 (Bottom)
drawn from a structured probabilistic model trained on this dataset. Each sample appears
at the same position in the grid as the training example that is closest to it in Euclidean
space. This comparison allows us to see that the model is truly synthesizing new images,
rather than memorizing the training data. Contrast of both sets of images has been
adjusted for display. Figure reproduced with permission from ( ).Courville et al. 2011
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• : For all but very
small values of n and k, representing the distribution as a table will require
too many values to store.

• : As the number of parameters in a model increases,
so does the amount of training data needed to choose the values of those
parameters using a statistical estimator. Because the table-based model
has an astronomical number of parameters, it will require an astronomically
large training set to fit accurately. Any such model will overfit the training
set very badly unless additional assumptions are made linking the different
entries in the table (for example, like in back-off or smoothed n -gram models,

Sec. ).12.4.1

• : Suppose we want to perform an inference
task where we use our model of the joint distribution P (x) to compute some
other distribution, such as the marginal distribution P (x1) or the conditional
distribution P (x2 | x1). Computing these distributions will require summing
across the entire table, so the runtime of these operations is as high as the
intractable memory cost of storing the model.

• : Likewise, suppose we want to draw a
sample from the model. The naive way to do this is to sample some value
u ∼ U (0,1), then iterate through the table adding up the probability values
until they exceed u and return the outcome whose probability value was
added last. This requires reading through the whole table in the worst case,

so it has the same exponential cost as the other operations.

The problem with the table-based approach is that we are explicitly modeling
every possible kind of interaction between every possible subset of variables. The
probability distributions we encounter in real tasks are much simpler than this.
Usually, most variables influence each other only indirectly.

For example, consider modeling the finishing times of a team in a relay race.
Suppose the team consists of three runners: Alice, Bob and Carol. At the start of
the race, Alice carries a baton and begins running around a track. After completing

her lap around the track, she hands the baton to Bob. Bob then runs his own
lap and hands the baton to Carol, who runs the final lap. We can model each of
their finishing times as a continuous random variable. Alice’s finishing time does
not depend on anyone else’s, since she goes first. Bob’s finishing time depends
on Alice’s, because Bob does not have the opportunity to start his lap until Alice
has completed hers. If Alice finishes faster, Bob will finish faster, all else being
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equal. Finally, Carol’s finishing time depends on both her teammates. If Alice is
slow, Bob will probably finish late too. As a consequence, Carol will have quite a
late starting time and thus is likely to have a late finishing time as well. However,
Carol’s finishing time depends only indirectly on Alice’s finishing time via Bob’s.
If we already know Bob’s finishing time, we will not be able to estimate Carol’s
finishing time better by finding out what Alice’s finishing time was. This means
we can model the relay race using only two interactions: Alice’s effect on Bob and
Bob’s effect on Carol. We can omit the third, indirect interaction between Alice
and Carol from our model.

Structured probabilistic models provide a formal framework for modeling only
direct interactions between random variables. This allows the models to have
significantly fewer parameters which can in turn be estimated reliably from less
data. These smaller models also have dramatically reduced computational cost
in terms of storing the model, performing inference in the model, and drawing
samples from the model.

16.2 Using Graphs to Describe Model Structure

Structured probabilistic models use graphs (in the graph theory sense of “nodes” or

“vertices” connected by edges) to represent interactions between random variables.
Each node represents a random variable. Each edge represents a direct interaction.
These direct interactions imply other, indirect interactions, but only the direct
interactions need to be explicitly modeled.

There is more than one way to describe the interactions in a probability
distribution using a graph. In the following sections we describe some of the most
popular and useful approaches. Graphical models can be largely divided into
two categories: models based on directed acyclic graphs, and models based on
undirected graphs.

One kind of structured probabilistic model is the directed graphical model, otherwise
known as the belief network Bayesian networkor 2 (Pearl 1985, ).

Directed graphical models are called “directed” because their edges are directed,

2 Judea Pearl suggested using the term “Bayesian network” when one wishes to “emphasize

the judgmental” nature of the values computed by the network, i.e. to highlight that they usually
represent degrees of belief rather than frequencies of events.
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Figure 16.2: A directed graphical model depicting the relay race example. Alice’s finishing
time t influences Bob’s finishing time t , because Bob does not get to start running until
Alice finishes. Likewise, Carol only gets to start running after Bob finishes, so Bob’s
finishing time t directly influences Carol’s finishing time t .

that is, they point from one vertex to another. This direction is represented in
the drawing with an arrow. The direction of the arrow indicates which variable’s
probability distribution is defined in terms of the other’s. Drawing an arrow from
a to b means that we define the probability distribution over b via a conditional
distribution, with a as one of the variables on the right side of the conditioning
bar. In other words, the distribution over b depends on the value of a.

Continuing with the relay race example from Sec. , suppose we name Alice’s16.1
finishing time t0 , Bob’s finishing time t1, and Carol’s finishing time t2. As we saw
earlier, our estimate of t1 depends on t0. Our estimate of t2 depends directly on t1
but only indirectly on t0 . We can draw this relationship in a directed graphical
model, illustrated in Fig. .16.2

Formally, a directed graphical model defined on variables x is defined by a
directed acyclic graph G whose vertices are the random variables in the model, and
a set of local conditional probability distributions p(xi | Pa (xi)) where Pa (xi)
gives the parents of xi in . The probability distribution over is given byG x 

p( ) = Πx ip(xi | Pa (xi)). (16.1)

In our relay race example, this means that, using the graph drawn in Fig. ,16.2

p(t0, t1, t2) = (p t0) (p t1 | t0 ) (p t2 | t1). (16.2)

This is our first time seeing a structured probabilistic model in action. We
can examine the cost of using it, in order to observe how structured modeling has
many advantages relative to unstructured modeling.

Suppose we represented time by discretizing time ranging from minute 0 to
minute 10 into 6 second chunks. This would make t0 , t1 and t2 each be discrete
variables with 100 possible values. If we attempted to represent p(t0, t1, t2) with a
table, it would need to store 999,999 values (100 values of t0 × 100 values of t1 ×
100 values of t2, minus 1, since the probability of one of the configurations is made
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redundant by the constraint that the sum of the probabilities be 1). If instead, we
only make a table for each of the conditional probability distributions, then the
distribution over t0 requires 99 values, the table defining t1 given t0 requires 9900
values, and so does the table defining t2 given t1. This comes to a total of 19,899
values. This means that using the directed graphical model reduced our number of
parameters by a factor of more than 50!

In general, to model n discrete variables each having k values, the cost of the
single table approach scales like O(k n), as we have observed before. Now suppose
we build a directed graphical model over these variables. If m is the maximum

number of variables appearing (on either side of the conditioning bar) in a single
conditional probability distribution, then the cost of the tables for the directed
model scales like O(km). As long as we can design a model such that m << n, we
get very dramatic savings.

In other words, so long as each variable has few parents in the graph, the
distribution can be represented with very few parameters. Some restrictions on
the graph structure, such as requiring it to be a tree, can also guarantee that
operations like computing marginal or conditional distributions over subsets of
variables are efficient.

It is important to realize what kinds of information can and cannot be encoded in
the graph. The graph encodes only simplifying assumptions about which variables

are conditionally independent from each other. It is also possible to make other
kinds of simplifying assumptions. For example, suppose we assume Bob always
runs the same regardless of how Alice performed. (In reality, Alice’s performance
probably influences Bob’s performance—depending on Bob’s personality, if Alice
runs especially fast in a given race, this might encourage Bob to push hard and
match her exceptional performance, or it might make him overconfident and lazy).
Then the only effect Alice has on Bob’s finishing time is that we must add Alice’s
finishing time to the total amount of time we think Bob needs to run. This
observation allows us to define a model with O(k) parameters instead of O(k2).
However, note that t0 and t1 are still directly dependent with this assumption,
because t1 represents the absolute time at which Bob finishes, not the total time

he himself spends running. This means our graph must still contain an arrow from
t0 to t1. The assumption that Bob’s personal running time is independent from
all other factors cannot be encoded in a graph over t 0, t1 , and t2. Instead, we
encode this information in the definition of the conditional distribution itself. The
conditional distribution is no longer a k k× −1 element table indexed by t0 and t1
but is now a slightly more complicated formula using only k − 1 parameters. The
directed graphical model syntax does not place any constraint on how we define
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our conditional distributions. It only defines which variables they are allowed to
take in as arguments.

Directed graphical models give us one language for describing structured proba-

bilistic models. Another popular language is that of undirected models, otherwise
known as Markov random fields (MRFs) or ( , ).Markov networks Kindermann 1980
As their name implies, undirected models use graphs whose edges are undirected.

Directed models are most naturally applicable to situations where there is
a clear reason to draw each arrow in one particular direction. Often these are
situations where we understand the causality and the causality only flows in one
direction. One such situation is the relay race example. Earlier runners affect the
finishing times of later runners; later runners do not affect the finishing times of
earlier runners.

Not all situations we might want to model have such a clear direction to their
interactions. When the interactions seem to have no intrinsic direction, or to

operate in both directions, it may be more appropriate to use an undirected model.

As an example of such a situation, suppose we want to model a distribution
over three binary variables: whether or not you are sick, whether or not your
coworker is sick, and whether or not your roommate is sick. As in the relay race
example, we can make simplifying assumptions about the kinds of interactions
that take place. Assuming that your coworker and your roommate do not know
each other, it is very unlikely that one of them will give the other a disease such as
a cold directly. This event can be seen as so rare that it is acceptable not to model
it. However, it is reasonably likely that either of them could give you a cold, and
that you could pass it on to the other. We can model the indirect transmission of
a cold from your coworker to your roommate by modeling the transmission of the

cold from your coworker to you and the transmission of the cold from you to your
roommate.

In this case, it is just as easy for you to cause your roommate to get sick as
it is for your roommate to make you sick, so there is not a clean, uni-directional
narrative on which to base the model. This motivates using an undirected model.
As with directed models, if two nodes in an undirected model are connected by an
edge, then the random variables corresponding to those nodes interact with each
other directly. Unlike directed models, the edge in an undirected model has no
arrow, and is not associated with a conditional probability distribution.

We denote the random variable representing your health as hy, the random
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Figure 16.3: An undirected graph representing how your roommate’s health h , your
health h , and your work colleague’s health h affect each other. You and your roommate
might infect each other with a cold, and you and your work colleague might do the same,
but assuming that your roommate and your colleague do not know each other, they can
only infect each other indirectly via you.

variable representing your roommate’s health as hr, and the random variable
representing your colleague’s health as hc. See Fig. for a drawing of the graph16.3
representing this scenario.

Formally, an undirected graphical model is a structured probabilistic model
defined on an undirected graph G. For each clique C in the graph,3 a factor φ(C)
(also called a clique potential) measures the affinity of the variables in that clique
for being in each of their possible joint states. The factors are constrained to be
non-negative. Together they define an unnormalized probability distribution

p̃( ) = Πx φ .( )C (16.3)

The unnormalized probability distribution is efficient to work with so long as
all the cliques are small. It encodes the idea that states with higher affinity are
more likely. However, unlike in a Bayesian network, there is little structure to the
definition of the cliques, so there is nothing to guarantee that multiplying them
together will yield a valid probability distribution. See Fig. for an example of16.4

reading factorization information from an undirected graph.

Our example of the cold spreading between you, your roommate, and your
colleague contains two cliques. One clique contains hy and hc. The factor for this
clique can be defined by a table, and might have values resembling these:

hy = 0 hy = 1

hc = 0 2 1
hc = 1 1 10

A state of 1 indicates good health, while a state of 0 indicates poor health
(having been infected with a cold). Both of you are usually healthy, so the

3A clique of the graph is a subset of nodes that are all connected to each other by an edge of
the graph.
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corresponding state has the highest affinity. The state where only one of you is
sick has the lowest affinity, because this is a rare state. The state where both of
you are sick (because one of you has infected the other) is a higher affinity state,
though still not as common as the state where both are healthy.

To complete the model, we would need to also define a similar factor for the
clique containing hy and hr.

While the unnormalized probability distribution is guaranteed to be non-negative
everywhere, it is not guaranteed to sum or integrate to 1. To obtain a valid
probability distribution, we must use the corresponding normalized probability
distribution:4

p( ) =x
1

Z
p̃( )x (16.4)

where Z is the value that results in the probability distribution summing or
integrating to 1:

Z = p̃ d .( )x x (16.5)

You can think of Z as a constant when the φ functions are held constant. Note
that if the φ functions have parameters, then Z is a function of those parameters.
It is common in the literature to write Z with its arguments omitted to save space.
The normalizing constant Z is known as the partition function, a term borrowed
from statistical physics.

Since Z is an integral or sum over all possible joint assignments of the state x
it is often intractable to compute. In order to be able to obtain the normalized

probability distribution of an undirected model, the model structure and the
definitions of the φ functions must be conducive to computing Z efficiently. In
the context of deep learning, Z is usually intractable. Due to the intractability
of computing Z exactly, we must resort to approximations. Such approximate
algorithms are the topic of Chapter .18

One important consideration to keep in mind when designing undirected models
is that it is possible to specify the factors in such a way that Z does not exist.
This happens if some of the variables in the model are continuous and the integral
of p̃ over their domain diverges. For example, suppose we want to model a single

4A distribution defined by normalizing a product of clique potentials is also called a Gibbs

distribution.
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scalar variable x with a single clique potential∈ φ x x( ) = 2. In this case,

Z = x2dx. (16.6)

Since this integral diverges, there is no probability distribution corresponding to
this choice of φ(x). Sometimes the choice of some parameter of the φ functions
determines whether the probability distribution is defined. For example, for
φ(x; β) = exp −βx2 , the β parameter determines whether Z exists. Positive β
results in a Gaussian distribution over x but all other values of β make φ impossible
to normalize.

One key difference between directed modeling and undirected modeling is that
directed models are defined directly in terms of probability distributions from
the start, while undirected models are defined more loosely by φ functions that
are then converted into probability distributions. This changes the intuitions one

must develop in order to work with these models. One key idea to keep in mind
while working with undirected models is that the domain of each of the variables
has dramatic effect on the kind of probability distribution that a given set of φ
functions corresponds to. For example, consider an n-dimensional vector-valued
random variable x and an undirected model parametrized by a vector of biases
b . Suppose we have one clique for each element of x, φ( )i (xi) = exp(bixi). What
kind of probability distribution does this result in? The answer is that we do
not have enough information, because we have not yet specified the domain of x.
If x ∈ n, then the integral defining Z diverges and no probability distribution
exists. If x ∈ {0, 1}n, then p (x) factorizes into n independent distributions, with
p(x i = 1) = sigmoid (bi). If the domain of x is the set of elementary basis vectors

({[1, 0, . . . , 0], [0, 1, . . . ,0], . . . , [0,0, . . . ,1]} ) then p(x) = softmax(b), so a large
value of b i actually reduces p(x j = 1) for j 6= i. Often, it is possible to leverage
the effect of a carefully chosen domain of a variable in order to obtain complicated
behavior from a relatively simple set of φ functions. We will explore a practical
application of this idea later, in Sec. .20.6

Many interesting theoretical results about undirected models depend on the as-
sumption that ∀x, p̃(x)> 0. A convenient way to enforce this condition is to use
an energy-based model (EBM) where

p̃ E( ) = exp(x − ( ))x (16.7)

and E(x) is known as the energy function. Because exp(z) is positive for all z, this
guarantees that no energy function will result in a probability of zero for any state x.
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Figure 16.4: This graph implies that p(a b c d e f, , , , , ) can be written as
φ (a b, )φ (b c, )φ (a d, )φ (b e, )φ (e f, ) for an appropriate choice of the φ func-

tions.

Being completely free to choose the energy function makes learning simpler. If we
learned the clique potentials directly, we would need to use constrained optimization
to arbitrarily impose some specific minimal probability value. By learning the
energy function, we can use unconstrained optimization.5 The probabilities in an
energy-based model can approach arbitrarily close to zero but never reach it.

Any distribution of the form given by Eq. is an example of a16.7 Boltzmann
distribution. For this reason, many energy-based models are called Boltzmann
machines (Fahlman 1983 Ackley 1985 Hinton 1984 Hintonet al., ; et al., ; et al., ;
and Sejnowski 1986, ). There is no accepted guideline for when to call a model an

energy-based model and when to call it a Boltzmann machine. The term Boltzmann
machine was first introduced to describe a model with exclusively binary variables,
but today many models such as the mean-covariance restricted Boltzmann machine
incorporate real-valued variables as well. While Boltzmann machines were originally
defined to encompass both models with and without latent variables, the term
Boltzmann machine is today most often used to designate models with latent
variables, while Boltzmann machines without latent variables are more often called
Markov random fields or log-linear models.

Cliques in an undirected graph correspond to factors of the unnormalized
probability function. Because exp(a) exp(b) = exp(a+ b), this means that different
cliques in the undirected graph correspond to the different terms of the energy

function. In other words, an energy-based model is just a special kind of Markov
network: the exponentiation makes each term in the energy function correspond
to a factor for a different clique. See Fig. for an example of how to read the16.5
form of the energy function from an undirected graph structure. One can view an
energy-based model with multiple terms in its energy function as being a product
of experts ( , ). Each term in the energy function corresponds to anotherHinton 1999

5
For some models, we may still need to use constrained optimization to make sure exists.
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Figure 16.5: This graph implies that E(a b c d e f, , , , , ) can be written as E (a b, ) +
E (b c, ) +E (a d, ) +E (b e, ) +E (e f, ) for an appropriate choice of the per-clique
energy functions. Note that we can obtain the φ functions in Fig. by setting each16.4 φ
to the exponential of the corresponding negative energy, e.g., φ (a b, ) = exp ( ( ))−E a b, .

factor in the probability distribution. Each term of the energy function can be
thought of as an “expert” that determines whether a particular soft constraint
is satisfied. Each expert may enforce only one constraint that concerns only
a low-dimensional projection of the random variables, but when combined by

multiplication of probabilities, the experts together enforce a complicated high-
dimensional constraint.

One part of the definition of an energy-based model serves no functional
purpose from a machine learning point of view: the − sign in Eq. . This16.7
− sign could be incorporated into the definition of E, or for many functions E
the learning algorithm could simply learn parameters with opposite sign. The −
sign is present primarily to preserve compatibility between the machine learning
literature and the physics literature. Many advances in probabilistic modeling
were originally developed by statistical physicists, for whom E refers to actual,
physical energy and does not have arbitrary sign. Terminology such as “energy”
and “partition function” remains associated with these techniques, even though
their mathematical applicability is broader than the physics context in which they

were developed. Some machine learning researchers (e.g., ( ), whoSmolensky 1986
referred to negative energy as ) have chosen to emit the negation, but thisharmony
is not the standard convention.

Many algorithms that operate on probabilistic models do not need to compute
pmodel(x) but only log p̃model (x). For energy-based models with latent variables h,
these algorithms are sometimes phrased in terms of the negative of this quantity,
called the free energy:

F −( ) = x log exp ( ( ))−E x h, . (16.8)

In this book, we usually prefer the more general log p̃model( )x formulation.
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(a) (b)

Figure 16.6: (a) The path between random variable a and random variable b through s is
active, because s is not observed. This means that a and b are not separated. (b) Here s
is shaded in, to indicate that it is observed. Because the only path between a and b is
through s, and that path is inactive, we can conclude that a and b are separated given s.

The edges in a graphical model tell us which variables directly interact. We often
need to know which variables indirectly interact. Some of these indirect interactions
can be enabled or disabled by observing other variables. More formally, we would
like to know which subsets of variables are conditionally independent from each
other, given the values of other subsets of variables.

Identifying the conditional independences in a graph is very simple in the case
of undirected models. In this case, conditional independence implied by the graph
is called separation. We say that a set of variables is separated from another set
of variables given a third set of variables if the graph structure implies that
is independent from given . If two variables a and b are connected by a path
involving only unobserved variables, then those variables are not separated. If no

path exists between them, or all paths contain an observed variable, then they are
separated. We refer to paths involving only unobserved variables as “active” and
paths including an observed variable as “inactive.”

When we draw a graph, we can indicate observed variables by shading them
in. See Fig. for a depiction of how active and inactive paths in an undirected16.6
model look when drawn in this way. See Fig. for an example of reading16.7
separation from an undirected graph.

Similar concepts apply to directed models, except that in the context of
directed models, these concepts are referred to as d-separation. The “d” stands for
“dependence.” D-separation for directed graphs is defined the same as separation
for undirected graphs: We say that a set of variables is d-separated from another

set of variables given a third set of variables if the graph structure implies
that is independent from given .

As with undirected models, we can examine the independences implied by the
graph by looking at what active paths exist in the graph. As before, two variables
are dependent if there is an active path between them, and d-separated if no such
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Figure 16.7: An example of reading separation properties from an undirected graph. Here
b is shaded to indicate that it is observed. Because observing b blocks the only path from
a to c , we say that a and c are separated from each other given b. The observation of b
also blocks one path between a and d, but there is a second, active path between them.
Therefore, a and d are not separated given b.

path exists. In directed nets, determining whether a path is active is somewhat
more complicated. See Fig. for a guide to identifying active paths in a directed16.8
model. See Fig. for an example of reading some properties from a graph.16.9

It is important to remember that separation and d-separation tell us only about
those conditional independences There is no
requirement that the graph imply all independences that are present. In particular,
it is always legitimate to use the complete graph (the graph with all possible edges)

to represent any distribution. In fact, some distributions contain independences
that are not possible to represent with existing graphical notation. Context-specific
independences are independences that are present dependent on the value of some
variables in the network. For example, consider a model of three binary variables:
a, b and c. Suppose that when a is 0, b and c are independent, but when a is 1, b
is deterministically equal to c . Encoding the behavior when a = 1 requires an edge
connecting b and c. The graph then fails to indicate that b and c are independent
when a .= 0

In general, a graph will never imply that an independence exists when it does
not. However, a graph may fail to encode an independence.

We often refer to a specific machine learning model as being undirected or directed.
For example, we typically refer to RBMs as undirected and sparse coding as directed.
This choice of wording can be somewhat misleading, because no probabilistic
model is inherently directed or undirected. Instead, some models are most easily

using a directed graph, or most easily described using an undirected
graph.
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Figure 16.8: All of the kinds of active paths of length two that can exist between random
variables a and b. Any path with arrows proceeding directly from(a) a to b or vice versa.
This kind of path becomes blocked if s is observed. We have already seen this kind of
path in the relay race example. (b) a and b are connected by a common cause s. For
example, suppose s is a variable indicating whether or not there is a hurricane and a and
b measure the wind speed at two different nearby weather monitoring outposts. If we
observe very high winds at station a, we might expect to also see high winds at b. This
kind of path can be blocked by observing s. If we already know there is a hurricane, we
expect to see high winds at b, regardless of what is observed at a. A lower than expected
wind at a (for a hurricane) would not change our expectation of winds at b (knowing
there is a hurricane). However, if s is not observed, then a and b are dependent, i.e.,
the path is active. (c) a and b are both parents of s. This is called a V-structure theor
collider case. The V-structure causes a and b to be related by the explaining away effect.
In this case, the path is actually active when s is observed. For example, suppose s is a
variable indicating that your colleague is not at work. The variable a represents her being
sick, while b represents her being on vacation. If you observe that she is not at work,
you can presume she is probably sick or on vacation, but it is not especially likely that
both have happened at the same time. If you find out that she is on vacation, this fact
is sufficient to her absence. You can infer that she is probably not also sick.explain (d)
The explaining away effect happens even if any descendant of s is observed! For example,
suppose that c is a variable representing whether you have received a report from your
colleague. If you notice that you have not received the report, this increases your estimate
of the probability that she is not at work today, which in turn makes it more likely that
she is either sick or on vacation. The only way to block a path through a V-structure is
to observe none of the descendants of the shared child.
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Figure 16.9: From this graph, we can read out several d-separation properties. Examples
include:

• a and b are d-separated given the empty set.

• a and e are d-separated given c.

• d and e are d-separated given c.

We can also see that some variables are no longer d-separated when we observe some
variables:

• a and b are not d-separated given c.

• a and b are not d-separated given d.
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Figure 16.10: Examples of complete graphs, which can describe any probability distribution.
Here we show examples with four random variables. (Left) The complete undirected graph.
In the undirected case, the complete graph is unique. (Right) A complete directed graph.
In the directed case, there is not a unique complete graph. We choose an ordering of the
variables and draw an arc from each variable to every variable that comes after it in the
ordering. There are thus a factorial number of complete graphs for every set of random
variables. In this example we order the variables from left to right, top to bottom.

Directed models and undirected models both have their advantages and disad-

vantages. Neither approach is clearly superior and universally preferred. Instead,
we should choose which language to use for each task. This choice will partially
depend on which probability distribution we wish to describe. We may choose to
use either directed modeling or undirected modeling based on which approach can
capture the most independences in the probability distribution or which approach
uses the fewest edges to describe the distribution. There are other factors that
can affect the decision of which language to use. Even while working with a single
probability distribution, we may sometimes switch between different modeling
languages. Sometimes a different language becomes more appropriate if we observe
a certain subset of variables, or if we wish to perform a different computational
task. For example, the directed model description often provides a straightforward

approach to efficiently draw samples from the model (described in Sec. ) while16.3
the undirected model formulation is often useful for deriving approximate inference
procedures (as we will see in Chapter , where the role of undirected models is19
highlighted in Eq. ).19.56

Every probability distribution can be represented by either a directed model
or by an undirected model. In the worst case, one can always represent any
distribution by using a “complete graph.” In the case of a directed model, the
complete graph is any directed acyclic graph where we impose some ordering on
the random variables, and each variable has all other variables that precede it in
the ordering as its ancestors in the graph. For an undirected model, the complete
graph is simply a graph containing a single clique encompassing all of the variables.
See Fig. for an example.16.10
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Of course, the utility of a graphical model is that the graph implies that some
variables do not interact directly. The complete graph is not very useful because it
does not imply any independences.

When we represent a probability distribution with a graph, we want to choose
a graph that implies as many independences as possible, without implying any
independences that do not actually exist.

From this point of view, some distributions can be represented more efficiently
using directed models, while other distributions can be represented more efficiently

using undirected models. In other words, directed models can encode some
independences that undirected models cannot encode, and vice versa.

Directed models are able to use one specific kind of substructure that undirected
models cannot represent perfectly. This substructure is called an immorality. The
structure occurs when two random variables a and b are both parents of a third
random variable c, and there is no edge directly connecting a and b in either
direction. (The name “immorality” may seem strange; it was coined in the graphical
models literature as a joke about unmarried parents.) To convert a directed model
with graph D into an undirected model, we need to create a new graph U. For
every pair of variables x and y, we add an undirected edge connecting x and y to
U if there is a directed edge (in either direction) connecting x and y in D or if x
and y are both parents in D of a third variable z. The resulting U is known as

a moralized graph. See Fig. for examples of converting directed models to16.11
undirected models via moralization.

Likewise, undirected models can include substructures that no directed model
can represent perfectly. Specifically, a directed graph cannot capture all of theD
conditional independences implied by an undirected graph U if U contains a loop
of length greater than three, unless that loop also contains a chord. A loop is
a sequence of variables connected by undirected edges, with the last variable in
the sequence connected back to the first variable in the sequence. A chord is a
connection between any two non-consecutive variables in the sequence defining a
loop. If U has loops of length four or greater and does not have chords for these
loops, we must add the chords before we can convert it to a directed model. Adding

these chords discards some of the independence information that was encoded in
U . The graph formed by adding chords to U is known as a chordal triangulatedor
graph, because all the loops can now be described in terms of smaller, triangular
loops. To build a directed graph D from the chordal graph, we need to also assign
directions to the edges. When doing so, we must not create a directed cycle in
D, or the result does not define a valid directed probabilistic model. One way
to assign directions to the edges in D is to impose an ordering on the random
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Figure 16.11: Examples of converting directed models (top row) to undirected models
(bottom row) by constructing moralized graphs. (Left) This simple chain can be converted
to a moralized graph merely by replacing its directed edges with undirected edges. The
resulting undirected model implies exactly the same set of independences and conditional
independences. This graph is the simplest directed model that cannot be(Center)
converted to an undirected model without losing some independences. This graph consists
entirely of a single immorality. Because a and b are parents of c, they are connected by an
active path when c is observed. To capture this dependence, the undirected model must
include a clique encompassing all three variables. This clique fails to encode the fact that
a b⊥ . In general, moralization may add many edges to the graph, thus losing many(Right)
implied independences. For example, this sparse coding graph requires adding moralizing
edges between every pair of hidden units, thus introducing a quadratic number of new
direct dependences.
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Figure 16.12: Converting an undirected model to a directed model. (Left) This undirected
model cannot be converted directed to a directed model because it has a loop of length four
with no chords. Specifically, the undirected model encodes two different independences that
no directed model can capture simultaneously: a c b d⊥ | { , } and b d a c⊥ | { , } . (Center)
To convert the undirected model to a directed model, we must triangulate the graph,
by ensuring that all loops of greater than length three have a chord. To do so, we can
either add an edge connecting a and c or we can add an edge connecting b and d. In this
example, we choose to add the edge connecting a and c. (Right) To finish the conversion
process, we must assign a direction to each edge. When doing so, we must not create any
directed cycles. One way to avoid directed cycles is to impose an ordering over the nodes,
and always point each edge from the node that comes earlier in the ordering to the node
that comes later in the ordering. In this example, we use the variable names to impose
alphabetical order.

variables, then point each edge from the node that comes earlier in the ordering to
the node that comes later in the ordering. See Fig. for a demonstration.16.12

Factor graphs are another way of drawing undirected models that resolve an
ambiguity in the graphical representation of standard undirected model syntax.
In an undirected model, the scope of every φ function must be a subset of some
clique in the graph. However, it is not necessary that there exist any φ whose
scope contains the entirety of every clique. Factor graphs explicitly represent the
scope of each φ function. Specifically, a factor graph is a graphical representation
of an undirected model that consists of a bipartite undirected graph. Some of the
nodes are drawn as circles. These nodes correspond to random variables as in a

standard undirected model. The rest of the nodes are drawn as squares. These
nodes correspond to the factors φ of the unnormalized probability distribution.
Variables and factors may be connected with undirected edges. A variable and a
factor are connected in the graph if and only if the variable is one of the arguments
to the factor in the unnormalized probability distribution. No factor may be
connected to another factor in the graph, nor can a variable be connected to a
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variable. See Fig. for an example of how factor graphs can resolve ambiguity16.13
in the interpretation of undirected networks.

Figure 16.13: An example of how a factor graph can resolve ambiguity in the interpretation
of undirected networks. (Left) An undirected network with a clique involving three
variables: a, b and c. A factor graph corresponding to the same undirected(Center)
model. This factor graph has one factor over all three variables. (Right) Another valid
factor graph for the same undirected model. This factor graph has three factors, each over
only two variables. Representation, inference, and learning are all asymptotically cheaper
in (c) compared to (b), even though both require the same undirected graph to represent.

16.3 Sampling from Graphical Models

Graphical models also facilitate the task of drawing samples from a model.

One advantage of directed graphical models is that a simple and efficient
procedure called ancestral sampling can produce a sample from the joint distribution
represented by the model.

The basic idea is to sort the variables xi in the graph into a topological ordering,
so that for all i and j, j is greater than i if xi is a parent of xj . The variables
can then be sampled in this order. In other words, we first sample x1 ∼ P (x1),

then sample P (x2 | Pa (x2)), and so on, until finally we sample P (xn | Pa (x n)).
So long as each conditional distribution p(xi | Pa (xi )) is easy to sample from,
then the whole model is easy to sample from. The topological sorting operation
guarantees that we can read the conditional distributions in Eq. and sample16.1
from them in order. Without the topological sorting, we might attempt to sample
a variable before its parents are available.

For some graphs, more than one topological ordering is possible. Ancestral
sampling may be used with any of these topological orderings.

Ancestral sampling is generally very fast (assuming sampling from each condi-
tional is easy) and convenient.
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One drawback to ancestral sampling is that it only applies to directed graphical
models. Another drawback is that it does not support every conditional sampling
operation. When we wish to sample from a subset of the variables in a directed
graphical model, given some other variables, we often require that all the condition-
ing variables come earlier than the variables to be sampled in the ordered graph.
In this case, we can sample from the local conditional probability distributions
specified by the model distribution. Otherwise, the conditional distributions we
need to sample from are the posterior distributions given the observed variables.
These posterior distributions are usually not explicitly specified and parametrized

in the model. Inferring these posterior distributions can be costly. In models where
this is the case, ancestral sampling is no longer efficient.

Unfortunately, ancestral sampling is only applicable to directed models. We
can sample from undirected models by converting them to directed models, but this
often requires solving intractable inference problems (to determine the marginal
distribution over the root nodes of the new directed graph) or requires introducing
so many edges that the resulting directed model becomes intractable. Sampling
from an undirected model without first converting it to a directed model seems to
require resolving cyclical dependencies. Every variable interacts with every other
variable, so there is no clear beginning point for the sampling process. Unfortunately,
drawing samples from an undirected graphical model is an expensive, multi-pass

process. The conceptually simplest approach is . Suppose weGibbs sampling
have a graphical model over an n-dimensional vector of random variables x. We
iteratively visit each variable xi and draw a sample conditioned on all of the other
variables, from p (xi | x

i
). Due to the separation properties of the graphical

model, we can equivalently condition on only the neighbors of xi . Unfortunately,
after we have made one pass through the graphical model and sampled all n
variables, we still do not have a fair sample from p(x). Instead, we must repeat the
process and resample all n variables using the updated values of their neighbors.
Asymptotically, after many repetitions, this process converges to sampling from
the correct distribution. It can be difficult to determine when the samples have
reached a sufficiently accurate approximation of the desired distribution. Sampling
techniques for undirected models are an advanced topic, covered in more detail in

Chapter .17

16.4 Advantages of Structured Modeling

The primary advantage of using structured probabilistic models is that they allow
us to dramatically reduce the cost of representing probability distributions as well
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as learning and inference. Sampling is also accelerated in the case of directed
models, while the situation can be complicated with undirected models. The
primary mechanism that allows all of these operations to use less runtime and
memory is choosing to not model certain interactions. Graphical models convey
information by leaving edges out. Anywhere there is not an edge, the model
specifies the assumption that we do not need to model a direct interaction.

A less quantifiable benefit of using structured probabilistic models is that
they allow us to explicitly separate representation of knowledge from learning of
knowledge or inference given existing knowledge. This makes our models easier to

develop and debug. We can design, analyze, and evaluate learning algorithms and
inference algorithms that are applicable to broad classes of graphs. Independently,
we can design models that capture the relationships we believe are important in our
data. We can then combine these different algorithms and structures and obtain
a Cartesian product of different possibilities. It would be much more difficult to
design end-to-end algorithms for every possible situation.

16.5 Learning about Dependencies

A good generative model needs to accurately capture the distribution over the

observed or “visible” variables v. Often the different elements of v are highly
dependent on each other. In the context of deep learning, the approach most
commonly used to model these dependencies is to introduce several latent or
“hidden” variables, h. The model can then capture dependencies between any pair
of variables v i and vj indirectly, via direct dependencies between vi and h, and
direct dependencies between and vh j .

A good model of v which did not contain any latent variables would need to
have very large numbers of parents per node in a Bayesian network or very large
cliques in a Markov network. Just representing these higher order interactions is
costly—both in a computational sense, because the number of parameters that
must be stored in memory scales exponentially with the number of members in a

clique, but also in a statistical sense, because this exponential number of parameters
requires a wealth of data to estimate accurately.

When the model is intended to capture dependencies between visible variables
with direct connections, it is usually infeasible to connect all variables, so the graph
must be designed to connect those variables that are tightly coupled and omit
edges between other variables. An entire field of machine learning called structure
learning is devoted to this problem For a good reference on structure learning, see
(Koller and Friedman 2009, ). Most structure learning techniques are a form of
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greedy search. A structure is proposed, a model with that structure is trained,
then given a score. The score rewards high training set accuracy and penalizes
model complexity. Candidate structures with a small number of edges added or
removed are then proposed as the next step of the search. The search proceeds to
a new structure that is expected to increase the score.

Using latent variables instead of adaptive structure avoids the need to perform
discrete searches and multiple rounds of training. A fixed structure over visible
and hidden variables can use direct interactions between visible and hidden units
to impose indirect interactions between visible units. Using simple parameter

learning techniques we can learn a model with a fixed structure that imputes the
right structure on the marginal .p( )v

Latent variables have advantages beyond their role in efficiently capturing p(v).
The new variables h also provide an alternative representation for v. For example,
as discussed in Sec. , the mixture of Gaussians model learns a latent variable3.9.6
that corresponds to which category of examples the input was drawn from. This
means that the latent variable in a mixture of Gaussians model can be used to do
classification. In Chapter we saw how simple probabilistic models like sparse14
coding learn latent variables that can be used as input features for a classifier,
or as coordinates along a manifold. Other models can be used in this same way,
but deeper models and models with different kinds of interactions can create even

richer descriptions of the input. Many approaches accomplish feature learning
by learning latent variables. Often, given some model of v and h, experimental
observations show that [h v| ] or argmax p(h v, ) is a good feature mapping for
v.

16.6 Inference and Approximate Inference

One of the main ways we can use a probabilistic model is to ask questions about
how variables are related to each other. Given a set of medical tests, we can ask
what disease a patient might have. In a latent variable model, we might want to

extract features [h v| ] describing the observed variables v. Sometimes we need
to solve such problems in order to perform other tasks. We often train our models
using the principle of maximum likelihood. Because

log ( ) = p v
p( )

[log ( ) log ( )]p h v, − p h v| , (16.9)

we often want to compute p(h | v) in order to implement a learning rule. All of
these are examples of inference problems in which we must predict the value of
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some variables given other variables, or predict the probability distribution over
some variables given the value of other variables.

Unfortunately, for most interesting deep models, these inference problems are
intractable, even when we use a structured graphical model to simplify them. The
graph structure allows us to represent complicated, high-dimensional distributions
with a reasonable number of parameters, but the graphs used for deep learning are
usually not restrictive enough to also allow efficient inference.

It is straightforward to see that computing the marginal probability of a general

graphical model is #P hard. The complexity class #P is a generalization of the
complexity class NP. Problems in NP require determining only whether a problem
has a solution and finding a solution if one exists. Problems in #P require counting
the number of solutions. To construct a worst-case graphical model, imagine that
we define a graphical model over the binary variables in a 3-SAT problem. We
can impose a uniform distribution over these variables. We can then add one
binary latent variable per clause that indicates whether each clause is satisfied.
We can then add another latent variable indicating whether all of the clauses are
satisfied. This can be done without making a large clique, by building a reduction
tree of latent variables, with each node in the tree reporting whether two other
variables are satisfied. The leaves of this tree are the variables for each clause.
The root of the tree reports whether the entire problem is satisfied. Due to the

uniform distribution over the literals, the marginal distribution over the root of the
reduction tree specifies what fraction of assignments satisfy the problem. While
this is a contrived worst-case example, NP hard graphs commonly arise in practical
real-world scenarios.

This motivates the use of approximate inference. In the context of deep
learning, this usually refers to variational inference, in which we approximate the
true distribution p(h | v) by seeking an approximate distribution q(h v| ) that is as
close to the true one as possible. This and other techniques are described in depth
in Chapter .19

16.7 The Deep Learning Approach to Structured Prob-

abilistic Models

Deep learning practitioners generally use the same basic computational tools as
other machine learning practitioners who work with structured probabilistic models.
However, in the context of deep learning, we usually make different design decisions
about how to combine these tools, resulting in overall algorithms and models that
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have a very different flavor from more traditional graphical models.

Deep learning does not always involve especially deep graphical models. In the
context of graphical models, we can define the depth of a model in terms of the
graphical model graph rather than the computational graph. We can think of a
latent variable h i as being at depth j if the shortest path from h i to an observed
variable is j steps. We usually describe the depth of the model as being the greatest
depth of any such h i. This kind of depth is different from the depth induced by
the computational graph. Many generative models used for deep learning have no
latent variables or only one layer of latent variables, but use deep computational

graphs to define the conditional distributions within a model.

Deep learning essentially always makes use of the idea of distributed represen-
tations. Even shallow models used for deep learning purposes (such as pretraining
shallow models that will later be composed to form deep ones) nearly always
have a single, large layer of latent variables. Deep learning models typically have
more latent variables than observed variables. Complicated nonlinear interactions
between variables are accomplished via indirect connections that flow through
multiple latent variables.

By contrast, traditional graphical models usually contain mostly variables that
are at least occasionally observed, even if many of the variables are missing at
random from some training examples. Traditional models mostly use higher-order

terms and structure learning to capture complicated nonlinear interactions between
variables. If there are latent variables, they are usually few in number.

The way that latent variables are designed also differs in deep learning. The
deep learning practitioner typically does not intend for the latent variables to
take on any specific semantics ahead of time—the training algorithm is free to
invent the concepts it needs to model a particular dataset. The latent variables are
usually not very easy for a human to interpret after the fact, though visualization
techniques may allow some rough characterization of what they represent. When
latent variables are used in the context of traditional graphical models, they are
often designed with some specific semantics in mind—the topic of a document,
the intelligence of a student, the disease causing a patient’s symptoms, etc. These

models are often much more interpretable by human practitioners and often have
more theoretical guarantees, yet are less able to scale to complex problems and are
not reusable in as many different contexts as deep models.

Another obvious difference is the kind of connectivity typically used in the
deep learning approach. Deep graphical models typically have large groups of units
that are all connected to other groups of units, so that the interactions between
two groups may be described by a single matrix. Traditional graphical models
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have very few connections and the choice of connections for each variable may be
individually designed. The design of the model structure is tightly linked with
the choice of inference algorithm. Traditional approaches to graphical models
typically aim to maintain the tractability of exact inference. When this constraint
is too limiting, a popular approximate inference algorithm is an algorithm called
loopy belief propagation. Both of these approaches often work well with very
sparsely connected graphs. By comparison, models used in deep learning tend to
connect each visible unit vi to very many hidden units hj, so that h can provide a
distributed representation of vi (and probably several other observed variables too).

Distributed representations have many advantages, but from the point of view
of graphical models and computational complexity, distributed representations
have the disadvantage of usually yielding graphs that are not sparse enough for
the traditional techniques of exact inference and loopy belief propagation to be
relevant. As a consequence, one of the most striking differences between the larger
graphical models community and the deep graphical models community is that
loopy belief propagation is almost never used for deep learning. Most deep models
are instead designed to make Gibbs sampling or variational inference algorithms
efficient. Another consideration is that deep learning models contain a very large
number of latent variables, making efficient numerical code essential. This provides
an additional motivation, besides the choice of high-level inference algorithm, for

grouping the units into layers with a matrix describing the interaction between
two layers. This allows the individual steps of the algorithm to be implemented
with efficient matrix product operations, or sparsely connected generalizations, like
block diagonal matrix products or convolutions.

Finally, the deep learning approach to graphical modeling is characterized by
a marked tolerance of the unknown. Rather than simplifying the model until
all quantities we might want can be computed exactly, we increase the power of
the model until it is just barely possible to train or use. We often use models
whose marginal distributions cannot be computed, and are satisfied simply to draw
approximate samples from these models. We often train models with an intractable
objective function that we cannot even approximate in a reasonable amount of
time, but we are still able to approximately train the model if we can efficiently

obtain an estimate of the gradient of such a function. The deep learning approach
is often to figure out what the minimum amount of information we absolutely
need is, and then to figure out how to get a reasonable approximation of that
information as quickly as possible.
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Figure 16.14: An RBM drawn as a Markov network.

The restricted Boltzmann machine harmonium(RBM) ( , ) orSmolensky 1986 is the
quintessential example of how graphical models are used for deep learning. The
RBM is not itself a deep model. Instead, it has a single layer of latent variables
that may be used to learn a representation for the input. In Chapter , we will20
see how RBMs can be used to build many deeper models. Here, we show how the

RBM exemplifies many of the practices used in a wide variety of deep graphical
models: its units are organized into large groups called layers, the connectivity
between layers is described by a matrix, the connectivity is relatively dense, the
model is designed to allow efficient Gibbs sampling, and the emphasis of the model
design is on freeing the training algorithm to learn latent variables whose semantics
were not specified by the designer. Later, in Sec. , we will revisit the RBM in20.2
more detail.

The canonical RBM is an energy-based model with binary visible and hidden
units. Its energy function is

E ,(v h b) = − v c− h v− Wh, (16.10)

where b, c, andW are unconstrained, real-valued, learnable parameters. We can
see that the model is divided into two groups of units: v and h, and the interaction
between them is described by a matrix W . The model is depicted graphically
in Fig. . As this figure makes clear, an important aspect of this model is16.14
that there are no direct interactions between any two visible units or between any
two hidden units (hence the “restricted,” a general Boltzmann machine may have
arbitrary connections).

The restrictions on the RBM structure yield the nice properties

p( ) = Πh v| ip(hi | v) (16.11)

and
p( ) = Πv h| ip(v i | h). (16.12)
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Figure 16.15: Samples from a trained RBM, and its weights. Image reproduced with
permission from ( ). LISA 2008 (Left) Samples from a model trained on MNIST, drawn
using Gibbs sampling. Each column is a separate Gibbs sampling process. Each row
represents the output of another 1,000 steps of Gibbs sampling. Successive samples are
highly correlated with one another. The corresponding weight vectors. Compare(Right)
this to the samples and weights of a linear factor model, shown in Fig. . The samples13.2
here are much better because the RBM prior p(h) is not constrained to be factorial. The
RBM can learn which features should appear together when sampling. On the other hand,
the RBM posterior is factorial, while the sparse coding posterior is not,p( )h v| p( )h v|
so the sparse coding model may be better for feature extraction. Other models are able
to have both a non-factorial and a non-factorial .p( )h p( )h v|

The individual conditionals are simple to compute as well. For the binary RBM
we obtain:

P (hi = 1 ) = | v σ v W:,i + bi , (16.13)

P (hi = 0 ) = 1| v − σ v W:,i + bi . (16.14)

Together these properties allow for efficient block Gibbs sampling, which alternates
between sampling all of h simultaneously and sampling all of v simultaneously.
Samples generated by Gibbs sampling from an RBM model are shown in Fig.
16.15.

Since the energy function itself is just a linear function of the parameters, it is
easy to take derivatives of the energy function. For example,

∂

∂Wi,j
E ,(v h) = −vihj . (16.15)

These two properties—efficient Gibbs sampling and efficient derivatives—make
training convenient. In Chapter , we will see that undirected models may be18
trained by computing such derivatives applied to samples from the model.

Training the model induces a representation h of the data v. We can often use

p( )
[ ]h as a set of features to describe .v
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Overall, the RBM demonstrates the typical deep learning approach to graph-
ical models: representation learning accomplished via layers of latent variables,
combined with efficient interactions between layers parametrized by matrices.

The language of graphical models provides an elegant, flexible and clear language
for describing probabilistic models. In the chapters ahead, we use this language,
among other perspectives, to describe a wide variety of deep probabilistic models.
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Chapter 17

Monte Carlo Methods

Randomized algorithms fall into two rough categories: Las Vegas algorithms and
Monte Carlo algorithms. Las Vegas algorithms always return precisely the correct
answer (or report that they failed). These algorithms consume a random amount
of resources, usually memory or time. In contrast, Monte Carlo algorithms return

answers with a random amount of error. The amount of error can typically be
reduced by expending more resources (usually running time and memory). For any
fixed computational budget, a Monte Carlo algorithm can provide an approximate
answer.

Many problems in machine learning are so difficult that we can never expect to
obtain precise answers to them. This excludes precise deterministic algorithms and
Las Vegas algorithms. Instead, we must use deterministic approximate algorithms
or Monte Carlo approximations. Both approaches are ubiquitous in machine
learning. In this chapter, we focus on Monte Carlo methods.

17.1 Sampling and Monte Carlo Methods

Many important technologies used to accomplish machine learning goals are based
on drawing samples from some probability distribution and using these samples to
form a Monte Carlo estimate of some desired quantity.

17.1.1 Why Sampling?

There are many reasons that we may wish to draw samples from a probability

distribution. Sampling provides a flexible way to approximate many sums and
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integrals at reduced cost. Sometimes we use this to provide a significant speedup to
a costly but tractable sum, as in the case when we subsample the full training cost
with minibatches. In other cases, our learning algorithm requires us to approximate
an intractable sum or integral, such as the gradient of the log partition function of
an undirected model. In many other cases, sampling is actually our goal, in the
sense that we want to train a model that can sample from the training distribution.

17.1.2 Basics of Monte Carlo Sampling

When a sum or an integral cannot be computed exactly (for example the sum
has an exponential number of terms and no exact simplification is known) it is
often possible to approximate it using Monte Carlo sampling. The idea is to view
the sum or integral as if it was an expectation under some distribution and to
approximate the expectation by a corresponding average. Let

s =
X
x

p f E( )x ( ) = x p[ ( )]f x (17.1)

or

s =

Z
p f d E( )x ( )x x = p[ ( )]f x (17.2)

be the sum or integral to estimate, rewritten as an expectation, with the constraint
that p is a probability distribution (for the sum) or a probability density (for the
integral) over random variable .x

We can approximate s by drawing n samples x(1), . . . ,x( )n from p and then
forming the empirical average

ŝn =
1

n

nX
i=1

f(x( )i ). (17.3)

This approximation is justified by a few different properties. The first trivial
observation is that the estimator ŝ is unbiased, since

E[ŝn] =
1

n

nX
i=1

E[ (f x( )i )] =
1

n

nX
i=1

s s.= (17.4)

But in addition, the law of large numbers states that if the samples x( )i are i.i.d.,
then the average converges almost surely to the expected value:

lim
n→∞

ŝn = s, (17.5)
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provided that the variance of the individual terms, Var[f (x( )i )], is bounded. To see
this more clearly, consider the variance of ŝn as n increases. The variance Var[ŝn]
decreases and converges to 0, so long as Var[ (f x( )i )] <∞:

Var[ŝn] =
1

n2

nX
i=1

Var[ ( )]f x (17.6)

=
Var[ ( )]f x

n
. (17.7)

This convenient result also tells us how to estimate the uncertainty in a Monte
Carlo average or equivalently the amount of expected error of the Monte Carlo
approximation. We compute both the empirical average of the f(x( )i ) and their
empirical variance,1 and then divide the estimated variance by the number of

samples n to obtain an estimator of Var[ŝn]. The central limit theorem tells us that
the distribution of the average, ŝn, converges to a normal distribution with mean s
and variance

Var[ ( )]f x

n . This allows us to estimate confidence intervals around the
estimate ŝn, using the cumulative distribution of the normal density.

However, all this relies on our ability to easily sample from the base distribution
p(x), but doing so is not always possible. When it is not feasible to sample from
p, an alternative is to use importance sampling, presented in Sec. . A more17.2
general approach is to form a sequence of estimators that converge towards the
distribution of interest. That is the approach of Monte Carlo Markov chains
(Sec. ).17.3

17.2 Importance Sampling

An important step in the decomposition of the integrand (or summand) used by
the Monte Carlo method in Eq. is deciding which part of the integrand should17.2
play the role the probability p(x ) and which part of the integrand should play the
role of the quantity f(x) whose expected value (under that probability distribution)
is to be estimated. There is no unique decomposition because p(x)f(x) can always
be rewritten as

p f q( )x ( ) = x ( )x
p f( )x ( )x

q( )x
, (17.8)

where we now sample from q and average pfq . In many cases, we wish to compute
an expectation for a given p and an f , and the fact that the problem is specified

1The unbiased estimator of the variance is often preferred, in which the sum of squared
differences is divided by instead of .n − 1 n
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from the start as an expectation suggests that this p and f would be a natural
choice of decomposition. However, the original specification of the problem may
not be the the optimal choice in terms of the number of samples required to obtain
a given level of accuracy. Fortunately, the form of the optimal choice q∗ can be
derived easily. The optimal q∗ corresponds to what is called optimal importance
sampling.

Because of the identity shown in Eq. , any Monte Carlo estimator17.8

ŝp =
1

n

nX
i ,=1 x( )i ∼p

f(x( )i ) (17.9)

can be transformed into an importance sampling estimator

ŝq =
1

n

nX
i ,=1 x( )i ∼q

p(x( )i ) (f x( )i )

q(x( )i )
. (17.10)

We see readily that the expected value of the estimator does not depend on :q

Eq [ŝq] = Eq[ŝp] = s. (17.11)

However, the variance of an importance sampling estimator can be greatly sensitive
to the choice of . The variance is given byq

Var[ŝq ] = Var[
p f( )x ( )x

q( )x
]/n. (17.12)

The minimum variance occurs when isq

q∗ ( ) =x
p f( )x | ( )x |

Z
, (17.13)

where Z is the normalization constant, chosen so that q∗(x) sums or integrates to

1 as appropriate. Better importance sampling distributions put more weight where
the integrand is larger. In fact, when f(x) does not change sign, Var [̂sq∗ ] = 0,
meaning that a single sample is sufficient when the optimal distribution is
used. Of course, this is only because the computation of q∗ has essentially solved
the original problem, so it is usually not practical to use this approach of drawing
a single sample from the optimal distribution.

Any choice of sampling distribution q is valid (in the sense of yielding the
correct expected value) and q∗ is the optimal one (in the sense of yielding minimum
variance). Sampling from q∗ is usually infeasible, but other choices of q can be
feasible while still reducing the variance somewhat.
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Another approach is to use biased importance sampling , which has the
advantage of not requiring normalized p or q. In the case of discrete variables, the
biased importance sampling estimator is given by

ŝBIS =

Pn
i=1

p(x( )i )

q(x( )i )
f(x( )i )Pn

i=1
p(x( )i )

q(x( )i )

(17.14)

=

Pn
i=1

p(x( )i )

q̃(x( )i )
f(x( )i )Pn

i=1
p(x( )i )

q̃(x( )i )

(17.15)

=

Pn
i=1

p̃(x( )i )

q̃(x( )i )
f(x( )i )Pn

i=1
p̃(x( )i )

q̃(x( )i )

, (17.16)

where p̃ and q̃ are the unnormalized forms of p and q and the x( )i are the samples
from q. This estimator is biased because E[ ŝBIS ] 6= s, except asymptotically when
n→ ∞ and the denominator of Eq. converges to 1. Hence this estimator is17.14
called asymptotically unbiased.

Although a good choice of q can greatly improve the efficiency of Monte Carlo
estimation, a poor choice of q can make the efficiency much worse. Going back
to Eq. , we see that if there are samples of17.12 q for which

p f( )x | ( )x |
q( )x is large,

then the variance of the estimator can get very large. This may happen when
q(x) is tiny while neither p(x) nor f (x) are small enough to cancel it. The q
distribution is usually chosen to be a very simple distribution so that it is easy
to sample from. When x is high-dimensional, this simplicity in q causes it to
match p or p f| | poorly. When q(x( )i )  p(x( )i )|f (x( )i )|, importance sampling
collects useless samples (summing tiny numbers or zeros). On the other hand, when
q(x( )i )  p(x( )i )|f (x( )i )|, which will happen more rarely, the ratio can be huge.
Because these latter events are rare, they may not show up in a typical sample,

yielding typical underestimation of s , compensated rarely by gross overestimation.
Such very large or very small numbers are typical when x is high dimensional,
because in high dimension the dynamic range of joint probabilities can be very
large.

In spite of this danger, importance sampling and its variants have been found
very useful in many machine learning algorithms, including deep learning algorithms.
For example, see the use of importance sampling to accelerate training in neural
language models with a large vocabulary (Sec. ) or other neural nets12.4.3.3
with a large number of outputs. See also how importance sampling has been
used to estimate a partition function (the normalization constant of a probability
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distribution) in Sec. , and to estimate the log-likelihood in deep directed models18.7
such as the variational autoencoder, in Sec. . Importance sampling may20.10.3
also be used to improve the estimate of the gradient of the cost function used to
train model parameters with stochastic gradient descent, particularly for models
such as classifiers where most of the total value of the cost function comes from a
small number of misclassified examples. Sampling more difficult examples more
frequently can reduce the variance of the gradient in such cases ( , ).Hinton 2006

17.3 Markov Chain Monte Carlo Methods

In many cases, we wish to use a Monte Carlo technique but there is no tractable
method for drawing exact samples from the distribution pmodel (x) or from a good
(low variance) importance sampling distribution q(x). In the context of deep
learning, this most often happens when pmodel(x) is represented by an undirected
model. In these cases, we introduce a mathematical tool called a toMarkov chain
approximately sample from pmodel(x). The family of algorithms that use Markov
chains to perform Monte Carlo estimates is called Markov chain Monte Carlo
methods (MCMC). Markov chain Monte Carlo methods for machine learning are
described at greater length in Koller and Friedman 2009( ). The most standard,

generic guarantees for MCMC techniques are only applicable when the model
does not assign zero probability to any state. Therefore, it is most convenient
to present these techniques as sampling from an energy-based model (EBM)
p(x) ∝ −exp ( E( ))x as described in Sec. . In the EBM formulation, every16.2.4
state is guaranteed to have non-zero probability. MCMC methods are in fact
more broadly applicable and can be used with many probability distributions that
contain zero probability states. However, the theoretical guarantees concerning the
behavior of MCMC methods must be proven on a case-by-case basis for different
families of such distributions. In the context of deep learning, it is most common
to rely on the most general theoretical guarantees that naturally apply to all
energy-based models.

To understand why drawing samples from an energy-based model is difficult,

consider an EBM over just two variables, defining a distribution a b . In orderp( , )
to sample a, we must draw a from p(a b| ), and in order to sample b, we must
draw it from p(b a| ). It seems to be an intractable chicken-and-egg problem.
Directed models avoid this because their graph is directed and acyclic. To perform
ancestral sampling one simply samples each of the variables in topological order,
conditioning on each variable’s parents, which are guaranteed to have already been
sampled (Sec. ). Ancestral sampling defines an efficient, single-pass method of16.3
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obtaining a sample.

In an EBM, we can avoid this chicken and egg problem by sampling using a
Markov chain. The core idea of a Markov chain is to have a state x that begins
as an arbitrary value. Over time, we randomly update x repeatedly. Eventually
x becomes (very nearly) a fair sample from p(x). Formally, a Markov chain is
defined by a random state x and a transition distribution T (x0 | x) specifying
the probability that a random update will go to state x0 if it starts in state x.
Running the Markov chain means repeatedly updating the state x to a value x0

sampled from T (x0 | x).

To gain some theoretical understanding of how MCMC methods work, it is
useful to reparametrize the problem. First, we restrict our attention to the case
where the random variable x has countably many states. In this case, we can
represent the state as just a positive integer x. Different integer values of x map
back to different states in the original problem.x

Consider what happens when we run infinitely many Markov chains in parallel.
All of the states of the different Markov chains are drawn from some distribution
q( )t (x), where t indicates the number of time steps that have elapsed. At the
beginning, q(0) is some distribution that we used to arbitrarily initialize x for each
Markov chain. Later, q( )t is influenced by all of the Markov chain steps that have
run so far. Our goal is for q( )t ( )x to converge to .p x( )

Because we have reparametrized the problem in terms of positive integer x, we
can describe the probability distribution using a vector , withq v

q i v( = x ) = i. (17.17)

Consider what happens when we update a single Markov chain’s state x to a

new state x0 . The probability of a single state landing in state x0 is given by

q( +1)t (x0) =
X
x

q( )t ( ) (x T x0 | x .) (17.18)

Using our integer parametrization, we can represent the effect of the transition
operator using a matrix . We define so thatT A A

Ai,j = (T x0 = = )i | x j . (17.19)

Using this definition, we can now rewrite Eq. . Rather than writing it in17.18
terms of q and T to understand how a single state is updated, we may now use v
and A to describe how the entire distribution over all the different Markov chains

run in parallel shifts as we apply an update:

v( )t = Av( 1)t− . (17.20)
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Applying the Markov chain update repeatedly corresponds to multiplying by the
matrix A repeatedly. In other words, we can think of the process as exponentiating
the matrix :A

v( )t = Atv(0). (17.21)

The matrix A has special structure because each of its columns represents a
probability distribution. Such matrices are called stochastic matrices. If there is
a non-zero probability of transitioning from any state x to any other state x0 for
some power t, then the Perron-Frobenius theorem ( , ;Perron 1907 Frobenius 1908, )
guarantees that the largest eigenvalue is real and equal to . Over time, we can1
see that all of the eigenvalues are exponentiated:

v ( )t =

V λ Vdiag( ) −1 t v(0) = ( )V diag λ tV −1v (0). (17.22)

This process causes all of the eigenvalues that are not equal to to decay to1
zero. Under some additional mild conditions, A is guaranteed to have only
one eigenvector with eigenvalue . The process thus converges to a1 stationary
distribution equilibrium distribution, sometimes also called the . At convergence,

v0 = = Av v, (17.23)

and this same condition holds for every additional step. This is an eigenvector
equation. To be a stationary point, v must be an eigenvector with corresponding
eigenvalue . This condition guarantees that once we have reached the stationary1
distribution, repeated applications of the transition sampling procedure do not

change the over the states of all the various Markov chains (althoughdistribution
transition operator does change each individual state, of course).

If we have chosen T correctly, then the stationary distribution q will be equal
to the distribution p we wish to sample from. We will describe how to choose T
shortly, in Sec. .17.4

Most properties of Markov Chains with countable states can be generalized
to continuous variables. In this situation, some authors call the Markov Chain
a but we use the term Markov Chain to describe both conditions.Harris chain
In general, a Markov chain with transition operator T will converge, under mild
conditions, to a fixed point described by the equation

q0 (x0) = Ex∼qT (x 0 | x), (17.24)

which in the discrete case is just rewriting Eq. . When17.23 x is discrete, the
expectation corresponds to a sum, and when x is continuous, the expectation
corresponds to an integral.
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Regardless of whether the state is continuous or discrete, all Markov chain
methods consist of repeatedly applying stochastic updates until eventually the state
begins to yield samples from the equilibrium distribution. Running the Markov
chain until it reaches its equilibrium distribution is called “ ” the Markovburning in
chain. After the chain has reached equilibrium, a sequence of infinitely many
samples may be drawn from from the equilibrium distribution. They are identically
distributed but any two successive samples will be highly correlated with each other.
A finite sequence of samples may thus not be very representative of the equilibrium
distribution. One way to mitigate this problem is to return only every n successive

samples, so that our estimate of the statistics of the equilibrium distribution is
not as biased by the correlation between an MCMC sample and the next several
samples. Markov chains are thus expensive to use because of the time required to
burn in to the equilibrium distribution and the time required to transition from
one sample to another reasonably decorrelated sample after reaching equilibrium.
If one desires truly independent samples, one can run multiple Markov chains
in parallel. This approach uses extra parallel computation to eliminate latency.
The strategy of using only a single Markov chain to generate all samples and the
strategy of using one Markov chain for each desired sample are two extremes; deep
learning practitioners usually use a number of chains that is similar to the number
of examples in a minibatch and then draw as many samples as are needed from

this fixed set of Markov chains. A commonly used number of Markov chains is 100.

Another difficulty is that we do not know in advance how many steps the
Markov chain must run before reaching its equilibrium distribution. This length of
time is called the . It is also very difficult to test whether a Markovmixing time
chain has reached equilibrium. We do not have a precise enough theory for guiding
us in answering this question. Theory tells us that the chain will converge, but not
much more. If we analyze the Markov chain from the point of view of a matrix A
acting on a vector of probabilities v, then we know that the chain mixes when At

has effectively lost all of the eigenvalues from A besides the unique eigenvalue of .1
This means that the magnitude of the second largest eigenvalue will determine the
mixing time. However, in practice, we cannot actually represent our Markov chain
in terms of a matrix. The number of states that our probabilistic model can visit

is exponentially large in the number of variables, so it is infeasible to represent
v, A, or the eigenvalues of A. Due to these and other obstacles, we usually do
not know whether a Markov chain has mixed. Instead, we simply run the Markov
chain for an amount of time that we roughly estimate to be sufficient, and use
heuristic methods to determine whether the chain has mixed. These heuristic
methods include manually inspecting samples or measuring correlations between
successive samples.
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17.4 Gibbs Sampling

So far we have described how to draw samples from a distribution q(x) by repeatedly
updating x x← 0 ∼ T (x0 | x). However, we have not described how to ensure that
q(x) is a useful distribution. Two basic approaches are considered in this book.
The first one is to derive T from a given learned pmodel , described below with the
case of sampling from EBMs. The second one is to directly parametrize T and

learn it, so that its stationary distribution implicitly defines the pmodel of interest.
Examples of this second approach are discussed in Sec. and Sec. .20.12 20.13

In the context of deep learning, we commonly use Markov chains to draw
samples from an energy-based model defining a distribution pmodel(x). In this case,
we want the q (x) for the Markov chain to be pmodel(x). To obtain the desired
q( )x , we must choose an appropriate T (x0 | x).

A conceptually simple and effective approach to building a Markov chain
that samples from pmodel(x) is to use , in which sampling fromGibbs sampling
T (x 0 | x) is accomplished by selecting one variable xi and sampling it from pmodel
conditioned on its neighbors in the undirected graph G defining the structure of
the energy-based model. It is also possible to sample several variables at the same

time so long as they are conditionally independent given all of their neighbors. As
shown in the RBM example in Sec. , all of the hidden units of an RBM may16.7.1
be sampled simultaneously because they are conditionally independent from each
other given all of the visible units. Likewise, all of the visible units may be sampled
simultaneously because they are conditionally independent from each other given
all of the hidden units. Gibbs sampling approaches that update many variables
simultaneously in this way are called block Gibbs sampling.

Alternate approaches to designing Markov chains to sample from pmodel are
possible. For example, the Metropolis-Hastings algorithm is widely used in other
disciplines. In the context of the deep learning approach to undirected modeling,
it is rare to use any approach other than Gibbs sampling. Improved sampling

techniques are one possible research frontier.

17.5 The Challenge of Mixing between Separated Modes

The primary difficulty involved with MCMC methods is that they have a tendency
to poorly. Ideally, successive samples from a Markov chain designed to samplemix
from p(x) would be completely independent from each other and would visit many
different regions in x space proportional to their probability. Instead, especially
in high dimensional cases, MCMC samples become very correlated. We refer
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to such behavior as slow mixing or even failure to mix. MCMC methods with
slow mixing can be seen as inadvertently performing something resembling noisy
gradient descent on the energy function, or equivalently noisy hill climbing on the
probability, with respect to the state of the chain (the random variables being
sampled). The chain tends to take small steps (in the space of the state of the
Markov chain), from a configuration x ( 1)t− to a configuration x( )t , with the energy
E(x( )t ) generally lower or approximately equal to the energy E (x( 1)t− ), with a
preference for moves that yield lower energy configurations. When starting from a
rather improbable configuration (higher energy than the typical ones from p(x)),

the chain tends to gradually reduce the energy of the state and only occasionally
move to another mode. Once the chain has found a region of low energy (for
example, if the variables are pixels in an image, a region of low energy might be
a connected manifold of images of the same object), which we call a mode, the
chain will tend to walk around that mode (following a kind of random walk). Once
in a while it will step out of that mode and generally return to it or (if it finds
an escape route) move towards another mode. The problem is that successful
escape routes are rare for many interesting distributions, so the Markov chain will
continue to sample the same mode longer than it should.

This is very clear when we consider the Gibbs sampling algorithm (Sec. ).17.4
In this context, consider the probability of going from one mode to a nearby

mode within a given number of steps. What will determine that probability is
the shape of the “energy barrier” between these modes. Transitions between two
modes that are separated by a high energy barrier (a region of low probability)
are exponentially less likely (in terms of the height of the energy barrier). This is
illustrated in Fig. . The problem arises when there are multiple modes with17.1
high probability that are separated by regions of low probability, especially when
each Gibbs sampling step must update only a small subset of variables whose
values are largely determined by the other variables.

As a simple example, consider an energy-based model over two variables a and
b, which are both binary with a sign, taking on values −1 1and . IfE (a b, ) = −wab
for some large positive number w, then the model expresses a strong belief that a

and b have the same sign. Consider updating b using a Gibbs sampling step with
a = 1. The conditional distribution over b is given by P(b = 1 | a = 1) = σ(w).
If w is large, the sigmoid saturates, and the probability of also assigning b to be
1 is close to 1. Likewise, if a = −1, the probability of assigning b to be −1 is
close to 1. According to Pmodel (a b, ), both signs of both variables are equally likely.
According to Pmodel(a b| ), both variables should have the same sign. This means
that Gibbs sampling will only very rarely flip the signs of these variables.
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In more practical scenarios, the challenge is even greater because we care not
only about making transitions between two modes but more generally between
all the many modes that a real model might contain. If several such transitions
are difficult because of the difficulty of mixing between modes, then it becomes
very expensive to obtain a reliable set of samples covering most of the modes, and
convergence of the chain to its stationary distribution is very slow.

Sometimes this problem can be resolved by finding groups of highly dependent
units and updating all of them simultaneously in a block. Unfortunately, when
the dependencies are complicated, it can be computationally intractable to draw a

sample from the group. After all, the problem that the Markov chain was originally
introduced to solve is this problem of sampling from a large group of variables.

In the context of models with latent variables, which define a joint distribution
pmodel(x h, ), we often draw samples of x by alternating between sampling from
pmodel(x h| ) and sampling from pmodel(h x| ). From the point of view of mixing
rapidly, we would like pmodel(h x| ) to have very high entropy. However, from the
point of view of learning a useful representation of h, we would like h to encode
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enough information about x to reconstruct it well, which implies that h and x
should have very high mutual information. These two goals are at odds with each
other. We often learn generative models that very precisely encode x into h but
are not able to mix very well. This situation arises frequently with Boltzmann
machines—the sharper the distribution a Boltzmann machine learns, the harder

it is for a Markov chain sampling from the model distribution to mix well. This
problem is illustrated in Fig. .17.2

All this could make MCMC methods less useful when the distribution of interest
has a manifold structure with a separate manifold for each class: the distribution
is concentrated around many modes and these modes are separated by vast regions
of high energy. This type of distribution is what we expect in many classification
problems and would make MCMC methods converge very slowly because of poor
mixing between modes.

17.5.1 Tempering to Mix between Modes

When a distribution has sharp peaks of high probability surrounded by regions of
low probability, it is difficult to mix between the different modes of the distribution.
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Several techniques for faster mixing are based on constructing alternative versions
of the target distribution in which the peaks are not as high and the surrounding
valleys are not as low. Energy-based models provide a particularly simple way to
do so. So far, we have described an energy-based model as defining a probability
distribution

p E .( ) exp (x ∝ − ( ))x (17.25)

Energy-based models may be augmented with an extra parameter β controlling
how sharply peaked the distribution is:

pβ( ) exp ( ( ))x ∝ −βE x . (17.26)

The β parameter is often described as being the reciprocal of the temperature,
reflecting the origin of energy-based models in statistical physics. When the
temperature falls to zero and rises to infinity, the energy-based model becomesβ

deterministic. When the temperature rises to infinity and β falls to zero, the
distribution (for discrete ) becomes uniform.x

Typically, a model is trained to be evaluated at β = 1. However, we can make
use of other temperatures, particularly those where β < 1. Tempering is a general
strategy of mixing between modes of p1 rapidly by drawing samples with .β < 1

Markov chains based on tempered transitions ( , ) temporarily sampleNeal 1994
from higher-temperature distributions in order to mix to different modes, then
resume sampling from the unit temperature distribution. These techniques have
been applied to models such as RBMs (Salakhutdinov 2010, ). Another approach is
to use parallel tempering ( , ), in which the Markov chain simulates manyIba 2001
different states in parallel, at different temperatures. The highest temperature

states mix slowly, while the lowest temperature states, at temperature , provide1
accurate samples from the model. The transition operator includes stochastically
swapping states between two different temperature levels, so that a sufficiently high-
probability sample from a high-temperature slot can jump into a lower temperature
slot. This approach has also been applied to RBMs ( , ;Desjardins et al. 2010 Cho
et al., ). Although tempering is a promising approach, at this point it has not2010
allowed researchers to make a strong advance in solving the challenge of sampling
from complex EBMs. One possible reason is that there are critical temperatures
around which the temperature transition must be very slow (as the temperature is
gradually reduced) in order for tempering to be effective.

17.5.2 Depth May Help Mixing

When drawing samples from a latent variable model p(h x, ), we have seen that if
p(h x| ) encodes x too well, then sampling from p(x h| ) will not changex very
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much and mixing will be poor. One way to resolve this problem is to make h be a
deep representation, that encodes into in such a way that a Markov chain inx h
the space of h can mix more easily. Many representation learning algorithms, such
as autoencoders and RBMs, tend to yield a marginal distribution over h that is
more uniform and more unimodal than the original data distribution over x . It can
be argued that this arises from trying to minimize reconstruction error while using
all of the available representation space, because minimizing reconstruction error
over the training examples will be better achieved when different training examples
are easily distinguishable from each other in h-space, and thus well separated.

Bengio 2013aet al. ( ) observed that deeper stacks of regularized autoencoders or
RBMs yield marginal distributions in the top-level h-space that appeared more
spread out and more uniform, with less of a gap between the regions corresponding
to different modes (categories, in the experiments). Training an RBM in that
higher-level space allowed Gibbs sampling to mix faster between modes. It remains
however unclear how to exploit this observation to help better train and sample
from deep generative models.

Despite the difficulty of mixing, Monte Carlo techniques are useful and are
often the best tool available. Indeed, they are the primary tool used to confront
the intractable partition function of undirected models, discussed next.
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Confronting the Partition

Function

In Sec. we saw that many probabilistic models (commonly known as undi-16.2.2
rected graphical models) are defined by an unnormalized probability distribution
p̃(x; θ). We must normalize p̃ by dividing by a partition function Z(θ) in order to

obtain a valid probability distribution:

p( ; ) =x θ
1

Z( )θ
p̃ .( ; )x θ (18.1)

The partition function is an integral (for continuous variables) or sum (for discrete
variables) over the unnormalized probability of all states:Z

p̃ d( )x x (18.2)

or X
x

p̃ .( )x (18.3)

This operation is intractable for many interesting models.

As we will see in Chapter , several deep learning models are designed to20
have a tractable normalizing constant, or are designed to be used in ways that do
not involve computing p(x) at all. However, other models directly confront the
challenge of intractable partition functions. In this chapter, we describe techniques
used for training and evaluating models that have intractable partition functions.
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18.1 The Log-Likelihood Gradient

What makes learning undirected models by maximum likelihood particularly
difficult is that the partition function depends on the parameters. The gradient of
the log-likelihood with respect to the parameters has a term corresponding to the
gradient of the partition function:

∇θ log ( ; ) = p x θ ∇θ log p̃( ; )x θ −∇θ log ( )Z θ . (18.4)

This is a well-known decomposition into the positive phase negative phaseand
of learning.

For most undirected models of interest, the negative phase is difficult. Models
with no latent variables or with few interactions between latent variables typically
have a tractable positive phase. The quintessential example of a model with a

straightforward positive phase and difficult negative phase is the RBM, which has
hidden units that are conditionally independent from each other given the visible
units. The case where the positive phase is difficult, with complicated interactions
between latent variables, is primarily covered in Chapter . This chapter focuses19
on the difficulties of the negative phase.

Let us look more closely at the gradient of :logZ

∂

∂θ
logZ (18.5)

=
∂
∂θZ

Z
(18.6)

=
∂
∂θ

P
x p̃( )x

Z
(18.7)

=

P
x
∂
∂θ p̃( )x

Z
. (18.8)

For models that guarantee p(x) > 0 for all x, we can substitute exp (log p̃( ))x
for p̃( )x : P

x
∂
∂θ exp (log p̃( ))x

Z
(18.9)

=

P
x exp (log p̃( ))x ∂

∂θ log p̃( )x

Z
(18.10)

= P
x p̃( )x ∂

∂θ log p̃( )x

Z
(18.11)
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=
X
x

p( )x
∂

∂θ
log p̃( )x (18.12)

= Ex x∼p( )
∂

∂θ
log p̃ .( )x (18.13)

This derivation made use of summation over discrete x, but a similar result
applies using integration over continuous x. In the continuous version of the
derivation, we use Leibniz’s rule for differentiation under the integral sign to obtain
the identity

∂

∂θ

Z
p̃ d( )x x =

Z
∂

∂θ
p̃ d .( )x x (18.14)

This identity is only applicable under certain regularity conditions on p̃ and ∂
∂θ p̃(x).

In measure theoretic terms, the conditions are: (i) p̃ must be a Lebesgue-integrable
function of x for every value of θ ; (ii) ∂

∂θ p̃(x) must exist for all θ and almost

all x; (iii) There must exist an integrable function R(x) that bounds ∂
∂θ p̃(x) (i.e.

| ∂∂θ p̃(x)| ≤ R(x) for all θ and almost all x). Fortunately, most machine learning
models of interest have these properties.

This identity
∇θ log = Z Ex x∼p( )∇θ log p̃( )x (18.15)

is the basis for a variety of Monte Carlo methods for approximately maximizing
the likelihood of models with intractable partition functions.

The Monte Carlo approach to learning undirected models provides an intuitive
framework in which we can think of both the positive phase and the negative
phase. In the positive phase, we increase log p̃(x) for x drawn from the data. In

the negative phase, we decrease the partition function by decreasing log p̃(x) drawn
from the model distribution.

In the deep learning literature, it is common to parametrize log p̃ in terms of
an energy function (Eq. ). In this case, we can interpret the positive phase16.7
as pushing down on the energy of training examples and the negative phase as
pushing up on the energy of samples drawn from the model, as illustrated in Fig.
18.1.

18.2 Stochastic Maximum Likelihood and Contrastive

Divergence

The naive way of implementing Eq. is to compute it by burning in a set18.15
of Markov chains from a random initialization every time the gradient is needed.
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When learning is performed using stochastic gradient descent, this means the
chains must be burned in once per gradient step. This approach leads to the
training procedure presented in Algorithm . The high cost of burning in the18.1
Markov chains in the inner loop makes this procedure computationally infeasible,
but this procedure is the starting point that other more practical algorithms aim
to approximate.

Algorithm 18.1 A naive MCMC algorithm for maximizing the log-likelihood
with an intractable partition function using gradient ascent.

Set , the step size, to a small positive number.

Set k , the number of Gibbs steps, high enough to allow burn in. Perhaps 100 to
train an RBM on a small image patch.
while not converged do
Sample a minibatch of examplesm {x(1) , . . . ,x( )m } from the training set.
g ← 1

m

Pm
i=1∇θ log p̃(x( )i ; )θ .

Initialize a set of m samples {x̃(1), . . . , x̃( )m } to random values (e.g., from
a uniform or normal distribution, or possibly a distribution with marginals
matched to the model’s marginals).
for doi k= 1 to
for doj m= 1 to

x̃( )j ← gibbs_update(x̃( )j ).

end for
end for

g g← − 1
m

Pm
i=1∇θ log p̃(x̃( )i ; )θ .

θ θ← +  .g
end while

We can view the MCMC approach to maximum likelihood as trying to achieve
balance between two forces, one pushing up on the model distribution where the
data occurs, and another pushing down on the model distribution where the model
samples occur. Fig. illustrates this process. The two forces correspond to18.1
maximizing log p̃ and minimizing logZ . Several approximations to the negative
phase are possible. Each of these approximations can be understood as making
the negative phase computationally cheaper but also making it push down in the
wrong locations.

Because the negative phase involves drawing samples from the model’s distri-
bution, we can think of it as finding points that the model believes in strongly.
Because the negative phase acts to reduce the probability of those points, they

are generally considered to represent the model’s incorrect beliefs about the world.
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They are frequently referred to in the literature as “hallucinations” or “fantasy
particles.” In fact, the negative phase has been proposed as a possible explanation
for dreaming in humans and other animals ( , ), the ideaCrick and Mitchison 1983
being that the brain maintains a probabilistic model of the world and follows the
gradient of log p̃while experiencing real events while awake and follows the negative
gradient of log p̃ to minimize logZ while sleeping and experiencing events sampled
from the current model. This view explains much of the language used to describe
algorithms with a positive and negative phase, but it has not been proven to be
correct with neuroscientific experiments. In machine learning models, it is usually
necessary to use the positive and negative phase simultaneously, rather than in
separate time periods of wakefulness and REM sleep. As we will see in Sec. ,19.5
other machine learning algorithms draw samples from the model distribution for

other purposes and such algorithms could also provide an account for the function
of dream sleep.

Given this understanding of the role of the positive and negative phase of
learning, we can attempt to design a less expensive alternative to Algorithm .18.1
The main cost of the naive MCMC algorithm is the cost of burning in the Markov
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chains from a random initialization at each step. A natural solution is to initialize
the Markov chains from a distribution that is very close to the model distribution,
so that the burn in operation does not take as many steps.

The contrastive divergence (CD, or CD-k to indicate CD with k Gibbs steps)
algorithm initializes the Markov chain at each step with samples from the data
distribution (Hinton 2000 2010, , ). This approach is presented as Algorithm .18.2
Obtaining samples from the data distribution is free, because they are already
available in the data set. Initially, the data distribution is not close to the model
distribution, so the negative phase is not very accurate. Fortunately, the positive

phase can still accurately increase the model’s probability of the data. After the
positive phase has had some time to act, the model distribution is closer to the
data distribution, and the negative phase starts to become accurate.

Algorithm 18.2 The contrastive divergence algorithm, using gradient ascent as
the optimization procedure.

Set , the step size, to a small positive number.
Set k, the number of Gibbs steps, high enough to allow a Markov chain sampling
from p(x;θ) to mix when initialized from p . Perhaps 1-20 to train an RBM
on a small image patch.
while not converged do
Sample a minibatch of examplesm {x(1) , . . . ,x( )m } from the training set.

g ← 1
m

Pm
i=1 ∇θ log p̃(x( )i ; )θ .

for doi m= 1 to
x̃( )i ← x( )i .

end for
for doi k= 1 to
for doj m= 1 to

x̃( )j ← gibbs_update(x̃( )j ).
end for

end for
g g← − 1

m

Pm
i=1∇θ log p̃(x̃( )i ; )θ .

θ θ← +  .g
end while

Of course, CD is still an approximation to the correct negative phase. The
main way that CD qualitatively fails to implement the correct negative phase
is that it fails to suppress regions of high probability that are far from actual
training examples. These regions that have high probability under the model but
low probability under the data generating distribution are called spurious modes.
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R x
R

Fig. illustrates why this happens. Essentially, it is because modes in the18.2
model distribution that are far from the data distribution will not be visited by
Markov chains initialized at training points, unless is very large.k

Carreira-Perpiñan and Hinton 2005( ) showed experimentally that the CD
estimator is biased for RBMs and fully visible Boltzmann machines, in that it
converges to different points than the maximum likelihood estimator. They argue
that because the bias is small, CD could be used as an inexpensive way to initialize
a model that could later be fine-tuned via more expensive MCMC methods. Bengio
and Delalleau 2009( ) showed that CD can be interpreted as discarding the smallest
terms of the correct MCMC update gradient, which explains the bias.

CD is useful for training shallow models like RBMs. These can in turn be
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stacked to initialize deeper models like DBNs or DBMs. However, CD does not
provide much help for training deeper models directly. This is because it is difficult
to obtain samples of the hidden units given samples of the visible units. Since the
hidden units are not included in the data, initializing from training points cannot
solve the problem. Even if we initialize the visible units from the data, we will still
need to burn in a Markov chain sampling from the distribution over the hidden
units conditioned on those visible samples.

The CD algorithm can be thought of as penalizing the model for having a
Markov chain that changes the input rapidly when the input comes from the data.

This means training with CD somewhat resembles autoencoder training. Even
though CD is more biased than some of the other training methods, it can be
useful for pretraining shallow models that will later be stacked. This is because
the earliest models in the stack are encouraged to copy more information up to
their latent variables, thereby making it available to the later models. This should
be thought of more of as an often-exploitable side effect of CD training rather than
a principled design advantage.

Sutskever and Tieleman 2010( ) showed that the CD update direction is not the
gradient of any function. This allows for situations where CD could cycle forever,
but in practice this is not a serious problem.

A different strategy that resolves many of the problems with CD is to initialize

the Markov chains at each gradient step with their states from the previous gradient
step. This approach was first discovered under the name stochastic maximum
likelihood (SML) in the applied mathematics and statistics community (Younes,
1998) and later independently rediscovered under the name persistent contrastive
divergence (PCD, or PCD-k to indicate the use of k Gibbs steps per update) in
the deep learning community ( , ). See Algorithm . The basicTieleman 2008 18.3
idea of this approach is that, so long as the steps taken by the stochastic gradient
algorithm are small, then the model from the previous step will be similar to the
model from the current step. It follows that the samples from the previous model’s
distribution will be very close to being fair samples from the current model’s
distribution, so a Markov chain initialized with these samples will not require much

time to mix.

Because each Markov chain is continually updated throughout the learning
process, rather than restarted at each gradient step, the chains are free to wander
far enough to find all of the model’s modes. SML is thus considerably more
resistant to forming models with spurious modes than CD is. Moreover, because
it is possible to store the state of all of the sampled variables, whether visible or
latent, SML provides an initialization point for both the hidden and visible units.
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CD is only able to provide an initialization for the visible units, and therefore
requires burn-in for deep models. SML is able to train deep models efficiently.
Marlin 2010et al. ( ) compared SML to many of the other criteria presented in
this chapter. They found that SML results in the best test set log-likelihood for
an RBM, and that if the RBM’s hidden units are used as features for an SVM
classifier, SML results in the best classification accuracy.

SML is vulnerable to becoming inaccurate if the stochastic gradient algorithm
can move the model faster than the Markov chain can mix between steps. This
can happen if k is too small or  is too large. The permissible range of values is

unfortunately highly problem-dependent. There is no known way to test formally
whether the chain is successfully mixing between steps. Subjectively, if the learning
rate is too high for the number of Gibbs steps, the human operator will be able
to observe that there is much more variance in the negative phase samples across
gradient steps rather than across different Markov chains. For example, a model
trained on MNIST might sample exclusively 7s on one step. The learning process
will then push down strongly on the mode corresponding to 7s, and the model
might sample exclusively 9s on the next step.

Algorithm 18.3 The stochastic maximum likelihood / persistent contrastive
divergence algorithm using gradient ascent as the optimization procedure.

Set , the step size, to a small positive number.
Set k, the number of Gibbs steps, high enough to allow a Markov chain sampling
from p(x;θ + g) to burn in, starting from samples from p(x; θ). Perhaps 1 for
RBM on a small image patch, or 5-50 for a more complicated model like a DBM.
Initialize a set of m samples {x̃(1) , . . . , x̃( )m } to random values (e.g., from a
uniform or normal distribution, or possibly a distribution with marginals matched
to the model’s marginals).
while not converged do
Sample a minibatch of examplesm {x(1) , . . . ,x( )m } from the training set.
g ← 1

m

Pm
i=1 ∇θ log p̃(x( )i ; )θ .

for doi k= 1 to

for doj m= 1 to
x̃( )j ← gibbs_update(x̃( )j ).

end for

end for
g g← − 1

m

P
m
i=1∇θ log p̃(x̃( )i ; )θ .

θ θ← +  .g
end while
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Care must be taken when evaluating the samples from a model trained with
SML. It is necessary to draw the samples starting from a fresh Markov chain
initialized from a random starting point after the model is done training. The
samples present in the persistent negative chains used for training have been
influenced by several recent versions of the model, and thus can make the model
appear to have greater capacity than it actually does.

Berglund and Raiko 2013( ) performed experiments to examine the bias and
variance in the estimate of the gradient provided by CD and SML. CD proves to
have lower variance than the estimator based on exact sampling. SML has higher

variance. The cause of CD’s low variance is its use of the same training points
in both the positive and negative phase. If the negative phase is initialized from
different training points, the variance rises above that of the estimator based on
exact sampling.

All of these methods based on using MCMC to draw samples from the model
can in principle be used with almost any variant of MCMC. This means that
techniques such as SML can be improved by using any of the enhanced MCMC
techniques described in Chapter , such as parallel tempering ( ,17 Desjardins et al.
2010 Cho 2010; et al., ).

One approach to accelerating mixing during learning relies not on changing the
Monte Carlo sampling technology but rather on changing the parametrization of

the model and the cost function. Fast PCD or FPCD (Tieleman and Hinton 2009, )
involves replacing the parameters of a traditional model with an expressionθ

θ θ= ( ) + θ( ) . (18.16)

There are now twice as many parameters as before, and they are added together
element-wise to provide the parameters used by the original model definition. The
fast copy of the parameters is trained with a much larger learning rate, allowing
it to adapt rapidly in response to the negative phase of learning and push the
Markov chain to new territory. This forces the Markov chain to mix rapidly, though
this effect only occurs during learning while the fast weights are free to change.
Typically one also applies significant weight decay to the fast weights, encouraging
them to converge to small values, after only transiently taking on large values long

enough to encourage the Markov chain to change modes.

One key benefit to the MCMC-based methods described in this section is that
they provide an estimate of the gradient of logZ , and thus we can essentially
decompose the problem into the log p̃ contribution and the logZ contribution.
We can then use any other method to tackle log p̃(x), and just add our negative
phase gradient onto the other method’s gradient. In particular, this means that
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our positive phase can make use of methods that provide only a lower bound on
p̃ . Most of the other methods of dealing with logZ presented in this chapter are
incompatible with bound-based positive phase methods.

18.3 Pseudolikelihood

Monte Carlo approximations to the partition function and its gradient directly
confront the partition function. Other approaches sidestep the issue, by training

the model without computing the partition function. Most of these approaches are
based on the observation that it is easy to compute ratios of probabilities in an
undirected probabilistic model. This is because the partition function appears in
both the numerator and the denominator of the ratio and cancels out:

p( )x

p( )y
=

1
Z p̃( )x
1
Z p̃( )y

=
p̃( )x

p̃( )y
. (18.17)

The pseudolikelihood is based on the observation that conditional probabilities
take this ratio-based form, and thus can be computed without knowledge of the
partition function. Suppose that we partition x into a, b and c, where a contains
the variables we want to find the conditional distribution over, b contains the
variables we want to condition on, and c contains the variables that are not part
of our query.

p( ) =a b| p ,(a b)

p( )b
=

p ,(a b)P
a c, p , ,(a b c)

=
p̃ ,(a b)P

a c, p̃ , ,(a b c)
. (18.18)

This quantity requires marginalizing out a, which can be a very efficient operation
provided that a and c do not contain very many variables. In the extreme case, a
can be a single variable and c can be empty, making this operation require only as
many evaluations of p̃ as there are values of a single random variable.

Unfortunately, in order to compute the log-likelihood, we need to marginalize
out large sets of variables. If there are n variables total, we must marginalize a set
of size . By the chain rule of probability,n − 1

log ( ) = log (p x p x 1) + log (p x2 | x1) + + (· · · p xn | x1: 1n− ). (18.19)

In this case, we have made a maximally small, but c can be as large as x2:n . What
if we simply move c into b to reduce the computational cost? This yields the
pseudolikelihood ( , ) objective function, based on predicting the value ofBesag 1975
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feature xi given all of the other features x−i:

nX
i=1

log (p x i | x−i). (18.20)

If each random variable has k different values, this requires only k n× evaluations
of p̃ to compute, as opposed to the kn evaluations needed to compute the partition
function.

This may look like an unprincipled hack, but it can be proven that estimation

by maximizing the pseudolikelihood is asymptotically consistent ( , ).Mase 1995
Of course, in the case of datasets that do not approach the large sample limit,
pseudolikelihood may display different behavior from the maximum likelihood
estimator.

It is possible to trade computational complexity for deviation from maximum
likelihood behavior by using the generalized pseudolikelihood estimator (Huang and
Ogata 2002, ). The generalized pseudolikelihood estimator uses m different sets
S
( )i , i = 1, . . . ,m of indices of variables that appear together on the left side of the

conditioning bar. In the extreme case of m = 1 and S
(1) = 1, . . . , n the generalized

pseudolikelihood recovers the log-likelihood. In the extreme case of m = n and
S
( )i = { }i , the generalized pseudolikelihood recovers the pseudolikelihood. The

generalized pseudolikelihood objective function is given by

mX
i=1

log (p xS | x−S
). (18.21)

The performance of pseudolikelihood-based approaches depends largely on how
the model will be used. Pseudolikelihood tends to perform poorly on tasks that
require a good model of the full joint p(x), such as density estimation and sampling.
However, it can perform better than maximum likelihood for tasks that require only

the conditional distributions used during training, such as filling in small amounts
of missing values. Generalized pseudolikelihood techniques are especially powerful if
the data has regular structure that allows the S index sets to be designed to capture
the most important correlations while leaving out groups of variables that only
have negligible correlation. For example, in natural images, pixels that are widely
separated in space also have weak correlation, so the generalized pseudolikelihood
can be applied with each set being a small, spatially localized window.S

One weakness of the pseudolikelihood estimator is that it cannot be used with
other approximations that provide only a lower bound on p̃(x), such as variational
inference, which will be covered in Chapter . This is because19 p̃ appears in the
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denominator. A lower bound on the denominator provides only an upper bound on
the expression as a whole, and there is no benefit to maximizing an upper bound.
This makes it difficult to apply pseudolikelihood approaches to deep models such
as deep Boltzmann machines, since variational methods are one of the dominant
approaches to approximately marginalizing out the many layers of hidden variables
that interact with each other. However, pseudolikelihood is still useful for deep
learning, because it can be used to train single layer models, or deep models using
approximate inference methods that are not based on lower bounds.

Pseudolikelihood has a much greater cost per gradient step than SML, due to

its explicit computation of all of the conditionals. However, generalized pseudo-
likelihood and similar criteria can still perform well if only one randomly selected
conditional is computed per example ( , ), thereby bringingGoodfellow et al. 2013b
the computational cost down to match that of SML.

Though the pseudolikelihood estimator does not explicitly minimize logZ, it
can still be thought of as having something resembling a negative phase. The
denominators of each conditional distribution result in the learning algorithm
suppressing the probability of all states that have only one variable differing from
a training example.

See Marlin and de Freitas 2011( ) for a theoretical analysis of the asymptotic
efficiency of pseudolikelihood.

18.4 Score Matching and Ratio Matching

Score matching ( , ) provides another consistent means of training aHyvärinen 2005

model without estimating Z or its derivatives. The name score matching comes
from terminology in which the derivatives of a log density with respect to its
argument, ∇x log p(x), are called its score. The strategy used by score matching is
to minimize the expected squared difference between the derivatives of the model’s
log density with respect to the input and the derivatives of the data’s log density
with respect to the input:

L ,(x θ) =
1

2
||∇x log pmodel( ; )x θ −∇x log p ( )x ||22 (18.22)

J( ) =θ
1

2
Ep ( )x L ,(x θ) (18.23)

θ∗ = min
θ
J( )θ (18.24)

This objective function avoids the difficulties associated with differentiating
the partition function Z because Z is not a function of x and therefore ∇xZ = 0.
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Initially, score matching appears to have a new difficulty: computing the score
of the data distribution requires knowledge of the true distribution generating
the training data, p . Fortunately, minimizing the expected value of isL ,(x θ)
equivalent to minimizing the expected value of

L̃ ,(x θ) =

nX
j=1

 
∂2

∂x2j
log pmodel( ; ) +x θ

1

2


∂

∂xj
log pmodel( ; )x θ

2!
(18.25)

where is the dimensionality of .n x

Because score matching requires taking derivatives with respect to x, it is not
applicable to models of discrete data. However, the latent variables in the model
may be discrete.

Like the pseudolikelihood, score matching only works when we are able to
evaluate log p̃(x) and its derivatives directly. It is not compatible with methods
that only provide a lower bound on log p̃(x), because score matching requires
the derivatives and second derivatives of log p̃(x) and a lower bound conveys no
information about its derivatives. This means that score matching cannot be
applied to estimating models with complicated interactions between the hidden
units, such as sparse coding models or deep Boltzmann machines. While score

matching can be used to pretrain the first hidden layer of a larger model, it has
not been applied as a pretraining strategy for the deeper layers of a larger model.
This is probably because the hidden layers of such models usually contain some
discrete variables.

While score matching does not explicitly have a negative phase, it can be
viewed as a version of contrastive divergence using a specific kind of Markov chain
( , ). The Markov chain in this case is not Gibbs sampling, butHyvärinen 2007a
rather a different approach that makes local moves guided by the gradient. Score
matching is equivalent to CD with this type of Markov chain when the size of the
local moves approaches zero.

Lyu 2009( ) generalized score matching to the discrete case (but made an error

in their derivation that was corrected by ( )). ( )Marlin et al. 2010 Marlin et al. 2010
found that generalized score matching (GSM) does not work in high dimensional
discrete spaces where the observed probability of many events is 0.

A more successful approach to extending the basic ideas of score matching
to discrete data is ratio matching ( , ). Ratio matching appliesHyvärinen 2007b
specifically to binary data. Ratio matching consists of minimizing the average over
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examples of the following objective function:

L( )( ) =x θ,

nX
j=1


 1

1 +
p ( ; )x θ

p ( ( ) ); )f x ,j θ



2

, (18.26)

where returns with the bit at position flipped. Ratio matching avoidsf , j(x ) x j
the partition function using the same trick as the pseudolikelihood estimator: in a
ratio of two probabilities, the partition function cancels out. ( )Marlin et al. 2010
found that ratio matching outperforms SML, pseudolikelihood and GSM in terms
of the ability of models trained with ratio matching to denoise test set images.

Like the pseudolikelihood estimator, ratio matching requires n evaluations of p̃

per data point, making its computational cost per update roughly n times higher
than that of SML.

As with the pseudolikelihood estimator, ratio matching can be thought of as
pushing down on all fantasy states that have only one variable different from a
training example. Since ratio matching applies specifically to binary data, this
means that it acts on all fantasy states within Hamming distance 1 of the data.

Ratio matching can also be useful as the basis for dealing with high-dimensional
sparse data, such as word count vectors. This kind of data poses a challenge for
MCMC-based methods because the data is extremely expensive to represent in
dense format, yet the MCMC sampler does not yield sparse values until the model
has learned to represent the sparsity in the data distribution. Dauphin and Bengio

( ) overcame this issue by designing an unbiased stochastic approximation to2013
ratio matching. The approximation evaluates only a randomly selected subset of
the terms of the objective, and does not require the model to generate complete
fantasy samples.

See Marlin and de Freitas 2011( ) for a theoretical analysis of the asymptotic
efficiency of ratio matching.

18.5 Denoising Score Matching

In some cases we may wish to regularize score matching, by fitting a distribution

p ( ) =x

Z
p ( ) ( )y q x y| dy (18.27)

rather than the true p . The distribution q(x y| ) is a corruption process, usually
one that forms by adding a small amount of noise to .x y
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Denoising score matching is especially useful because in practice we usually do
not have access to the true p but rather only an empirical distribution defined
by samples from it. Any consistent estimator will, given enough capacity, make
pmodel into a set of Dirac distributions centered on the training points. Smoothing
by q helps to reduce this problem, at the loss of the asymptotic consistency property
described in Sec. . ( ) introduced a procedure for5.4.5 Kingma and LeCun 2010
performing regularized score matching with the smoothing distribution q being
normally distributed noise.

Recall from Sec. that several autoencoder training algorithms are14.5.1 

equivalent to score matching or denoising score matching. These autoencoder
training algorithms are therefore a way of overcoming the partition function
problem.

18.6 Noise-Contrastive Estimation

Most techniques for estimating models with intractable partition functions do not
provide an estimate of the partition function. SML and CD estimate only the
gradient of the log partition function, rather than the partition function itself.
Score matching and pseudolikelihood avoid computing quantities related to the

partition function altogether.

Noise-contrastive estimation (NCE) (Gutmann and Hyvarinen 2010, ) takes a
different strategy. In this approach, the probability distribution estimated by the
model is represented explicitly as

log pmodel( ) = log ˜x p ( ; ) +x θ c, (18.28)

where c is explicitly introduced as an approximation of − logZ (θ). Rather than
estimating only θ, the noise contrastive estimation procedure treats c as just
another parameter and estimates θ and c simultaneously, using the same algorithm
for both. The resulting log pmodel (x) thus may not correspond exactly to a valid
probability distribution, but will become closer and closer to being valid as the
estimate of improves.c

Such an approach would not be possible using maximum likelihood as the
criterion for the estimator. The maximum likelihood criterion would choose to set
c carbitrarily high, rather than setting to create a valid probability distribution.

NCE is also applicable to problems with a tractable partition function, where there is no
need to introduce the extra parameter . However, it has generated the most interest as a means

of estimating models with difficult partition functions.
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NCE works by reducing the unsupervised learning problem of estimating p(x)
to that of learning a probabilistic binary classifier in which one of the categories
corresponds to the data generated by the model. This supervised learning problem
is constructed in such a way that maximum likelihood estimation in this supervised
learning problem defines an asymptotically consistent estimator of the original
problem.

Specifically, we introduce a second distribution, the noise distribution p (x).
The noise distribution should be tractable to evaluate and to sample from. We
can now construct a model over both x and a new, binary class variable y . In the

new joint model, we specify that

p ( = 1) =y
1

2
, (18.29)

p ( = 1) = x | y pmodel ( )x , (18.30)

and
p ( = 0) = x | y p ( )x . (18.31)

In other words, y is a switch variable that determines whether we will generate x
from the model or from the noise distribution.

We can construct a similar joint model of training data. In this case, the

switch variable determines whether we draw x from the or from the noisedata
distribution. Formally, p (y = 1) = 1

2, p (x | y = 1) = p (x), and
p ( = 0) = x | y p ( )x .

We can now just use standard maximum likelihood learning on the supervised
learning problem of fitting p to p :

θ, c = arg max
θ,c

Ex, p∼ log p ( )y | x . (18.32)

The distribution p is essentially a logistic regression model applied to the
difference in log probabilities of the model and the noise distribution:

p ( = 1 ) =y | x
pmodel ( )x

pmodel( ) +x p ( )x
(18.33)

=
1

1 + p ( )x
p ( )x

(18.34)

=
1

1 + exp log
p ( )x
p ( )x 

(18.35)
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= σ


− log

p ( )x

pmodel( )x


(18.36)

= (logσ pmodel( ) logx − p ( ))x . (18.37)

NCE is thus simple to apply so long as log p̃ is easy to back-propagate
through, and, as specified above, p is easy to evaluate (in order to evaluate
p ) and sample from (in order to generate the training data).

NCE is most successful when applied to problems with few random variables,
but can work well even if those random variables can take on a high number of
values. For example, it has been successfully applied to modeling the conditional
distribution over a word given the context of the word (Mnih and Kavukcuoglu,
2013). Though the word may be drawn from a large vocabulary, there is only one
word.

When NCE is applied to problems with many random variables, it becomes less
efficient. The logistic regression classifier can reject a noise sample by identifying
any one variable whose value is unlikely. This means that learning slows down
greatly after pmodel has learned the basic marginal statistics. Imagine learning a
model of images of faces, using unstructured Gaussian noise as p . If pmodel
learns about eyes, it can reject almost all unstructured noise samples without
having learned anything about other facial features, such as mouths.

The constraint that p must be easy to evaluate and easy to sample from
can be overly restrictive. When p is simple, most samples are likely to be too
obviously distinct from the data to force pmodel to improve noticeably.

Like score matching and pseudolikelihood, NCE does not work if only a lower
bound on p̃ is available. Such a lower bound could be used to construct a lower
bound on p (y = 1 | x), but it can only be used to construct an upper bound on
p (y = 0 | x), which appears in half the terms of the NCE objective. Likewise,
a lower bound on p is not useful, because it provides only an upper bound on
p ( = 1 )y | x .

When the model distribution is copied to define a new noise distribution before
each gradient step, NCE defines a procedure called self-contrastive estimation,
whose expected gradient is equivalent to the expected gradient of maximum
likelihood (Goodfellow 2014, ). The special case of NCE where the noise samples
are those generated by the model suggests that maximum likelihood can be
interpreted as a procedure that forces a model to constantly learn to distinguish
reality from its own evolving beliefs, while noise contrastive estimation achieves
some reduced computational cost by only forcing the model to distinguish reality
from a fixed baseline (the noise model).
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Using the supervised task of classifying between training samples and generated
samples (with the model energy function used in defining the classifier) to provide
a gradient on the model was introduced earlier in various forms (Welling et al.,
2003b Bengio 2009; , ).

Noise contrastive estimation is based on the idea that a good generative model
should be able to distinguish data from noise. A closely related idea is that
a good generative model should be able to generate samples that no classifier
can distinguish from data. This idea yields generative adversarial networks (Sec.
20.10.4).

18.7 Estimating the Partition Function

While much of this chapter is dedicated to describing methods that avoid needing
to compute the intractable partition function Z (θ) associated with an undirected
graphical model, in this section we discuss several methods for directly estimating
the partition function.

Estimating the partition function can be important because we require it if
we wish to compute the normalized likelihood of data. This is often important in
evaluating the model, monitoring training performance, and comparing models to

each other.

For example, imagine we have two models: model MA defining a probabil-
ity distribution pA(x; θA) = 1

Z p̃A(x;θA) and model MB defining a probability

distribution pB(x; θB) = 1
Z p̃B(x;θB ). A common way to compare the models

is to evaluate and compare the likelihood that both models assign to an i.i.d.

test dataset. Suppose the test set consists of m examples {x(1) , . . . ,x( )m }. IfQ
i pA(x( )i ;θA) >

Q
i pB(x( )i ;θB) or equivalently if

X
i

log pA(x( )i ;θA) −
X
i

log pB(x( )i ;θB) 0> , (18.38)

then we say that MA is a better model than MB (or, at least, it is a better model
of the test set), in the sense that it has a better test log-likelihood. Unfortunately,
testing whether this condition holds requires knowledge of the partition function.
Unfortunately, Eq. seems to require evaluating the log probability that18.38
the model assigns to each point, which in turn requires evaluating the partition
function. We can simplify the situation slightly by re-arranging Eq. into a18.38
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form where we need to know only the ratio of the two model’s partition functions:

X
i

log pA(x( )i ;θA)−
X
i

log pB(x( )i ;θB) =
X
i

 
log

p̃A(x( )i ;θA)

p̃B(x( )i ;θB)

!
−m log

Z(θA)

Z(θB)
.

(18.39)
We can thus determine whether MA is a better model than MB without knowing
the partition function of either model but only their ratio. As we will see shortly,

we can estimate this ratio using importance sampling, provided that the two models
are similar.

If, however, we wanted to compute the actual probability of the test data under
either MA or MB , we would need to compute the actual value of the partition
functions. That said, if we knew the ratio of two partition functions, r =

Z(θ )
Z(θ ) ,

and we knew the actual value of just one of the two, say Z(θA), we could compute
the value of the other:

Z(θB ) = (rZ θA) =
Z(θB )

Z(θA )
Z(θA). (18.40)

A simple way to estimate the partition function is to use a Monte Carlo

method such as simple importance sampling. We present the approach in terms
of continuous variables using integrals, but it can be readily applied to discrete
variables by replacing the integrals with summation. We use a proposal distribution
p0(x) = 1

Z p̃0(x) which supports tractable sampling and tractable evaluation of
both the partition function Z0 and the unnormalized distribution p̃0 ( )x .

Z1 =

Z
p̃1( )x dx (18.41)

=

Z
p0 ( )x

p0 ( )x
p̃1( )x dx (18.42)

= Z0

Z
p0( )x

p̃1( )x

p̃0( )x
dx (18.43)

Ẑ1 =
Z0
K

KX
k=1

p̃1 (x( )k )

p̃0 (x( )k )
s t :. . x( )k ∼ p0 (18.44)

In the last line, we make a Monte Carlo estimator, Ẑ1, of the integral using samples
drawn from p0 (x) and then weight each sample with the ratio of the unnormalized
p̃1 and the proposal p0 .

We see also that this approach allows us to estimate the ratio between the
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partition functions as

1

K

KX
k=1

p̃1(x
( )k )

p̃0(x( )k )
s t :. . x( )k ∼ p0. (18.45)

This value can then be used directly to compare two models as described in Eq.
18.39.

If the distribution p0 is close to p1, Eq. can be an effective way of18.44
estimating the partition function (Minka 2005, ). Unfortunately, most of the time
p1 is both complicated (usually multimodal) and defined over a high dimensional
space. It is difficult to find a tractable p0 that is simple enough to evaluate while
still being close enough to p1 to result in a high quality approximation. If p0 and
p1 are not close, most samples from p0 will have low probability under p1 and
therefore make (relatively) negligible contribution to the sum in Eq. .18.44

Having few samples with significant weights in this sum will result in an
estimator that is of poor quality due to high variance. This can be understood
quantitatively through an estimate of the variance of our estimate Ẑ1 :

V̂ar

Ẑ1


=
Z0
K2

KX
k=1

 
p̃1(x

( )k )

p̃0(x( )k )
− Ẑ1

!2
. (18.46)

This quantity is largest when there is significant deviation in the values of the

importance weights p̃ (x )

p̃ (x )
.

We now turn to two related strategies developed to cope with the challeng-

ing task of estimating partition functions for complex distributions over high-
dimensional spaces: annealed importance sampling and bridge sampling. Both
start with the simple importance sampling strategy introduced above and both
attempt to overcome the problem of the proposal p0 being too far from p1 by
introducing intermediate distributions that attempt to betweenbridge the gap p0
and p1 .

In situations where DKL(p0kp1) is large (i.e., where there is little overlap between
p0 and p1), a strategy called annealed importance sampling (AIS) attempts to
bridge the gap by introducing intermediate distributions ( , ; ,Jarzynski 1997 Neal
2001). Consider a sequence of distributions pη , . . . , pη , with 0 = η0 < η1 < <· · ·
ηn−1 < ηn = 1 so that the first and last distributions in the sequence are p0 and p1
respectively.
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This approach allows us to estimate the partition function of a multimodal
distribution defined over a high-dimensional space (such as the distribution defined
by a trained RBM). We begin with a simpler model with a known partition function
(such as an RBM with zeroes for weights) and estimate the ratio between the two
model’s partition functions. The estimate of this ratio is based on the estimate
of the ratios of a sequence of many similar distributions, such as the sequence of
RBMs with weights interpolating between zero and the learned weights.

We can now write the ratio Z
Z as

Z1
Z0

=
Z1
Z0

Zη
Zη

· · ·
Zη

Zη
(18.47)

=
Zη
Z0

Zη
Zη

· · · Zη
Zη

Z1
Zη

(18.48)

=

n−1Y
j=0

Zη

Zη
(18.49)

Provided the distributions pη and pη +1 , for all 0 ≤ ≤ −j n 1, are sufficiently

close, we can reliably estimate each of the factors
Z

Z using simple importance

sampling and then use these to obtain an estimate of ZZ .

Where do these intermediate distributions come from? Just as the original
proposal distribution p0 is a design choice, so is the sequence of distributions

pη . . . pη . That is, it can be specifically constructed to suit the problem domain.
One general-purpose and popular choice for the intermediate distributions is to
use the weighted geometric average of the target distribution p1 and the starting
proposal distribution (for which the partition function is known) p0:

pη ∝ pη1 p
1−η
0 (18.50)

In order to sample from these intermediate distributions, we define a series of
Markov chain transition functions Tη (x0 | x) that define the conditional probability
distribution of transitioning to x0 given we are currently at x. The transition
operator Tη (x0 | x) is defined to leave pη ( )x invariant:

pη ( ) =x

Z
pη (x0)Tη (x x| 0) dx0 (18.51)

These transitions may be constructed as any Markov chain Monte Carlo method
(e.g., Metropolis-Hastings, Gibbs), including methods involving multiple passes
through all of the random variables or other kinds of iterations.

629



CHAPTER 18. CONFRONTING THE PARTITION FUNCTION

The AIS sampling strategy is then to generate samples from p0 and then use
the transition operators to sequentially generate samples from the intermediate
distributions until we arrive at samples from the target distribution p1:

• for k . . .K= 1

– Sample x
( )k
η ∼ p0( )x

– Sample x
( )k
η ∼ Tη (x

( )k
η | x( )kη )

– . . .

– Sample x
( )k
η ∼ Tη (x

( )k
η | x( )kη )

– Sample x
( )k
η ∼ Tη (x

( )k
η | x( )kη )

• end

For sample k, we can derive the importance weight by chaining together the
importance weights for the jumps between the intermediate distributions given in
Eq. .18.49

w( )k =
p̃η (x

( )k
η )

p̃0(x
( )k
0 )

p̃η (x
( )k
η )

p̃η (x
( )k
η )

. . .
p̃1(x

( )k
1 )

p̃η (x
( )k
η )

(18.52)

To avoid computational issues such as overflow, it is probably best to do the
computation in log space:

logw ( )k = log p̃η ( ) log ˜x − p0( ) +x . . . (18.53)

With the sampling procedure thus defined and the importance weights given in Eq.
18.52, the estimate of the ratio of partition functions is given by:

Z1
Z0

≈ 1

K

KX
k=1

w( )k (18.54)

In order to verify that this procedure defines a valid importance sampling
scheme, we can show ( , ) that the AIS procedure corresponds to simpleNeal 2001
importance sampling on an extended state space with points sampled over the
product space [xη , . . . ,xη ,x1]. To do this, we define the distribution over the
extended space as:

p̃(xη , . . . ,xη ,x1) (18.55)

=p̃1(x1)T̃η (xη | x1)T̃η (xη | xη ) . . . T̃η (xη | xη ), (18.56)
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where T̃a is the reverse of the transition operator defined by Ta (via an application
of Bayes’ rule):

T̃a(x
0 | x) =

pa(x
0)

pa( )x
Ta(x x| 0) =

p̃a(x
0)

p̃a( )x
Ta(x x| 0). (18.57)

Plugging the above into the expression for the joint distribution on the extended
state space given in Eq. , we get:18.56

p̃(xη , . . . ,xη ,x1) (18.58)

= p̃1(x1)
p̃η (xη )

p̃η (x1)
T η (x1 | xη )

n−2Y
i=1

p̃η (xη )

p̃η (xη )
Tη (xη | xη )

(18.59)

=
p̃1(x1)

p̃η (x1)
Tη (x 1 | xη ) p̃η (xη )

n−2Y
i=1

p̃η (xη )

p̃η (xη )
Tη (xη | xη ).

(18.60)

We now have means of generating samples from the joint proposal distribution
q over the extended sample via a sampling scheme given above, with the joint
distribution given by:

q(xη , . . . ,xη ,x1) = p0(xη )Tη (xη | xη ) . . . Tη (x1 | xη ). (18.61)

We have a joint distribution on the extended space given by Eq. . Taking18.60

q(xη , . . . ,xη ,x1) as the proposal distribution on the extended state space from
which we will draw samples, it remains to determine the importance weights:

w( )k =
p̃(xη , . . . ,xη ,x1)

q(xη , . . . ,xη ,x1)
=

p̃1(x
( )k
1 )

p̃η (x
( )k
η )

. . .
p̃η (x

( )k
η )

p̃1(x
( )k
η )

p̃η (x
( )k
η )

p̃0(x
( )k
0 )

. (18.62)

These weights are the same as proposed for AIS. Thus we can interpret AIS as

simple importance sampling applied to an extended state and its validity follows
immediately from the validity of importance sampling.

Annealed importance sampling (AIS) was first discovered by ( )Jarzynski 1997
and then again, independently, by ( ). It is currently the most commonNeal 2001
way of estimating the partition function for undirected probabilistic models. The
reasons for this may have more to do with the publication of an influential paper
(Salakhutdinov and Murray 2008, ) describing its application to estimating the
partition function of restricted Boltzmann machines and deep belief networks than
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with any inherent advantage the method has over the other method described
below.

A discussion of the properties of the AIS estimator (e.g.. its variance and
efficiency) can be found in ( ).Neal 2001

Bridge sampling ( ) is another method that, like AIS, addresses theBennett 1976
shortcomings of importance sampling. Rather than chaining together a series of
intermediate distributions, bridge sampling relies on a single distribution p∗, known
as the bridge, to interpolate between a distribution with known partition function,
p0, and a distribution p1 for which we are trying to estimate the partition function
Z1 .

Bridge sampling estimates the ratio Z1/Z0 as the ratio of the expected impor-
tance weights between p̃0 and p̃∗ and between p̃1 and p̃∗:

Z1
Z0

≈
KX
k=1

p̃∗ (x
( )k
0 )

p̃0 (x
( )k
0 )

,
KX
k=1

p̃∗(x
( )k
1 )

p̃1(x
( )k
1 )

(18.63)

If the bridge distribution p∗ is chosen carefully to have a large overlap of support
with both p0 and p1 , then bridge sampling can allow the distance between two
distributions (or more formally,DKL(p0kp1 )) to be much larger than with standard
importance sampling.

It can be shown that the optimal bridging distribution is given by p
( )opt
∗ (x) ∝

p̃ ( )˜x p ( )x
rp̃ ( )+˜x p ( )x where r = Z1/Z0 . At first, this appears to be an unworkable solution

as it would seem to require the very quantity we are trying to estimate, Z1/Z0.
However, it is possible to start with a coarse estimate of r and use the resulting
bridge distribution to refine our estimate iteratively ( , ). That is, weNeal 2005
iteratively re-estimate the ratio and use each iteration to update the value of .r

Linked importance sampling Both AIS and bridge sampling have their ad-
vantages. If DKL(p0kp1) is not too large (because p0 and p1 are sufficiently close)
bridge sampling can be a more effective means of estimating the ratio of partition
functions than AIS. If, however, the two distributions are too far apart for a single
distribution p ∗ to bridge the gap then one can at least use AIS with potentially
many intermediate distributions to span the distance between p0 and p1. Neal
( ) showed how his linked importance sampling method leveraged the power of2005
the bridge sampling strategy to bridge the intermediate distributions used in AIS
to significantly improve the overall partition function estimates.
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Estimating the partition function while training While AIS has become
accepted as the standard method for estimating the partition function for many
undirected models, it is sufficiently computationally intensive that it remains
infeasible to use during training. However, alternative strategies that have been
explored to maintain an estimate of the partition function throughout training

Using a combination of bridge sampling, short-chain AIS and parallel tempering,
Desjardins 2011et al. ( ) devised a scheme to track the partition function of an
RBM throughout the training process. The strategy is based on the maintenance of
independent estimates of the partition functions of the RBM at every temperature

operating in the parallel tempering scheme. The authors combined bridge sampling
estimates of the ratios of partition functions of neighboring chains (i.e. from
parallel tempering) with AIS estimates across time to come up with a low variance
estimate of the partition functions at every iteration of learning.

The tools described in this chapter provide many different ways of overcoming
the problem of intractable partition functions, but there can be several other
difficulties involved in training and using generative models. Foremost among these
is the problem of intractable inference, which we confront next.
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Chapter 19

Approximate inference

Many probabilistic models are difficult to train because it is difficult to perform
inference in them. In the context of deep learning, we usually have a set of visible
variables v and a set of latent variables h. The challenge of inference usually
refers to the difficult problem of computing p(h v| ) or taking expectations with

respect to it. Such operations are often necessary for tasks like maximum likelihood
learning.

Many simple graphical models with only one hidden layer, such as restricted
Boltzmann machines and probabilistic PCA, are defined in a way that makes
inference operations like computing p(h v| ), or taking expectations with respect
to it, simple. Unfortunately, most graphical models with multiple layers of hidden
variables have intractable posterior distributions. Exact inference requires an
exponential amount of time in these models. Even some models with only a single
layer, such as sparse coding, have this problem.

In this chapter, we introduce several of the techniques for confronting these
intractable inference problems. Later, in Chapter , we will describe how to use20

these techniques to train probabilistic models that would otherwise be intractable,
such as deep belief networks and deep Boltzmann machines.

Intractable inference problems in deep learning usually arise from interactions
between latent variables in a structured graphical model. See Fig. for some19.1
examples. These interactions may be due to direct interactions in undirected
models or “explaining away” interactions between mutual ancestors of the same
visible unit in directed models.

634



CHAPTER 19. APPROXIMATE INFERENCE

Figure 19.1: Intractable inference problems in deep learning are usually the result of
interactions between latent variables in a structured graphical model. These can be due to
edges directly connecting one latent variable to another, or due to longer paths that are
activated when the child of a V-structure is observed. (Left) semi-restricted BoltzmannA
machine (Osindero and Hinton 2008, ) with connections between hidden units. These
direct connections between latent variables make the posterior distribution intractable
due to large cliques of latent variables. A deep Boltzmann machine, organized(Center)
into layers of variables without intra-layer connections, still has an intractable posterior
distribution due to the connections between layers. This directed model has(Right)
interactions between latent variables when the visible variables are observed, because
every two latent variables are co-parents. Some probabilistic models are able to provide
tractable inference over the latent variables despite having one of the graph structures
depicted above. This is possible if the conditional probability distributions are chosen to
introduce additional independences beyond those described by the graph. For example,
probabilistic PCA has the graph structure shown in the right, yet still has simple inference
due to special properties of the specific conditional distributions it uses (linear-Gaussian
conditionals with mutually orthogonal basis vectors).
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19.1 Inference as Optimization

Many approaches to confronting the problem of difficult inference make use of
the observation that exact inference can be described as an optimization problem.
Approximate inference algorithms may then be derived by approximating the
underlying optimization problem.

To construct the optimization problem, assume we have a probabilistic model

consisting of observed variables v and latent variables h. We would like to compute
the log probability of the observed data, log p(v ; θ). Sometimes it is too difficult
to compute log p(v; θ) if it is costly to marginalize out h. Instead, we can compute
a lower bound L(v θ, , q) on log p(v;θ). This bound is called the evidence lower
bound (ELBO). Another commonly used name for this lower bound is the negative
variational free energy. Specifically, the evidence lower bound is defined to be

L −( ) = log ( ; )v θ, , q p v θ DKL ( ( ) ( ; ))q h v| kp h v| θ (19.1)

where is an arbitrary probability distribution over .q h

Because the difference between log p(v) and L(v θ, , q) is given by the KL
divergence and because the KL divergence is always non-negative, we can see that

L always has at most the same value as the desired log probability. The two are
equal if and only if is the same distribution as .q p( )h v|

Surprisingly, L can be considerably easier to compute for some distributions q.
Simple algebra shows that we can rearrange L into a much more convenient form:

L −( ) = log ( ; )v θ, , q p v θ DKL( ( ) ( ; ))q h v| kp h v| θ (19.2)

= log ( ; )p v θ − Eh∼q log
q( )h v|
p( )h v| (19.3)

= log ( ; )p v θ − Eh∼q log
q( )h v|
p ,(h v θ; )
p( ; )v θ

(19.4)

= log ( ; )p v θ − Eh∼q [log ( ) log ( ; ) + log ( ; )]q h v| − p h v, θ p v θ (19.5)

= − Eh∼q [log ( ) log ( ; )]q h v| − p h v, θ . (19.6)

This yields the more canonical definition of the evidence lower bound,

L( ) = v θ, , q Eh∼q [log ( )] + ( )p h v, H q . (19.7)

For an appropriate choice of q, L is tractable to compute. For any choice
of q, L provides a lower bound on the likelihood. For q(h v| ) that are better

636



CHAPTER 19. APPROXIMATE INFERENCE

approximations of p(h v| ), the lower bound L will be tighter, in other words,
closer to log p(v). When q(h v| ) = p(h v| ), the approximation is perfect, and
L( ) = log ( ; )v θ, , q p v θ .

We can thus think of inference as the procedure for finding the q that maximizes
L. Exact inference maximizes L perfectly by searching over a family of functions
q that includes p(h v| ). Throughout this chapter, we will show how to derive
different forms of approximate inference by using approximate optimization to
find q. We can make the optimization procedure less expensive but approximate
by restricting the family of distributions q the optimization is allowed to search

over or by using an imperfect optimization procedure that may not completely
maximize but merely increase it by a significant amount.L

No matter what choice of q we use, L is a lower bound. We can get tighter
or looser bounds that are cheaper or more expensive to compute depending on
how we choose to approach this optimization problem. We can obtain a poorly
matched q but reduce the computational cost by using an imperfect optimization
procedure, or by using a perfect optimization procedure over a restricted family of
q distributions.

19.2 Expectation Maximization

The first algorithm we introduce based on maximizing a lower bound L is the

expectation maximization (EM) algorithm, a popular training algorithm for models
with latent variables. We describe here a view on the EM algorithm developed by
Neal and Hinton 1999( ). Unlike most of the other algorithms we describe in this
chapter, EM is not an approach to approximate inference, but rather an approach
to learning with an approximate posterior.

The EM algorithm consists of alternating between two steps until convergence:

• The (Expectation step): LetE-step θ(0) denote the value of the parameters
at the beginning of the step. Set q(h( )i | v) = p(h( )i | v( )i ;θ(0)) for all indices
i of the training examples v( )i we want to train on (both batch and minibatch

variants are valid). By this we mean q is defined in terms of the current
parameter value of θ(0) ; if we vary θ then p(h v| ;θ) will change but q(h v| )

will remain equal to p( ;h v| θ(0)).

• The M-step (Maximization step): Completely or partially maximize

Xi
L(v( )i , , qθ ) (19.8)
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with respect to using your optimization algorithm of choice.θ

This can be viewed as a coordinate ascent algorithm to maximize L. On one
step, we maximize L with respect to q, and on the other, we maximize L with
respect to .θ

Stochastic gradient ascent on latent variable models can be seen as a special
case of the EM algorithm where the M step consists of taking a single gradient
step. Other variants of the EM algorithm can make much larger steps. For some
model families, the M step can even be performed analytically, jumping all the
way to the optimal solution for given the current .θ q

Even though the E-step involves exact inference, we can think of the EM
algorithm as using approximate inference in some sense. Specifically, the M-step
assumes that the same value of q can be used for all values of θ. This will introduce
a gap between L and the true log p(v) as the M-step moves further and further
away from the value θ (0) used in the E-step. Fortunately, the E-step reduces the
gap to zero again as we enter the loop for the next time.

The EM algorithm contains a few different insights. First, there is the basic
structure of the learning process, in which we update the model parameters to
improve the likelihood of a completed dataset, where all missing variables have
their values provided by an estimate of the posterior distribution. This particular
insight is not unique to the EM algorithm. For example, using gradient descent to

maximize the log-likelihood also has this same property; the log-likelihood gradient
computations require taking expectations with respect to the posterior distribution
over the hidden units. Another key insight in the EM algorithm is that we can
continue to use one value of q even after we have moved to a different value of θ.
This particular insight is used throughout classical machine learning to derive large
M-step updates. In the context of deep learning, most models are too complex
to admit a tractable solution for an optimal large M-step update, so this second
insight which is more unique to the EM algorithm is rarely used.

19.3 MAP Inference and Sparse Coding

We usually use the term inference to refer to computing the probability distribution
over one set of variables given another. When training probabilistic models with
latent variables, we are usually interested in computing p(h v| ). An alternative
form of inference is to compute the single most likely value of the missing variables,
rather than to infer the entire distribution over their possible values. In the context
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of latent variable models, this means computing

h∗ = arg max
h

p .( )h v| (19.9)

This is known as maximum a posteriori inference, abbreviated MAP inference.

MAP inference is usually not thought of as approximate inference—it does
compute the exact most likely value of h∗. However, if we wish to develop a
learning process based on maximizing L(v h, , q), then it is helpful to think of MAP
inference as a procedure that provides a value of q. In this sense, we can think of
MAP inference as approximate inference, because it does not provide the optimal
q.

Recall from Sec. that exact inference consists of maximizing19.1

L( ) = v θ, , q Eh∼q [log ( )] + ( )p h v, H q (19.10)

with respect to q over an unrestricted family of probability distributions, using
an exact optimization algorithm. We can derive MAP inference as a form of
approximate inference by restricting the family of distributions q may be drawn
from. Specifically, we require to take on a Dirac distribution:q

q δ .( ) = h v| ( )h µ− (19.11)

This means that we can now control q entirely via µ. Dropping terms of L that

do not vary with , we are left with the optimization problemµ

µ∗ = max
µ

log ( = )p h µ v, , (19.12)

which is equivalent to the MAP inference problem

h∗ = max
h
p .( )h v| (19.13)

We can thus justify a learning procedure similar to EM, in which we alternate
between performing MAP inference to infer h∗ and then update θ to increase
log p(h∗, v). As with EM, this is a form of coordinate ascent on L, where we
alternate between using inference to optimize L with respect to q and using
parameter updates to optimize L with respect to θ. The procedure as a whole can
be justified by the fact that L is a lower bound on log p(v ). In the case of MAP
inference, this justification is rather vacuous, because the bound is infinitely loose,
due to the Dirac distribution’s differential entropy of negative infinity. However,
adding noise to would make the bound meaningful again.µ
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MAP inference is commonly used in deep learning as both a feature extractor
and a learning mechanism. It is primarily used for sparse coding models.

Recall from Sec. that sparse coding is a linear factor model that imposes a13.4
sparsity-inducing prior on its hidden units. A common choice is a factorial Laplace
prior, with

p h( i) =
λ

2
e− λ h| | . (19.14)

The visible units are then generated by performing a linear transformation and
adding noise:

p , β .( ) = ( ; +x h| N x Wh b I) (19.15)

Computing or even representing p(h v| ) is difficult. Every pair of variables hi
and hj are both parents of v. This means that when v is observed, the graphical
model contains an active path connecting hi and hj . All of the hidden units thus
participate in one massive clique in p(h v| ). If the model were Gaussian then
these interactions could be modeled efficiently via the covariance matrix, but the
sparse prior makes these interactions non-Gaussian.

Because p(h v| ) is intractable, so is the computation of the log-likelihood and
its gradient. We thus cannot use exact maximum likelihood learning. Instead, we
use MAP inference and learn the parameters by maximizing the ELBO defined by
the Dirac distribution around the MAP estimate of .h

If we concatenate all of the h vectors in the training set into a matrix H, then
the sparse coding learning process consists of minimizing

J ,(H W ) =
X
i,j

|Hi,j | +
X
i,j


X HW− >

2
i,j
. (19.16)

Most applications of sparse coding also involve weight decay or a constraint on

the norms of the columns of W, in order to prevent the pathological solution with
extremely small and large .H W

We can minimize J by alternating between minimization with respect to H
and minimization with respect to W . Both sub-problems are convex. In fact,
the minimization with respect toW is just a linear regression problem. However,
minimization of J with respect to both arguments is usually not a convex problem.

Minimization with respect to H requires specialized algorithms such as the
feature-sign search algorithm ( , ).Lee et al. 2007
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19.4 Variational Inference and Learning

We have seen how the evidence lower bound L(v θ, , q) is a lower bound on
log p(v ;θ), how inference can be viewed as maximizing L with respect to q, and
how learning can be viewed as maximizing L with respect to θ. We have seen
that the EM algorithm allows us to make large learning steps with a fixed q and
that learning algorithms based on MAP inference allow us to learn using a point

estimate of p(h v| ) rather than inferring the entire distribution. Now we develop
the more general approach to variational learning.

The core idea behind variational learning is that we can maximize L over a
restricted family of distributions q. This family should be chosen so that it is easy
to compute Eq log p(h v, ). A typical way to do this is to introduce assumptions
about how factorizes.q

A common approach to variational learning is to impose the restriction that q
is a factorial distribution:

q( ) =h v|
Y
i

q h( i | v). (19.17)

This is called the mean field approach. More generally, we can impose any graphical
model structure we choose on q, to flexibly determine how many interactions we
want our approximation to capture. This fully general graphical model approach
is called structured variational inference ( , ).Saul and Jordan 1996

The beauty of the variational approach is that we do not need to specify a
specific parametric form for q. We specify how it should factorize, but then the
optimization problem determines the optimal probability distribution within those
factorization constraints. For discrete latent variables, this just means that we
use traditional optimization techniques to optimize a finite number of variables
describing the q distribution. For continuous latent variables, this means that we
use a branch of mathematics called calculus of variations to perform optimization

over a space of functions, and actually determine which function should be used
to represent q . Calculus of variations is the origin of the names “variational
learning” and “variational inference,” though these names apply even when the
latent variables are discrete and calculus of variations is not needed. In the case
of continuous latent variables, calculus of variations is a powerful technique that
removes much of the responsibility from the human designer of the model, who
now must specify only how q factorizes, rather than needing to guess how to design
a specific that can accurately approximate the posterior.q

Because L(v θ, , q ) is defined to be log p(v;θ) −DKL(q(h v| )kp(h v| ;θ)), we
can think of maximizing L with respect to q as minimizing DKL(q(h v| )kp(h v| )).

641



CHAPTER 19. APPROXIMATE INFERENCE

In this sense, we are fitting q to p . However, we are doing so with the opposite
direction of the KL divergence than we are used to using for fitting an approximation.
When we use maximum likelihood learning to fit a model to data, we minimize
DKL(pdatakpmodel). As illustrated in Fig. , this means that maximum likelihood3.6
encourages the model to have high probability everywhere that the data has high
probability, while our optimization-based inference procedure encourages q to
have low probability everywhere the true posterior has low probability. Both
directions of the KL divergence can have desirable and undesirable properties. The
choice of which to use depends on which properties are the highest priority for

each application. In the case of the inference optimization problem, we choose
to useDKL(q(h v| )kp(h v| )) for computational reasons. Specifically, computing
DKL(q(h v| ) kp(h v| )) involves evaluating expectations with respect to q, so by
designing q to be simple, we can simplify the required expectations. The opposite
direction of the KL divergence would require computing expectations with respect
to the true posterior. Because the form of the true posterior is determined by
the choice of model, we cannot design a reduced-cost approach to computing
DKL( ( ) ( ))p h v| kq h v| exactly.

Variational inference with discrete latent variables is relatively straightforward.
We define a distribution q, typically one where each factor of q is just defined
by a lookup table over discrete states. In the simplest case, h is binary and we
make the mean field assumption that factorizes over each individualq hi . In this
case we can parametrize q with a vector ĥwhose entries are probabilities. Then
q h( i = 1 ) =| v ĥi.

After determining how to represent q, we simply optimize its parameters. In
the case of discrete latent variables, this is just a standard optimization problem.
In principle the selection of q could be done with any optimization algorithm, such

as gradient descent.

Because this optimization must occur in the inner loop of a learning algorithm,
it must be very fast. To achieve this speed, we typically use special optimization
algorithms that are designed to solve comparatively small and simple problems in
very few iterations. A popular choice is to iterate fixed point equations, in other
words, to solve

∂

∂ĥi
L = 0 (19.18)

for ĥi . We repeatedly update different elements of ĥ until we satisfy a convergence
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criterion.

To make this more concrete, we show how to apply variational inference to the
binary sparse coding model (we present here the model developed by Henniges et al.
( ) but demonstrate traditional, generic mean field applied to the model, while2010
they introduce a specialized algorithm). This derivation goes into considerable
mathematical detail and is intended for the reader who wishes to fully resolve
any ambiguity in the high-level conceptual description of variational inference and
learning we have presented so far. Readers who do not plan to derive or implement
variational learning algorithms may safely skip to the next section without missing

any new high-level concepts. Readers who proceed with the binary sparse coding
example are encouraged to review the list of useful properties of functions that
commonly arise in probabilistic models in Sec. . We use these properties3.10
liberally throughout the following derivations without highlighting exactly where
we use each one.

In the binary sparse coding model, the input v ∈ R
n is generated from the

model by adding Gaussian noise to the sum of m different components which
can each be present or absent. Each component is switched on or off by the
corresponding hidden unit in h ∈ { }0 1, m:

p h( i = 1) = (σ bi) (19.19)

p ,( ) = ( ;v h| N v Wh β−1 ) (19.20)

where b is a learnable set of biases, W is a learnable weight matrix, and β is a
learnable, diagonal precision matrix.

Training this model with maximum likelihood requires taking the derivative
with respect to the parameters. Consider the derivative with respect to one of the
biases:

∂

∂bi
log ( )p v (19.21)

=

∂
∂b p( )v

p( )v
(19.22)

=
∂
∂b

P
h p ,(h v)

p( )v
(19.23)

=

∂
∂b

P
h p p( )h ( )v h|
p( )v

(19.24)
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Figure 19.2: The graph structure of a binary sparse coding model with four hidden units.
(Left) The graph structure of p(h v, ). Note that the edges are directed, and that every two
hidden units are co-parents of every visible unit. The graph structure of(Right) p(h v| ).
In order to account for the active paths between co-parents, the posterior distribution
needs an edge between all of the hidden units.

=

P
hp( )v h| ∂

∂b p( )h

p( )v
(19.25)

=
X
h

p( )h v|
∂
∂b p( )h

p( )h
(19.26)

=Eh∼ |p(h v)
∂

∂bi
log ( )p h . (19.27)

This requires computing expectations with respect to p(h v| ). Unfortunately,
p(h v| ) is a complicated distribution. See Fig. for the graph structure of19.2
p(h v, ) and p(h v| ). The posterior distribution corresponds to the complete graph
over the hidden units, so variable elimination algorithms do not help us to compute

the required expectations any faster than brute force.

We can resolve this difficulty by using variational inference and variational
learning instead.

We can make a mean field approximation:

q( ) =h v|
Y
i

q h( i | v). (19.28)

The latent variables of the binary sparse coding model are binary, so to represent
a factorial q we simply need to model m Bernoulli distributions q(hi | v). A natural
way to represent the means of the Bernoulli distributions is with a vector ĥ of
probabilities, with q(hi = 1 | v) = ĥi. We impose a restriction that ĥ i is never
equal to 0 or to 1, in order to avoid errors when computing, for example, log ĥi.

We will see that the variational inference equations never assign or to0 1 ĥi
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analytically. However, in a software implementation, machine rounding error could
result in or values. In software, we may wish to implement binary sparse0 1
coding using an unrestricted vector of variational parameters z and obtain ĥ via
the relation ĥ = σ(z ). We can thus safely compute log ĥi on a computer by using
the identity log (σ zi) = (−ζ −zi) relating the sigmoid and the softplus.

To begin our derivation of variational learning in the binary sparse coding
model, we show that the use of this mean field approximation makes learning
tractable.

The evidence lower bound is given by

L( )v θ, , q (19.29)

=Eh∼q [log ( )] + ( )p h v, H q (19.30)

=Eh∼q [log ( ) + log ( ) log ( )]p h p v h| − q h v| (19.31)

=Eh∼q

"
mX
i=1

log (p hi) +
nX
i=1

log (p vi | −h)
mX
i=1

log (q hi | v)

#
(19.32)

=

mX
i=1

h
ĥ i(log (σ bi ) log− ĥi) + (1 −ĥ i)(log (σ −bi) log(1− − ĥi))

i
(19.33)

+ Eh∼q

"
nX
i=1

log

r
βi
2π

exp


−βi

2
(vi−W i,:h)2

#
(19.34)

=

mX
i=1

h
ĥ i(log (σ bi ) log− ĥ i) + (1 −ĥ i)(log (σ −bi) log(1− − ĥi))

i
(19.35)

+
1

2

nX
i=1


 log

βi
2π

− βi


 v2i − 2viW i,:ĥ+

X
j


W2

i,j ĥj +
X
k j6=
W i,jWi,k ĥjĥk






 .

(19.36)

While these equations are somewhat unappealing aesthetically, they show
that L can be expressed in a small number of simple arithmetic operations. The
evidence lower bound L is therefore tractable. We can use L as a replacement for
the intractable log-likelihood.

In principle, we could simply run gradient ascent on both v and h and this
would make a perfectly acceptable combined inference and training algorithm.
Usually, however, we do not do this, for two reasons. First, this would require
storing ĥ for each v. We typically prefer algorithms that do not require per-
example memory. It is difficult to scale learning algorithms to billions of examples
if we must remember a dynamically updated vector associated with each example.
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Second, we would like to be able to extract the features ĥ very quickly, in order to
recognize the content of v . In a realistic deployed setting, we would need to be
able to compute ĥ in real time.

For both these reasons, we typically do not use gradient descent to compute
the mean field parameters ĥ. Instead, we rapidly estimate them with fixed point
equations.

The idea behind fixed point equations is that we are seeking a local maximum
with respect to ĥ, where ∇hL(v θ, , ĥ) = . We cannot efficiently solve this

equation with respect to all of ĥ simultaneously. However, we can solve for a single
variable:

∂

∂ĥi
L(v θ, , ĥ) = 0. (19.37)

We can then iteratively apply the solution to the equation for i = 1, . . . , m ,
and repeat the cycle until we satisfy a converge criterion. Common convergence
criteria include stopping when a full cycle of updates does not improve L by more
than some tolerance amount, or when the cycle does not change ĥ by more than
some amount.

Iterating mean field fixed point equations is a general technique that can
provide fast variational inference in a broad variety of models. To make this more
concrete, we show how to derive the updates for the binary sparse coding model in
particular.

First, we must write an expression for the derivatives with respect to ĥi . To
do so, we substitute Eq. into the left side of Eq. :19.36 19.37

∂

∂ĥi
L(v θ, , ĥ) (19.38)

=
∂

∂ĥi


 mX
j=1

h
ĥj(log (σ bj) log− ĥj) + (1 − ĥj )(log (σ −bj) log(1− − ĥ j))

i
(19.39)

+
1

2

nX
j=1


log

βj
2π

− βj


v2j − 2vjWj,:ĥ−

X
k


W2

j,k ĥk +
X
l k6=
Wj,kWj,lĥk ĥl










(19.40)

= log (σ bi) log− ĥi − −1 + log(1 ĥi) + 1 log (− σ −bi ) (19.41)

+

n

Xj=1 
βj 

vjWj,i−
1

2
W 2
j,i −

Xk i6=
Wj,kWj,iĥk

(19.42)
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=bi − log ĥi + log(1 − ĥi) + v>βW:,i −
1

2
W:,iβW :,i−

X
j i6=
W >
:,jβW:,iĥj. (19.43)

To apply the fixed point update inference rule, we solve for the ĥi that sets Eq.
19.43 to 0:

ĥ i = σ


bi + v>βW:,i −

1

2
W:,iβW:,i−

X
j i6=
W >
:,jβW:,iĥj


 . (19.44)

At this point, we can see that there is a close connection between recurrent
neural networks and inference in graphical models. Specifically, the mean field
fixed point equations defined a recurrent neural network. The task of this network
is to perform inference. We have described how to derive this network from a
model description, but it is also possible to train the inference network directly.
Several ideas based on this theme are described in Chapter .20

In the case of binary sparse coding, we can see that the recurrent network
connection specified by Eq. consists of repeatedly updating the hidden19.44
units based on the changing values of the neighboring hidden units. The input

always sends a fixed message of v>βW to the hidden units, but the hidden units
constantly update the message they send to each other. Specifically, two units ĥi
and ĥj inhibit each other when their weight vectors are aligned. This is a form of
competition—between two hidden units that both explain the input, only the one
that explains the input best will be allowed to remain active. This competition is
the mean field approximation’s attempt to capture the explaining away interactions
in the binary sparse coding posterior. The explaining away effect actually should
cause a multi-modal posterior, so that if we draw samples from the posterior,
some samples will have one unit active, other samples will have the other unit
active, but very few samples have both active. Unfortunately, explaining away
interactions cannot be modeled by the factorial q used for mean field, so the mean

field approximation is forced to choose one mode to model. This is an instance of
the behavior illustrated in Fig. .3.6

We can rewrite Eq. into an equivalent form that reveals some further19.44
insights:

ĥ i = σ




bi +




v −

Xj i6=
W:,jĥj





>

βW:,i −
1

2
W:,iβW :,i




. (19.45)

In this reformulation, we see the input at each step as consisting of v−

P
j i6= W:,jĥj

rather than v. We can thus think of unit i as attempting to encode the residual
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error in v given the code of the other units. We can thus think of sparse coding as
an iterative autoencoder, that repeatedly encodes and decodes its input, attempting
to fix mistakes in the reconstruction after each iteration.

In this example, we have derived an update rule that updates a single unit at
a time. It would be advantageous to be able to update more units simultaneously.
Some graphical models, such as deep Boltzmann machines, are structured in such a
way that we can solve for many entries of ĥ simultaneously. Unfortunately, binary
sparse coding does not admit such block updates. Instead, we can use a heuristic
technique called to perform block updates. In the damping approach, wedamping

solve for the individually optimal values of every element of ĥ, then move all of
the values in a small step in that direction. This approach is no longer guaranteed
to increase L at each step, but works well in practice for many models. See Koller
and Friedman 2009( ) for more information about choosing the degree of synchrony
and damping strategies in message passing algorithms.

Before continuing with our presentation of variational learning, we must briefly
introduce an important set of mathematical tools used in variational learning:
calculus of variations.

Many machine learning techniques are based on minimizing a function J(θ ) by
finding the input vector θ ∈ R

n for which it takes on its minimal value. This can
be accomplished with multivariate calculus and linear algebra, by solving for the
critical points where ∇θJ (θ) = . In some cases, we actually want to solve for a
function f (x), such as when we want to find the probability density function over
some random variable. This is what calculus of variations enables us to do.

A function of a function f is known as a functional J[f ]. Much as we can
take partial derivatives of a function with respect to elements of its vector-valued

argument, we can take , also known as ,functional derivatives variational derivatives
of a functional J[f ] with respect to individual values of the function f(x) at any
specific value of x. The functional derivative of the functional J with respect to
the value of the function at point is denotedf x δ

δf x( ) J .

A complete formal development of functional derivatives is beyond the scope of
this book. For our purposes, it is sufficient to state that for differentiable functions
f g y,( )x and differentiable functions ( x) with continuous derivatives, that

δ

δf( )x Z
g f , d( ( )x x) x =

∂

∂y
g f , .( ( )x x) (19.46)
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To gain some intuition for this identity, one can think of f (x) as being a vector
with uncountably many elements, indexed by a real vector x. In this (somewhat
incomplete view), the identity providing the functional derivatives is the same as
we would obtain for a vector θ ∈ R

n indexed by positive integers:

∂

∂θi

X
j

g θ( j , j) =
∂

∂θi
g θ( i , i .) (19.47)

Many results in other machine learning publications are presented using the more
general Euler-Lagrange equation which allows g to depend on the derivatives of f
as well as the value of f , but we do not need this fully general form for the results
presented in this book.

To optimize a function with respect to a vector, we take the gradient of the
function with respect to the vector and solve for the point where every element of
the gradient is equal to zero. Likewise, we can optimize a functional by solving for
the function where the functional derivative at every point is equal to zero.

As an example of how this process works, consider the problem of finding the
probability distribution function over x ∈ R that has maximal differential entropy.
Recall that the entropy of a probability distribution is defined asp x( )

H p[ ] = −Ex log ( )p x . (19.48)

For continuous values, the expectation is an integral:

H p[ ] = −
Z
p x p x dx.( ) log ( ) (19.49)

We cannot simply maximize H(x) with respect to the function p(x), because the
result might not be a probability distribution. Instead, we need to use Lagrange
multipliers, to add a constraint that p(x) integrates to 1. Also, the entropy
increases without bound as the variance increases. This makes the question of

which distribution has the greatest entropy uninteresting. Instead, we ask which
distribution has maximal entropy for fixed variance σ2. Finally, the problem
is underdetermined because the distribution can be shifted arbitrarily without
changing the entropy. To impose a unique solution, we add a constraint that the
mean of the distribution be µ. The Lagrangian functional for this optimization
problem is

L[ ] = p λ1 Z p x dx( ) − 1+λ2 ( [ ] )+E x − µ λ3


E[( )x µ− 2] − σ2


+ [ ]H p (19.50)
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=

Z 
λ1p x λ( ) + 2p x x λ( ) + 3p x x µ( )( − )2 − p x p x( ) log ( )


dx λ− 1− µλ2− σ2λ3.

(19.51)

To minimize the Lagrangian with respect to p, we set the functional derivatives
equal to 0:

∀x, δ

δp x( )
L = λ1 + λ2 x λ+ 3( )x µ− 2 − −1 log ( ) = 0p x . (19.52)

This condition now tells us the functional form of p(x). By algebraically
re-arranging the equation, we obtain

p x( ) = exp

−λ1− λ 2x λ+ 3( )x µ− 2+ 1


. (19.53)

We never assumed directly that p(x) would take this functional form; we
obtained the expression itself by analytically minimizing a functional. To finish
the minimization problem, we must choose the λ values to ensure that all of our
constraints are satisfied. We are free to choose any λ values, because the gradient

of the Lagrangian with respect to the λ variables is zero so long as the constraints
are satisfied. To satisfy all of the constraints, we may set λ1 = log σ

√
2π , λ2 = 0,

and λ3 = − 1
2σ to obtain

p x x µ, σ( ) = (N ; 2 ). (19.54)

This is one reason for using the normal distribution when we do not know the
true distribution. Because the normal distribution has the maximum entropy, we
impose the least possible amount of structure by making this assumption.

While examining the critical points of the Lagrangian functional for the entropy,
we found only one critical point, corresponding to maximizing the entropy for
fixed variance. What about the probability distribution function that minimizes
the entropy? Why did we not find a second critical point corresponding to the

minimum? The reason is that there is no specific function that achieves minimal
entropy. As functions place more probability density on the two points x = µ+ σ
and x = µ σ− , and place less probability density on all other values of x, they lose
entropy while maintaining the desired variance. However, any function placing
exactly zero mass on all but two points does not integrate to one, and is not a
valid probability distribution. There thus is no single minimal entropy probability
distribution function, much as there is no single minimal positive real number.
Instead, we can say that there is a sequence of probability distributions converging
toward putting mass only on these two points. This degenerate scenario may be
described as a mixture of Dirac distributions. Because Dirac distributions are
not described by a single probability distribution function, no Dirac or mixture of
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Dirac distribution corresponds to a single specific point in function space. These
distributions are thus invisible to our method of solving for a specific point where
the functional derivatives are zero. This is a limitation of the method. Distributions
such as the Dirac must be found by other methods, such as guessing the solution
and then proving that it is correct.

When our graphical model contains continuous latent variables, we may still
perform variational inference and learning by maximizing L. However, we must

now use calculus of variations when maximizing with respect to .L q( )h v|
In most cases, practitioners need not solve any calculus of variations problems

themselves. Instead, there is a general equation for the mean field fixed point
updates. If we make the mean field approximation

q( ) =h v|
Y
i

q h( i | v), (19.55)

and fix q(hj | v) for all j 6= i, then the optimal q(h i | v) may be obtained by

normalizing the unnormalized distribution

q̃ h( i | v) = exp

Eh ∼q(h |v) log p̃ ,(v h)


(19.56)

so long as p does not assign probability to any joint configuration of variables.0
Carrying out the expectation inside the equation will yield the correct functional
form of q (hi | v). It is only necessary to derive functional forms of q directly using
calculus of variations if one wishes to develop a new form of variational learning;
Eq. yields the mean field approximation for any probabilistic model.19.56

Eq. is a fixed point equation, designed to be iteratively applied for each19.56
value of i repeatedly until convergence. However, it also tells us more than that. It

tells us the functional form that the optimal solution will take, whether we arrive
there by fixed point equations or not. This means we can take the functional form
from that equation but regard some of the values that appear in it as parameters,
that we can optimize with any optimization algorithm we like.

As an example, consider a very simple probabilistic model, with latent variables
h ∈ R

2 and just one visible variable, v. Suppose that p(h) = N(h; 0, I) and
p(v | h) = N (v;w>h; 1). We could actually simplify this model by integrating
out h; the result is just a Gaussian distribution over v . The model itself is not
interesting; we have constructed it only to provide a simple demonstration of how
calculus of variations may be applied to probabilistic modeling.
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The true posterior is given, up to a normalizing constant, by

p( )h v| (19.57)

∝p ,(h v) (19.58)

= (p h1 ) (p h2 ) ( )p v h| (19.59)

∝ exp


−1

2


h21 + h22 + (v h− 1w1 − h2w2)2


(19.60)

= exp


−1

2


h21 + h22 + v 2 + h21w

2
1 + h22w

2
2 − 2vh1w1− 2vh2w2− 2h1w1h2w2


.

(19.61)

Due to the presence of the terms multiplying h1 and h2 together, we can see that
the true posterior does not factorize over h1 and h2.

Applying Eq. , we find that19.56

q̃ h( 1 | v) (19.62)

= exp

E ∼q( |v) log p̃ ,(v h)


(19.63)

= exp


−1

2
E ∼q( |v)


h21 + h22 + v2+ h21w

2
1 + h22w

2
2 (19.64)

−2vh1w1− 2vh2w2− 2h1w1h2w2]


. (19.65)

From this, we can see that there are effectively only two values we need to obtain
from q(h2 | v): E ∼ |q( v) [h2] and E ∼ |q( v) [h

2
2 ]. Writing these as hh2i and hh 22i,

we obtain

q̃ h( 1 | v) = exp


−1

2


h21 + hh22i + v2 + h21w

2
1 + hh22iw22 (19.66)

−2vh1w1 − h2v h2iw2− 2h1w1hh2iw2]

. (19.67)

From this, we can see that q̃ has the functional form of a Gaussian. We can
thus conclude q(h v| ) = N (h;µ β, −1) where µ and diagonal β are variational
parameters that we can optimize using any technique we choose. It is important
to recall that we did not ever assume that q would be Gaussian; its Gaussian
form was derived automatically by using calculus of variations to maximize q with
respect to L. Using the same approach on a different model could yield a different
functional form of .q

This was of course, just a small case constructed for demonstration purposes.
For examples of real applications of variational learning with continuous variables
in the context of deep learning, see ( ).Goodfellow et al. 2013d
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Using approximate inference as part of a learning algorithm affects the learning
process, and this in turn affects the accuracy of the inference algorithm.

Specifically, the training algorithm tends to adapt the model in a way that makes
the approximating assumptions underlying the approximate inference algorithm
become more true. When training the parameters, variational learning increases

Eh∼q log ( )p v h, . (19.68)

For a specific v, this increases p(h v| ) for values of h that have high probability
under q(h v| ) and decreases p(h v| ) for values of h that have low probability

under .q( )h v|
This behavior causes our approximating assumptions to become self-fulfilling

prophecies. If we train the model with a unimodal approximate posterior, we will
obtain a model with a true posterior that is far closer to unimodal than we would
have obtained by training the model with exact inference.

Computing the true amount of harm imposed on a model by a variational
approximation is thus very difficult. There exist several methods for estimating
log p(v). We often estimate log p(v; θ) after training the model, and find that
the gap with L(v θ, , q ) is small. From this, we can conclude that our variational
approximation is accurate for the specific value of θ that we obtained from the
learning process. We should not conclude that our variational approximation is

accurate in general or that the variational approximation did little harm to the
learning process. To measure the true amount of harm induced by the variational
approximation, we would need to know θ∗ = maxθ log p(v; θ). It is possible for
L(v θ, , q) ≈ log p(v; θ) and log p(v ;θ)  log p(v;θ∗) to hold simultaneously. If
maxq L(v θ, ∗ , q)  log p(v ; θ∗ ), because θ∗ induces too complicated of a posterior
distribution for our q family to capture, then the learning process will never
approach θ∗. Such a problem is very difficult to detect, because we can only know
for sure that it happened if we have a superior learning algorithm that can find θ∗

for comparison.

19.5 Learned Approximate Inference

We have seen that inference can be thought of as an optimization procedure
that increases the value of a function L. Explicitly performing optimization via
iterative procedures such as fixed point equations or gradient-based optimization
is often very expensive and time-consuming. Many approaches to inference avoid
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this expense by learning to perform approximate inference. Specifically, we can
think of the optimization process as a function f that maps an input v to an
approximate distribution q∗ = arg maxq L(v, q). Once we think of the multi-step
iterative optimization process as just being a function, we can approximate it with
a neural network that implements an approximation f̂( ; )v θ .

One of the main difficulties with training a model to infer h from v is that we
do not have a supervised training set with which to train the model. Given a v ,
we do not know the appropriate h. The mapping from v to h depends on the
choice of model family, and evolves throughout the learning process as θ changes.
The wake-sleep algorithm (Hinton 1995b Frey 1996et al., ; et al., ) resolves this
problem by drawing samples of both h and v from the model distribution. For
example, in a directed model, this can be done cheaply by performing ancestral
sampling beginning at h and ending at v. The inference network can then be
trained to perform the reverse mapping: predicting which h caused the present
v . The main drawback to this approach is that we will only be able to train the

inference network on values of v that have high probability under the model. Early
in learning, the model distribution will not resemble the data distribution, so the
inference network will not have an opportunity to learn on samples that resemble
data.

In Sec. we saw that one possible explanation for the role of dream sleep in18.2
human beings and animals is that dreams could provide the negative phase samples
that Monte Carlo training algorithms use to approximate the negative gradient of
the log partition function of undirected models. Another possible explanation for
biological dreaming is that it is providing samples from p(h v, ) which can be used
to train an inference network to predict h given v. In some senses, this explanation
is more satisfying than the partition function explanation. Monte Carlo algorithms

generally do not perform well if they are run using only the positive phase of the
gradient for several steps then with only the negative phase of the gradient for
several steps. Human beings and animals are usually awake for several consecutive
hours then asleep for several consecutive hours. It is not readily apparent how this
schedule could support Monte Carlo training of an undirected model. Learning
algorithms based on maximizing L can be run with prolonged periods of improving
q and prolonged periods of improving θ, however. If the role of biological dreaming
is to train networks for predicting q, then this explains how animals are able to
remain awake for several hours (the longer they are awake, the greater the gap
between L and log p(v), but L will remain a lower bound) and to remain asleep
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for several hours (the generative model itself is not modified during sleep) without
damaging their internal models. Of course, these ideas are purely speculative, and
there is no hard evidence to suggest that dreaming accomplishes either of these
goals. Dreaming may also serve reinforcement learning rather than probabilistic
modeling, by sampling synthetic experiences from the animal’s transition model,
on which to train the animal’s policy. Or sleep may serve some other purpose not
yet anticipated by the machine learning community.

This strategy of learned approximate inference has also been applied to other
models. Salakhutdinov and Larochelle 2010( ) showed that a single pass in a
learned inference network could yield faster inference than iterating the mean field
fixed point equations in a DBM. The training procedure is based on running the
inference network, then applying one step of mean field to improve its estimates,
and training the inference network to output this refined estimate instead of its
original estimate.

We have already seen in Sec. that the predictive sparse decomposition14.8
model trains a shallow encoder network to predict a sparse code for the input.
This can be seen as a hybrid between an autoencoder and sparse coding. It is
possible to devise probabilistic semantics for the model, under which the encoder
may be viewed as performing learned approximate MAP inference. Due to its
shallow encoder, PSD is not able to implement the kind of competition between
units that we have seen in mean field inference. However, that problem can be
remedied by training a deep encoder to perform learned approximate inference, as
in the ISTA technique ( , ).Gregor and LeCun 2010b

Learned approximate inference has recently become one of the dominant
approaches to generative modeling, in the form of the variational autoencoder
( , ; , ). In this elegant approach, there is no need toKingma 2013 Rezende et al. 2014

construct explicit targets for the inference network. Instead, the inference network
is simply used to define Lelegant approach, there is no need the inference network
are adapted to increase L. This model is described in depth later, in Sec. .20.10.3

Using approximate inference, it is possible to train and use a wide variety of
models. Many of these models are described in the next chapter.
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Chapter 20

Deep Generative Models

In this chapter, we present several of the specific kinds of generative models that
can be built and trained using the techniques presented in Chapters , , and16 17 18
19. All of these models represent probability distributions over multiple variables
in some way. Some allow the probability distribution function to be evaluated

explicitly. Others do not allow the evaluation of the probability distribution
function, but support operations that implicitly require knowledge of it, such
as drawing samples from the distribution. Some of these models are structured
probabilistic models described in terms of graphs and factors, using the language
of graphical models presented in Chapter . Others can not easily be described16
in terms of factors, but represent probability distributions nonetheless.

20.1 Boltzmann Machines

Boltzmann machines were originally introduced as a general “connectionist” ap-
proach to learning arbitrary probability distributions over binary vectors (Fahlman

et al., ;1983 Ackley 1985 Hinton 1984 Hinton and Sejnowski 1986et al., ; et al., ; , ).
Variants of the Boltzmann machine that include other kinds of variables have long
ago surpassed the popularity of the original. In this section we briefly introduce
the binary Boltzmann machine and discuss the issues that come up when trying to
train and perform inference in the model.

We define the Boltzmann machine over a d-dimensional binary random vector
x ∈ {0,1}d. The Boltzmann machine is an energy-based model (Sec. ),16.2.4
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meaning we define the joint probability distribution using an energy function:

P ( ) =x
exp ( ( ))−E x

Z
, (20.1)

where E(x) is the energy function and Z is the partition function that ensures
that

P
x P ( ) = 1x . The energy function of the Boltzmann machine is given by

E( ) = x −x>Ux b− >x, (20.2)

where U is the “weight” matrix of model parameters and b is the vector of bias

parameters.

In the general setting of the Boltzmann machine, we are given a set of training
examples, each of which are n-dimensional. Eq. describes the joint probability20.1
distribution over the observed variables. While this scenario is certainly viable,
it does limit the kinds of interactions between the observed variables to those
described by the weight matrix. Specifically, it means that the probability of one
unit being on is given by a linear model (logistic regression) from the values of the
other units.

The Boltzmann machine becomes more powerful when not all the variables
are observed. In this case, the non-observed variables, or variables, canlatent
act similarly to hidden units in a multi-layer perceptron and model higher-order

interactions among the visible units. Just as the addition of hidden units to
convert logistic regression into an MLP results in the MLP being a universal
approximator of functions, a Boltzmann machine with hidden units is no longer
limited to modeling linear relationships between variables. Instead, the Boltzmann
machine becomes a universal approximator of probability mass functions over
discrete variables ( , ).Le Roux and Bengio 2008

Formally, we decompose the units x into two subsets: the visible units v and
the latent (or hidden) units . The energy function becomesh

E ,(v h v) = − >Rv v− >Wh h− >Sh b− >v c− >h. (20.3)

Boltzmann Machine Learning Learning algorithms for Boltzmann machines
are usually based on maximum likelihood. All Boltzmann machines have an
intractable partition function, so the maximum likelihood gradient must be ap-
proximated using the techniques described in Chapter .18

One interesting property of Boltzmann machines when trained with learning
rules based on maximum likelihood is that the update for a particular weight
connecting two units depends only the statistics of those two units, collected
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under different distributions: Pmodel(v) and P̂data(v)Pmodel(h v| ). The rest of the
network participates in shaping those statistics, but the weight can be updated
without knowing anything about the rest of the network or how those statistics were
produced. This means that the learning rule is “local,” which makes Boltzmann
machine learning somewhat biologically plausible. It is conceivable that if each
neuron were a random variable in a Boltzmann machine, then the axons and
dendrites connecting two random variables could learn only by observing the firing
pattern of the cells that they actually physically touch. In particular, in the
positive phase, two units that frequently activate together have their connection

strengthened. This is an example of a Hebbian learning rule ( , ) oftenHebb 1949
summarized with the mnemonic “fire together, wire together.” Hebbian learning
rules are among the oldest hypothesized explanations for learning in biological
systems and remain relevant today ( , ).Giudice et al. 2009

Other learning algorithms that use more information than local statistics seem
to require us to hypothesize the existence of more machinery than this. For
example, for the brain to implement back-propagation in a multilayer perceptron,
it seems necessary for the brain to maintain a secondary communication network for
transmitting gradient information backwards through the network. Proposals for
biologically plausible implementations (and approximations) of back-propagation
have been made ( , ; , ) but remain to be validated, andHinton 2007a Bengio 2015

Bengio 2015( ) links back-propagation of gradients to inference in energy-based
models similar to the Boltzmann machine (but with continuous latent variables).

The negative phase of Boltzmann machine learning is somewhat harder to
explain from a biological point of view. As argued in Sec. , dream sleep may18.2
be a form of negative phase sampling. This idea is more speculative though.

20.2 Restricted Boltzmann Machines

Invented under the name ( , ), restricted Boltzmannharmonium Smolensky 1986
machines are some of the most common building blocks of deep probabilistic models.

We have briefly described RBMs previously, in Sec. . Here we review the16.7.1
previous information and go into more detail. RBMs are undirected probabilistic
graphical models containing a layer of observable variables and a single layer of
latent variables. RBMs may be stacked (one on top of the other) to form deeper
models. See Fig. for some examples. In particular, Fig. a shows the graph20.1 20.1
structure of the RBM itself. It is a bipartite graph, with no connections permitted
between any variables in the observed layer or between any units in the latent
layer.

658



CHAPTER 20. DEEP GENERATIVE MODELS

h1h1 h2h2 h3h3

v1v1 v2v2 v3v3

h4h4 h
(1)
1h
(1)
1 h

(1)
2h
(1)
2 h

(1)
3h
(1)
3

v1v1 v2v2 v3v3

h
(2)
1h
(2)
1 h

(2)
2h
(2)
2 h

(2)
3h
(2)
3

h
(1)
4h
(1)
4

a b

h
(1)
1h
(1)
1 h

(1)
2h
(1)
2 h(1)3h

(1)
3

v1v1 v2v2 v3v3

h(2)1h
(2)
1 h(2)2h

(2)
2 h

(2)
3h
(2)
3

h
(1)
4h
(1)
4

c

Figure 20.1: Examples of models that may be built with restricted Boltzmann machines.
(a) The restricted Boltzmann machine itself is an undirected graphical model based on
a bipartite graph, with visible units in one part of the graph and hidden units in the
other part. There are no connections among the visible units, nor any connections among
the hidden units. Typically every visible unit is connected to every hidden unit but it
is possible to construct sparsely connected RBMs such as convolutional RBMs. A(b)
deep belief network is a hybrid graphical model involving both directed and undirected
connections. Like an RBM, it has no intra-layer connections. However, a DBN has
multiple hidden layers, and thus there are connections between hidden units that are in
separate layers. All of the local conditional probability distributions needed by the deep
belief network are copied directly from the local conditional probability distributions of
its constituent RBMs. Alternatively, we could also represent the deep belief network with
a completely undirected graph, but it would need intra-layer connections to capture the
dependencies between parents. A deep Boltzmann machine is an undirected graphical(c)
model with several layers of latent variables. Like RBMs and DBNs, DBMs lack intra-layer
connections. DBMs are less closely tied to RBMs than DBNs are. When initializing a
DBM from a stack of RBMs, it is necessary to modify the RBM parameters slightly. Some
kinds of DBMs may be trained without first training a set of RBMs.
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We begin with the binary version of the restricted Boltzmann machine, but as
we see later there are extensions to other types of visible and hidden units.

More formally, let the observed layer consist of a set of n v binary random
variables which we refer to collectively with the vector v. We refer to the latent or
hidden layer of nh binary random variables as .h

Like the general Boltzmann machine, the restricted Boltzmann machine is an
energy-based model with the joint probability distribution specified by its energy
function:

P ,( = v v h = ) =h
1

Z
exp ( ( ))−E v h, . (20.4)

The energy function for an RBM is given by

E ,(v h b) = − >v c− >h v− >Wh, (20.5)

and is the normalizing constant known as the partition function:Z

Z =
X
v

X
h

exp ( ){−E v h, } . (20.6)

It is apparent from the definition of the partition function Z that the naive method
of computing Z (exhaustively summing over all states) could be computationally
intractable, unless a cleverly designed algorithm could exploit regularities in the
probability distribution to compute Z faster. In the case of restricted Boltzmann
machines, ( ) formally proved that the partition functionLong and Servedio 2010 Z

is intractable. The intractable partition function Z implies that the normalized
joint probability distribution is also intractable to evaluate.P ( )v

Though P (v) is intractable, the bipartite graph structure of the RBM has the
very special property that its conditional distributions P(h v| ) and P (v h| ) are
factorial and relatively simple to compute and to sample from.

Deriving the conditional distributions from the joint distribution is straightfor-
ward:

P ( ) =h v| P ,(h v)

P ( )v
(20.7)

=
1

P ( )v

1

Z
exp

n
b>v c+ >h v+ >Wh

o
(20.8)

=
1

Z 0 expnc
>h v+ >Who (20.9)
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=
1

Z 0 exp



nX
j=1

cjhj +

nX
j=1

v>W:,jhj


 (20.10)

=
1

Z 0

nY
j=1

exp
n
cjhj + v>W:,jhj

o
(20.11)

Since we are conditioning on the visible units v , we can treat these as constant
with respect to the distribution P (h v| ). The factorial nature of the conditional
P (h v| ) follows immediately from our ability to write the joint probability over
the vector h as the product of (unnormalized) distributions over the individual
elements, hj . It is now a simple matter of normalizing the distributions over the
individual binary hj.

P h( j = 1 ) =| v P̃ h( j = 1 )| v
P̃ h( j = 0 ) +| v P̃ h( j = 1 )| v

(20.12)

=
exp


cj + v>W:,j


exp 0 + exp{ } {cj + v>W:,j}

(20.13)

= σ

cj + v>W:,j


. (20.14)

We can now express the full conditional over the hidden layer as the factorial
distribution:

P ( ) =h v|
nY
j=1

σ


(2 1) ( +h−  c W>v)

j
. (20.15)

A similar derivation will show that the other condition of interest to us, P (v h| ),
is also a factorial distribution:

P ( ) =v h|
nY
i=1

σ ((2 1) ( + ))v−  b Wh i . (20.16)

Because the RBM admits efficient evaluation and differentiation of P̃ (v) and
efficient MCMC sampling in the form of block Gibbs sampling, it can readily be

trained with any of the techniques described in Chapter for training models18
that have intractable partition functions. This includes CD, SML (PCD), ratio
matching and so on. Compared to other undirected models used in deep learning,
the RBM is relatively straightforward to train because we can compute P(h | v)
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exactly in closed form. Some other deep models, such as the deep Boltzmann
machine, combine both the difficulty of an intractable partition function and the
difficulty of intractable inference.

20.3 Deep Belief Networks

Deep belief networks (DBNs) were one of the first non-convolutional models to
successfully admit training of deep architectures (Hinton 2006 Hintonet al., ; ,

2007b). The introduction of deep belief networks in 2006 began the current deep
learning renaissance. Prior to the introduction of deep belief networks, deep models
were considered too difficult to optimize. Kernel machines with convex objective
functions dominated the research landscape. Deep belief networks demonstrated
that deep architectures can be successful, by outperforming kernelized support
vector machines on the MNIST dataset ( , ). Today, deep beliefHinton et al. 2006
networks have mostly fallen out of favor and are rarely used, even compared to
other unsupervised or generative learning algorithms, but they are still deservedly
recognized for their important role in deep learning history.

Deep belief networks are generative models with several layers of latent variables.
The latent variables are typically binary, while the visible units may be binary

or real. There are no intra-layer connections. Usually, every unit in each layer is
connected to every unit in each neighboring layer, though it is possible to construct
more sparsely connected DBNs. The connections between the top two layers are
undirected. The connections between all other layers are directed, with the arrows
pointed toward the layer that is closest to the data. See Fig. b for an example.20.1

A DBN with l hidden layers contains l weight matrices: W (1), . . . ,W( )l . It
also contains l+ 1 bias vectors: b (0), . . . , b( )l , with b(0) providing the biases for the
visible layer. The probability distribution represented by the DBN is given by

P (h( )l ,h( 1)l− ) exp∝

b ( )l h ( )l + b( 1)l− >h( 1)l− + h( 1)l− >W ( )l h( )l


, (20.17)

P h(
( )k
i = 1 | h( +1)k ) = σ


b
( )k
i +W

( +1)k >
:,i h( +1)k


∀ ∀ ∈ −i, k 1, . . . , l 2, (20.18)

P v( i = 1 | h(1)) = σ

b
(0)
i +W

(1)>
:,i h

(1)

∀i. (20.19)

In the case of real-valued visible units, substitute

v ∼ N

v b; (0) +W (1)>h(1),β−1


(20.20)
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with β diagonal for tractability. Generalizations to other exponential family visible
units are straightforward, at least in theory. A DBN with only one hidden layer is
just an RBM.

To generate a sample from a DBN, we first run several steps of Gibbs sampling
on the top two hidden layers. This stage is essentially drawing a sample from
the RBM defined by the top two hidden layers. We can then use a single pass of
ancestral sampling through the rest of the model to draw a sample from the visible
units.

Deep belief networks incur many of the problems associated with both directed
models and undirected models.

Inference in a deep belief network is intractable due to the explaining away
effect within each directed layer, and due to the interaction between the two hidden
layers that have undirected connections. Evaluating or maximizing the standard
evidence lower bound on the log-likelihood is also intractable, because the evidence
lower bound takes the expectation of cliques whose size is equal to the network
width.

Evaluating or maximizing the log-likelihood requires not just confronting the
problem of intractable inference to marginalize out the latent variables, but also
the problem of an intractable partition function within the undirected model of

the top two layers.

To train a deep belief network, one begins by training an RBM to maximize

∼p log p(v) using contrastive divergence or stochastic maximum likelihood.
The parameters of the RBM then define the parameters of the first layer of the
DBN. Next, a second RBM is trained to approximately maximize

∼p ∼p (h |v) log p(2)(h(1) ) (20.21)

where p(1) is the probability distribution represented by the first RBM and p(2)

is the probability distribution represented by the second RBM. In other words,

the second RBM is trained to model the distribution defined by sampling the
hidden units of the first RBM, when the first RBM is driven by the data. This
procedure can be repeated indefinitely, to add as many layers to the DBN as
desired, with each new RBM modeling the samples of the previous one. Each RBM
defines another layer of the DBN. This procedure can be justified as increasing a
variational lower bound on the log-likelihood of the data under the DBN (Hinton
et al., ).2006

In most applications, no effort is made to jointly train the DBN after the greedy
layer-wise procedure is complete. However, it is possible to perform generative
fine-tuning using the wake-sleep algorithm.
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The trained DBN may be used directly as a generative model, but most of the
interest in DBNs arose from their ability to improve classification models. We can
take the weights from the DBN and use them to define an MLP:

h(1) = σ

b(1)+ v>W(1)


. (20.22)

h( )l = σ

b
( )l
i + h( 1)l− >W ( )l


∀ ∈l 2, . . . ,m, (20.23)

After initializing this MLP with the weights and biases learned via generative
training of the DBN, we may train the MLP to perform a classification task. This
additional training of the MLP is an example of discriminative fine-tuning.

This specific choice of MLP is somewhat arbitrary, compared to many of the
inference equations in Chapter that are derived from first principles. This MLP19
is a heuristic choice that seems to work well in practice and is used consistently
in the literature. Many approximate inference techniques are motivated by their
ability to find a maximally variational lower bound on the log-likelihoodtight
under some set of constraints. One can construct a variational lower bound on the
log-likelihood using the hidden unit expectations defined by the DBN’s MLP, but

this is true of probability distribution over the hidden units, and there is noany
reason to believe that this MLP provides a particularly tight bound. In particular,
the MLP ignores many important interactions in the DBN graphical model. The
MLP propagates information upward from the visible units to the deepest hidden
units, but does not propagate any information downward or sideways. The DBN
graphical model has explaining away interactions between all of the hidden units
within the same layer as well as top-down interactions between layers.

While the log-likelihood of a DBN is intractable, it may be approximated with
AIS (Salakhutdinov and Murray 2008, ). This permits evaluating its quality as a
generative model.

The term “deep belief network” is commonly used incorrectly to refer to any

kind of deep neural network, even networks without latent variable semantics.
The term “deep belief network” should refer specifically to models with undirected
connections in the deepest layer and directed connections pointing downward
between all other pairs of consecutive layers.

The term “deep belief network” may also cause some confusion because the
term “belief network” is sometimes used to refer to purely directed models, while
deep belief networks contain an undirected layer. Deep belief networks also share
the acronym DBN with dynamic Bayesian networks (Dean and Kanazawa 1989, ),
which are Bayesian networks for representing Markov chains.
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Figure 20.2: The graphical model for a deep Boltzmann machine with one visible layer
(bottom) and two hidden layers. Connections are only between units in neighboring layers.
There are no intra-layer layer connections.

20.4 Deep Boltzmann Machines

A deep Boltzmann machine DBMor (Salakhutdinov and Hinton 2009a, ) is another
kind of deep, generative model. Unlike the deep belief network (DBN), it is an
entirely undirected model. Unlike the RBM, the DBM has several layers of latent

variables (RBMs have just one). But like the RBM, within each layer, each of the
variables are mutually independent, conditioned on the variables in the neighboring
layers. See Fig. for the graph structure. Deep Boltzmann machines have been20.2
applied to a variety of tasks including document modeling (Srivastava 2013et al., ).

Like RBMs and DBNs, DBMs typically contain only binary units—as we
assume for simplicity of our presentation of the model—but it is straightforward
to include real-valued visible units.

A DBM is an energy-based model, meaning that the the joint probability
distribution over the model variables is parametrized by an energy function E. In
the case of a deep Boltzmann machine with one visible layer, v, and three hidden
layers, h(1) , h(2) and h(3) , the joint probability is given by:

P

v h, (1),h(2),h(3)


=

1

Z( )θ
exp


−E ,(v h (1),h(2) ,h(3); )θ


. (20.24)

To simplify our presentation, we omit the bias parameters below. The DBM energy
function is then defined as follows:

E ,(v h(1),h(2),h(3); ) = θ −v>W(1)h(1) − h(1)>W (2)h(2) − h(2)>W (3)h(3).
(20.25)
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Figure 20.3: A deep Boltzmann machine, re-arranged to reveal its bipartite graph structure.

In comparison to the RBM energy function (Eq. ), the DBM energy20.5
function includes connections between the hidden units (latent variables) in the
form of the weight matrices (W (2) and W (3)). As we will see, these connections
have significant consequences for both the model behavior as well as how we go

about performing inference in the model.

In comparison to fully connected Boltzmann machines (with every unit con-
nected to every other unit), the DBM offers some advantages that are similar to
those offered by the RBM. Specifically, as illustrated in Fig. , the DBM layers20.3
can be organized into a bipartite graph, with odd layers on one side and even layers
on the other. This immediately implies that when we condition on the variables in
the even layer, the variables in the odd layers become conditionally independent.
Of course, when we condition on the variables in the odd layers, the variables in
the even layers also become conditionally independent.

The bipartite structure of the DBM means that we can apply the same equa-
tions we have previously used for the conditional distributions of an RBM to

determine the conditional distributions in a DBM. The units within a layer are
conditionally independent from each other given the values of the neighboring
layers, so the distributions over binary variables can be fully described by the
Bernoulli parameters giving the probability of each unit being active. In our
example with two hidden layers, the activation probabilities are given by:

P v( i = 1 | h(1)) = σ W
(1)
i,: h

(1)

 , (20.26)
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P h(
(1)
i = 1 | v h, (2)) = σ


v>W

(1)
:,i +W

(2)
i,: h

(2)


(20.27)

and
P h(

(2)
k = 1 | h(1)) = σ


h (1)>W

(2)
:,k


. (20.28)

The bipartite structure makes Gibbs sampling in a deep Boltzmann machine

efficient. The naive approach to Gibbs sampling is to update only one variable
at a time. RBMs allow all of the visible units to be updated in one block and all
of the hidden units to be updated in a second block. One might naively assume
that a DBM with l layers requires l+ 1 updates, with each iteration updating a
block consisting of one layer of units. Instead, it is possible to update all of the
units in only two iterations. Gibbs sampling can be divided into two blocks of
updates, one including all even layers (including the visible layer) and the other
including all odd layers. Due to the bipartite DBM connection pattern, given
the even layers, the distribution over the odd layers is factorial and thus can be
sampled simultaneously and independently as a block. Likewise, given the odd
layers, the even layers can be sampled simultaneously and independently as a

block. Efficient sampling is especially important for training with the stochastic
maximum likelihood algorithm.

Deep Boltzmann machines have many interesting properties.

DBMs were developed after DBNs. Compared to DBNs, the posterior distribu-
tion P(h v| ) is simpler for DBMs. Somewhat counterintuitively, the simplicity of
this posterior distribution allows richer approximations of the posterior. In the case

of the DBN, we perform classification using a heuristically motivated approximate
inference procedure, in which we guess that a reasonable value for the mean field
expectation of the hidden units can be provided by an upward pass through the
network in an MLP that uses sigmoid activation functions and the same weights
as the original DBN. Any distribution Q(h) may be used to obtain a variational
lower bound on the log-likelihood. This heuristic procedure therefore allows us to
obtain such a bound. However, the bound is not explicitly optimized in any way, so
the bound may be far from tight. In particular, the heuristic estimate of Q ignores
interactions between hidden units within the same layer as well as the top-down
feedback influence of hidden units in deeper layers on hidden units that are closer
to the input. Because the heuristic MLP-based inference procedure in the DBN

is not able to account for these interactions, the resulting Q is presumably far
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from optimal. In DBMs, all of the hidden units within a layer are conditionally
independent given the other layers. This lack of intra-layer interaction makes it
possible to use fixed point equations to actually optimize the variational lower
bound and find the true optimal mean field expectations (to within some numerical
tolerance).

The use of proper mean field allows the approximate inference procedure for
DBMs to capture the influence of top-down feedback interactions. This makes
DBMs interesting from the point of view of neuroscience, because the human brain
is known to use many top-down feedback connections. Because of this property,

DBMs have been used as computational models of real neuroscientific phenomena
( , ; , ).Series et al. 2010 Reichert et al. 2011

One unfortunate property of DBMs is that sampling from them is relatively
difficult. DBNs only need to use MCMC sampling in their top pair of layers. The
other layers are used only at the end of the sampling process, in one efficient
ancestral sampling pass. To generate a sample from a DBM, it is necessary to
use MCMC across all layers, with every layer of the model participating in every
Markov chain transition.

The conditional distribution over one DBM layer given the neighboring layers is
factorial. In the example of the DBM with two hidden layers, these distributions
are P (v h| (1)), P (h(1) | v h, (2)) and P(h(2) | h(1) ). The distribution over all
hidden layers generally does not factorize because of interactions between layers.
In the example with two hidden layers, P(h(1),h(2) | v) does not factorize due due
to the interaction weightsW (2) between h (1) and h(2) which render these variables
mutually dependent.

As was the case with the DBN, we are left to seek out methods to approximate

the DBM posterior distribution. However, unlike the DBN, the DBM posterior
distribution over their hidden units—while complicated—is easy to approximate
with a approximation (as discussed in Sec. ), specifically a meanvariational 19.4
field approximation. The mean field approximation is a simple form of variational
inference, where we restrict the approximating distribution to fully factorial distri-
butions. In the context of DBMs, the mean field equations capture the bidirectional
interactions between layers. In this section we derive the iterative approximate
inference procedure originally introduced in Salakhutdinov and Hinton 2009a( ).

In variational approximations to inference, we approach the task of approxi-
mating a particular target distribution—in our case, the posterior distribution over
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the hidden units given the visible units—by some reasonably simple family of dis-
tributions. In the case of the mean field approximation, the approximating family
is the set of distributions where the hidden units are conditionally independent.

We now develop the mean field approach for the example with two hidden
layers. Let Q(h(1) ,h(2) | v) be the approximation of P (h(1),h(2) | v). The mean
field assumption implies that

Q(h(1) ,h(2) | v) =
Y
j

Q h(
(1)
j | v)

Y
k

Q h(
(2)
k | v). (20.29)

The mean field approximation attempts to find a member of this family of
distributions that best fits the true posterior P (h (1),h(2) | v). Importantly, the
inference process must be run again to find a different distribution Q every time
we use a new value of .v

One can conceive of many ways of measuring how well Q(h v| ) fits P (h v| ).
The mean field approach is to minimize

KL( ) =Q Pk
X
h

Q(h(1),h(2) | v) log

 
Q(h(1),h(2) | v)

P (h(1),h(2) | v)

!
. (20.30)

In general, we do not have to provide a parametric form of the approximating
distribution beyond enforcing the independence assumptions. The variational
approximation procedure is generally able to recover a functional form of the
approximate distribution. However, in the case of a mean field assumption on
binary hidden units (the case we are developing here) there is no loss of generality
resulting from fixing a parametrization of the model in advance.

We parametrize Q as a product of Bernoulli distributions, that is we associate
the probability of each element of h(1) with a parameter. Specifically, for each j,

ĥ
(1)
j = Q(h

(1)
j = 1 | v), where ĥ

(1)
j ∈ [0 , 1] and for each k , ĥ

(2)
k = Q(h

(2)
k = 1 | v),

where ĥ
(2)
k ∈ [0 1], . Thus we have the following approximation to the posterior:

Q(h(1),h (2) | v) =
Y
j

Q h(
(1)
j | v)

Y
k

Q h(
(2)
k | v) (20.31)

=
Y
j

(ĥ
(1)
j )h (1 − ĥ(1)j )(1−h ) ×

Y
k

(ĥ
(2)
k )h (1 − ĥ(2)k )(1−h ).

(20.32)

Of course, for DBMs with more layers the approximate posterior parametrization
can be extended in the obvious way, exploiting the bipartite structure of the graph
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to update all of the even layers simultaneously and then to update all of the odd
layers simultaneously, following the same schedule as Gibbs sampling.

Now that we have specified our family of approximating distributions Q, it
remains to specify a procedure for choosing the member of this family that best
fits P . The most straightforward way to do this is to use the mean field equations
specified by Eq. . These equations were derived by solving for where the19.56
derivatives of the variational lower bound are zero. They describe in an abstract
manner how to optimize the variational lower bound for any model, simply by
taking expectations with respect to .Q

Applying these general equations, we obtain the update rules (again, ignoring
bias terms):

ĥ
(1)
j = σ

 X
i

viW
(1)
i,j +

X
k

W
(2)
j,k ĥ

(2)
k

!
, j∀ (20.33)

ĥ
(2)
k = σ


X
j

W
(2)
j ,kĥ

(1)
j


 , k.∀ (20.34)

At a fixed point of this system of equations, we have a local maximum of the
variational lower bound L(Q). Thus these fixed point update equations define

an iterative algorithm where we alternate updates of ĥ
(1)
j (using Eq. ) and20.33

updates of ĥ
(2)
k (using Eq. ). On small problems such as MNIST, as few20.34

as ten iterations can be sufficient to find an approximate positive phase gradient
for learning, and fifty usually suffice to obtain a high quality representation of
a single specific example to be used for high-accuracy classification. Extending
approximate variational inference to deeper DBMs is straightforward.

.

Learning in the DBM must confront both the challenge of an intractable
partition function, using the techniques from Chapter , and the challenge of an18
intractable posterior distribution, using the techniques from Chapter .19

As described in Sec. , variational inference allows the construction of a20.4.2
distribution Q(h v| ) that approximates the intractable P(h v| ). Learning then
proceeds by maximizing L (v θ, Q, ), the variational lower bound on the intractable
log-likelihood, .log ( ; )P v θ
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For a deep Boltzmann machine with two hidden layers, is given byL

L( ) =Q,θ
X
i

X
j

viW
(1)
i,j ĥ

(1)
j +

X
j

X
k

ĥ
(1)
j W

(2)
j ,k ĥ

(2)
k − Hlog ( ) +Z θ ( )Q . (20.35)

This expression still contains the log partition function, logZ(θ). Because a deep
Boltzmann machine contains restricted Boltzmann machines as components, the
hardness results for computing the partition function and sampling that apply to
restricted Boltzmann machines also apply to deep Boltzmann machines. This means
that evaluating the probability mass function of a Boltzmann machine requires
approximate methods such as annealed importance sampling. Likewise, training
the model requires approximations to the gradient of the log partition function. See

Chapter for a general description of these methods. DBMs are typically trained18
using stochastic maximum likelihood. Many of the other techniques described in
Chapter are not applicable. Techniques such as pseudolikelihood require the18
ability to evaluate the unnormalized probabilities, rather than merely obtain a
variational lower bound on them. Contrastive divergence is slow for deep Boltzmann
machines because they do not allow efficient sampling of the hidden units given the
visible units—instead, contrastive divergence would require burning in a Markov
chain every time a new negative phase sample is needed.

The non-variational version of stochastic maximum likelihood algorithm was
discussed earlier, in Sec. . Variational stochastic maximum likelihood as applied18.2
to the DBM is given in Algorithm . Recall that we describe a simplified varient20.1

of the DBM that lacks bias parameters; including them is trivial.

Unfortunately, training a DBM using stochastic maximum likelihood (as described
above) from a random initialization usually results in failure. In some cases, the
model fails to learn to represent the distribution adequately. In other cases, the
DBM may represent the distribution well, but with no higher likelihood than could
be obtained with just an RBM. A DBM with very small weights in all but the first

layer represents approximately the same distribution as an RBM.

Various techniques that permit joint training have been developed and are
described in Sec. . However, the original and most popular method for20.4.5
overcoming the joint training problem of DBMs is greedy layer-wise pretraining.
In this method, each layer of the DBM is trained in isolation as an RBM. The
first layer is trained to model the input data. Each subsequent RBM is trained to
model samples from the previous RBM’s posterior distribution. After all of the
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Algorithm 20.1 The variational stochastic maximum likelihood algorithm for
training a DBM with two hidden layers.

Set , the step size, to a small positive number
Set k , the number of Gibbs steps, high enough to allow a Markov chain of
p(v h, (1),h(2) ;θ +∆θ ) to burn in, starting from samples from p(v h, (1),h(2) ;θ).
Initialize three matrices, Ṽ , H̃ (1) and H̃(2) each with m columns set to random
values (e.g., from Bernoulli distributions, possibly with marginals matched to
the model’s marginals).
while not converged (learning loop) do
Sample a minibatch of m examples from the training data and arrange them
as the rows of a design matrix .V
Initialize matrices Ĥ (1) and Ĥ(2), possibly to the model’s marginals.
while not converged (mean field inference loop) do

Ĥ (1) ← σ

VW (1) + Ĥ(2)W (2)>


.

Ĥ (2) ← σ

Ĥ(1)W (2)


.

end while
∆W ← 1

mV
>Ĥ (1)

∆W ← 1
mĤ

(1) >Ĥ (2)

for dol k= 1 to (Gibbs sampling)
Gibbs block 1:
∀i, j, Ṽi,j sampled from P (Ṽi,j = 1) = σ


W

(1)
j,: H̃

(1)
i,:


.

∀i, j, H̃(2)i,j sampled from P (H̃
(2)
i,j = 1) = σ


H̃
(1)
i,: W

(2)
:,j


.

Gibbs block 2:

∀i, j, H̃(1)i,j sampled from P (H̃
(1)
i,j = 1) = σ


Ṽi,:W

(1)
:,j + H̃

(2)
i,: W

(2)>
j,:


.

end for
∆W ← ∆W − 1

mV
>H̃ (1)

∆W ← ∆W − 1
mH̃

(1)>H̃ (2)

W (1) ←W (1) + ∆W (this is a cartoon illustration, in practice use a more
effective algorithm, such as momentum with a decaying learning rate)
W (2) ←W (2) + ∆ W

end while
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RBMs have been trained in this way, they can be combined to form a DBM. The
DBM may then be trained with PCD. Typically PCD training will make only a
small change in the model’s parameters and its performance as measured by the
log-likelihood it assigns to the data, or its ability to classify inputs. See Fig. 20.4
for an illustration of the training procedure.

This greedy layer-wise training procedure is not just coordinate ascent. It bears
some passing resemblance to coordinate ascent because we optimize one subset of
the parameters at each step. However, in the case of the greedy layer-wise training
procedure, we actually use a different objective function at each step.

Greedy layer-wise pretraining of a DBM differs from greedy layer-wise pre-
training of a DBN. The parameters of each individual RBM may be copied to
the corresponding DBN directly. In the case of the DBM, the RBM parameters
must be modified before inclusion in the DBM. A layer in the middle of the stack
of RBMs is trained with only bottom-up input, but after the stack is combined
to form the DBM, the layer will have both bottom-up and top-down input. To
account for this effect, Salakhutdinov and Hinton 2009a( ) advocate dividing the
weights of all but the top and bottom RBM in half before inserting them into the
DBM. Additionally, the bottom RBM must be trained using two “copies” of each
visible unit and the weights tied to be equal between the two copies. This means
that the weights are effectively doubled during the upward pass. Similarly, the top

RBM should be trained with two copies of the topmost layer.

Obtaining the state of the art results with the deep Boltzmann machine requires
a modification of the standard SML algorithm, which is to use a small amount of
mean field during the negative phase of the joint PCD training step (Salakhutdinov
and Hinton 2009a, ). Specifically, the expectation of the energy gradient should
be computed with respect to the mean field distribution in which all of the units
are independent from each other. The parameters of this mean field distribution
should be obtained by running the mean field fixed point equations for just one
step. See Goodfellow 2013bet al. ( ) for a comparison of the performance of centered
DBMs with and without the use of partial mean field in the negative phase.

Classic DBMs require greedy unsupervised pretraining, and to perform classification
well, require a separate MLP-based classifier on top of the hidden features they
extract. This has some undesirable properties. It is hard to track performance
during training because we cannot evaluate properties of the full DBM while
training the first RBM. Thus, it is hard to tell how well our hyperparameters
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Figure 20.4: The deep Boltzmann machine training procedure used to classify the MNIST
dataset (Salakhutdinov and Hinton 2009a Srivastava 2014, ; et al., ). Train an RBM(a)
by using CD to approximately maximize logP (v). Train a second RBM that models(b)
h and target class y by using CD-k to approximately maximize logP (h ,y ) where
h is drawn from the first RBM’s posterior conditioned on the data. Increase k from 1
to 20 during learning. Combine the two RBMs into a DBM. Train it to approximately(c)
maximize logP(v, y) using stochastic maximum likelihood with k = 5. Delete(d) y from
the model. Define a new set of features h and h 2) that are obtained by running mean
field inference in the model lacking y. Use these features as input to an MLP whose
structure is the same as an additional pass of mean field, with an additional output layer
for the estimate of y. Initialize the MLP’s weights to be the same as the DBM’s weights.
Train the MLP to approximately maximize logP (y | v) using stochastic gradient descent
and dropout. Figure reprinted from (Goodfellow 2013bet al., ).
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are working until quite late in the training process. Software implementations
of DBMs need to have many different components for CD training of individual
RBMs, PCD training of the full DBM, and training based on back-propagation
through the MLP. Finally, the MLP on top of the Boltzmann machine loses many
of the advantages of the Boltzmann machine probabilistic model, such as being
able to perform inference when some input values are missing.

There are two main ways to resolve the joint training problem of the deep
Boltzmann machine. The first is the centered deep Boltzmann machine (Montavon
and Muller 2012, ), which reparametrizes the model in order to make the Hessian of

the cost function better-conditioned at the beginning of the learning process. This
yields a model that can be trained without a greedy layer-wise pretraining stage.
The resulting model obtains excellent test set log-likelihood and produces high
quality samples. Unfortunately, it remains unable to compete with appropriately
regularized MLPs as a classifier. The second way to jointly train a deep Boltzmann
machine is to use a multi-prediction deep Boltzmann machine (Goodfellow et al.,
2013b). This model uses an alternative training criterion that allows the use
of the back-propagation algorithm in order to avoid the problems with MCMC
estimates of the gradient. Unfortunately, the new criterion does not lead to good
likelihood or samples, but, compared to the MCMC approach, it does lead to
superior classification performance and ability to reason well about missing inputs.

The centering trick for the Boltzmann machine is easiest to describe if we
return to the general view of a Boltzmann machine as consisting of a set of units x
with a weight matrix U and biases b. Recall from Eq. that he energy function20.2
is given by

E( ) = x −x>Ux b− >x. (20.36)

Using different sparsity patterns in the weight matrix U , we can implement
structures of Boltzmann machines, such as RBMs, or DBMs with different numbers
of layers. This is accomplished by partitioning x into visible and hidden units and
zeroing out elements of U for units that do not interact. The centered Boltzmann
machine introduces a vector that is subtracted from all of the states:µ

E0( ; ) = ( )x U b, − x µ− >U x µ x µ( − ) (− − )>b. (20.37)

Typically µ is a hyperparameter fixed at the beginning of training. It is usu-
ally chosen to make sure that x µ− ≈ 0 when the model is initialized. This
reparametrization does not change the set of probability distributions that the
model can represent, but it does change the dynamics of stochastic gradient descent
applied to the likelihood. Specifically, in many cases, this reparametrization results
in a Hessian matrix that is better conditioned. Melchior 2013et al. ( ) experimentally
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confirmed that the conditioning of the Hessian matrix improves, and observed
that the centering trick is equivalent to another Boltzmann machine learning
technique, the enhanced gradient ( , ). The improved conditioning ofCho et al. 2011
the Hessian matrix allows learning to succeed, even in difficult cases like training a
deep Boltzmann machine with multiple layers.

The other approach to jointly training deep Boltzmann machines is the multi-
prediction deep Boltzmann machine (MP-DBM) which works by viewing the mean
field equations as defining a family of recurrent networks for approximately solving
every possible inference problem ( , ). Rather than trainingGoodfellow et al. 2013b

the model to maximize the likelihood, the model is trained to make each recurrent
network obtain an accurate answer to the corresponding inference problem. The
training process is illustrated in Fig. . It consists of randomly sampling a20.5
training example, randomly sampling a subset of inputs to the inference network,
and then training the inference network to predict the values of the remaining
units.

This general principle of back-propagating through the computational graph
for approximate inference has been applied to other models (Stoyanov 2011et al., ;
Brakel 2013et al., ). In these models and in the MP-DBM, the final loss is not
the lower bound on the likelihood. Instead, the final loss is typically based on
the approximate conditional distribution that the approximate inference network

imposes over the missing values. This means that the training of these models
is somewhat heuristically motivated. If we inspect the p(v ) represented by the
Boltzmann machine learned by the MP-DBM, it tends to be somewhat defective,
in the sense that Gibbs sampling yields poor samples.

Back-propagation through the inference graph has two main advantages. First,
it trains the model as it is really used—with approximate inference. This means
that approximate inference, for example, to fill in missing inputs, or to perform
classification despite the presence of missing inputs, is more accurate in the MP-
DBM than in the original DBM. The original DBM does not make an accurate
classifier on its own; the best classification results with the original DBM were
based on training a separate classifier to use features extracted by the DBM,

rather than by using inference in the DBM to compute the distribution over the
class labels. Mean field inference in the MP-DBM performs well as a classifier
without special modifications. The other advantage of back-propagating through
approximate inference is that back-propagation computes the exact gradient of
the loss. This is better for optimization than the approximate gradients of SML
training, which suffer from both bias and variance. This probably explains why MP-
DBMs may be trained jointly while DBMs require a greedy layer-wise pretraining.
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Figure 20.5: An illustration of the multi-prediction training process for a deep Boltzmann
machine. Each row indicates a different example within a minibatch for the same training
step. Each column represents a time step within the mean field inference process. For
each example, we sample a subset of the data variables to serve as inputs to the inference
process. These variables are shaded black to indicate conditioning. We then run the
mean field inference process, with arrows indicating which variables influence which other
variables in the process. In practical applications, we unroll mean field for several steps.
In this illustration, we unroll for only two steps. Dashed arrows indicate how the process
could be unrolled for more steps. The data variables that were not used as inputs to the
inference process become targets, shaded in gray. We can view the inference process for
each example as a recurrent network. We use gradient descent and back-propagation to
train these recurrent networks to produce the correct targets given their inputs. This
trains the mean field process for the MP-DBM to produce accurate estimates. Figure
adapted from ( ).Goodfellow et al. 2013b
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The disadvantage of back-propagating through the approximate inference graph is
that it does not provide a way to optimize the log-likelihood, but rather a heuristic
approximation of the generalized pseudolikelihood.

The MP-DBM inspired the NADE-k (Raiko 2014et al., ) extension to the
NADE framework, which is described in Sec. .20.10.10

The MP-DBM has some connections to dropout. Dropout shares the same pa-
rameters among many different computational graphs, with the difference between
each graph being whether it includes or excludes each unit. The MP-DBM also

shares parameters across many computational graphs. In the case of the MP-DBM,
the difference between the graphs is whether each input unit is observed or not.
When a unit is not observed, the MP-DBM does not delete it entirely as in the
case of dropout. Instead, the MP-DBM treats it as a latent variable to be inferred.
One could imagine applying dropout to the MP-DBM by additionally removing
some units rather than making them latent.

20.5 Boltzmann Machines for Real-Valued Data

While Boltzmann machines were originally developed for use with binary data,
many applications such as image and audio modeling seem to require the ability
to represent probability distributions over real values. In some cases, it is possible
to treat real-valued data in the interval [0, 1] as representing the expectation of a
binary variable. For example, Hinton 2000( ) treats grayscale images in the training
set as defining [0,1] probability values. Each pixel defines the probability of a
binary value being 1, and the binary pixels are all sampled independently from
each other. This is a common procedure for evaluating binary models on grayscale

image datasets. However, it is not a particularly theoretically satisfying approach,
and binary images sampled independently in this way have a noisy appearance. In
this section, we present Boltzmann machines that define a probability density over
real-valued data.

Restricted Boltzmann machines may be developed for many exponential family
conditional distributions (Welling 2005et al., ). Of these, the most common is the
RBM with binary hidden units and real-valued visible units, with the conditional
distribution over the visible units being a Gaussian distribution whose mean is a
function of the hidden units.

There are many ways of parametrizing Gaussian-Bernoulli RBMs. First, we may
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choose whether to use a covariance matrix or a precision matrix for the Gaussian
distribution. Here we present the precision formulation. The modification to obtain
the covariance formulation is straightforward. We wish to have the conditional
distribution

p ,( ) = ( ;v h| N v Wh β−1). (20.38)

We can find the terms we need to add to the energy function by expanding the
unnormalized log conditional distribution:

log ( ;N v Wh β, −1 ) = −1

2
( )v Wh− >β v Wh β( − ) + (f ). (20.39)

Here f encapsulates all the terms that are a function only of the parameters
and not the random variables in the model. We can discard f because its only
role is to normalize the distribution, and the partition function of whatever energy

function we choose will carry out that role.

If we include all of the terms (with their sign flipped) involving v from Eq. 20.39
in our energy function and do not add any other terms involving v , then our energy
function will represent the desired conditional .p( )v h|

We have some freedom regarding the other conditional distribution, p(h v| ).
Note that Eq. contains a term20.39

1

2
h>W >βWh. (20.40)

This term cannot be included in its entirety because it includes h ihj terms. These

correspond to edges between the hidden units. If we included these terms, we
would have a linear factor model instead of a restricted Boltzmann machine.
When designing our Boltzmann machine, we simply omit these hih j cross terms.
Omitting them does not change the conditional p(v h| ) so Eq. is still20.39
respected. However, we still have a choice about whether to include the terms
involving only a single hi . If we assume a diagonal precision matrix, we find that
for each hidden unit hi we have a term

1

2
hi

X
j

βjW
2
j,i. (20.41)

In the above, we used the fact that h2i = hi because hi ∈ {0, 1}. If we include this
term (with its sign flipped) in the energy function, then it will naturally bias h i
to be turned off when the weights for that unit are large and connected to visible
units with high precision. The choice of whether or not to include this bias term
does not affect the family of distributions the model can represent (assuming that
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we include bias parameters for the hidden units) but it does affect the learning
dynamics of the model. Including the term may help the hidden unit activations
remain reasonable even when the weights rapidly increase in magnitude.

One way to define the energy function on a Gaussian-Bernoulli RBM is thus

E ,(v h) =
1

2
v>( ) ( )β v − v β >Wh b− >h (20.42)

but we may also add extra terms or parametrize the energy in terms of the variance
rather than precision if we choose.

In this derivation, we have not included a bias term on the visible units, but one
could easily be added. One final source of variability in the parametrization of a
Gaussian-Bernoulli RBM is the choice of how to treat the precision matrix. It may
either be fixed to a constant (perhaps estimated based on the marginal precision
of the data) or learned. It may also be a scalar times the identity matrix, or it
may be a diagonal matrix. Typically we do not allow the precision matrix to be
non-diagonal in this context, because some operations would then require inverting
the matrix. In the sections ahead, we will see that other forms of Boltzmann

machines permit modeling the covariance structure, using various techniques to
avoid inverting the precision matrix.

While the Gaussian RBM has been the canonical energy model for real-valued
data, ( ) argue that the Gaussian RBM inductive bias is notRanzato et al. 2010a
well suited to the statistical variations present in some types of real-valued data,
especially natural images. The problem is that much of the information content

present in natural images is embedded in the covariance between pixels rather than
in the raw pixel values. In other words, it is the relationships between pixels and
not their absolute values where most of the useful information in images resides.
Since the Gaussian RBM only models the conditional mean of the input given the
hidden units, it cannot capture conditional covariance information. In response
to these criticisms, alternative models have been proposed that attempt to better
account for the covariance of real-valued data. These models include the mean and
covariance RBM (mcRBM ), the mean-product of t-distribution (mPoT) model
and the spike and slab RBM (ssRBM).

The term “mcRBM” is pronounced by saying the name of the letters M-C-R-B-M; the “mc”
is not pronounced like the “Mc” in “McDonald’s.”
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Mean and Covariance RBM The mcRBM uses its hidden units to indepen-
dently encode the conditional mean and covariance of all observed units. The
mcRBM hidden layer is divided into two groups of units: mean units and covariance
units. The group that models the conditional mean is simply a Gaussian RBM.
The other half is a covariance RBM ( , ), also called a cRBM,Ranzato et al. 2010a
whose components model the conditional covariance structure, as described below.

Specifically, with binary mean units h( )m and binary covariance units h( )c , the
mcRBM model is defined as the combination of two energy functions:

Emc(x h,
( )m ,h( )c ) = Em(x h, ( )m ) + Ec(x h,

( )c ), (20.43)

where Em is the standard Gaussian-Bernoulli RBM energy function:

Em(x h, ( )m ) = −1

2
x>x−

X
j

x>W:,jh
( )m
j −

X
j

b
( )m
j h

( )m
j , (20.44)

and Ec is the cRBM energy function that models the conditional covariance
information:

Ec (x h,
( )c ) = −1

2

X
j

h
( )c
j


x>r( )j

2
−

X
j

b
( )c
j h

( )c
j . (20.45)

The parameter r( )j corresponds to the covariance weight vector associated with

h
( )c
j and b( )c is a vector of covariance offsets. The combined energy function defines

a joint distribution:

pmc(x h,
( )m ,h( )c ) =

1

Z
exp

n
−Emc (x h, ( )m ,h( )c )

o
, (20.46)

and a corresponding conditional distribution over the observations given h( )m and
h( )c as a multivariate Gaussian distribution:

pmc (x h| ( )m , h( )c ) = N


Cmc

x h|


X

j

W:,jh
( )m
j


 ,Cmcx h|


 . (20.47)

Note that the covariance matrix Cmc
x h| =

P
j hjr

( )j r ( )j > + I


−1

is non-diagonal

and thatW is the weight matrix associated with the Gaussian RBM modeling the

This version of the Gaussian-Bernoulli RBM energy function assumes the image data has

zero mean, per pixel. Pixel offsets can easily be added to the model to account for nonzero pixel
means.
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conditional means. It is difficult to train the mcRBM via contrastive divergence or
persistent contrastive divergence because of its non-diagonal conditional covariance
structure. CD and PCD require sampling from the joint distribution of x h, ( )m ,h( )c

which, in a standard RBM, is accomplished by Gibbs sampling over the conditionals.
However, in the mcRBM, sampling from pmc(x h| ( )m ,h ( )c ) requires computing
(Cmc)−1 at every iteration of learning. This can be an impractical computational
burden for larger observations. ( ) avoid direct samplingRanzato and Hinton 2010
from the conditional pmc(x h| ( )m ,h( )c ) by sampling directly from the marginal
p(x) using Hamiltonian (hybrid) Monte Carlo ( , ) on the mcRBM freeNeal 1993

energy.

Mean-Product of Student’s -distributionst The mean-product of Student’s
t-distribution (mPoT) model ( , ) extends the PoTmodel (Ranzato et al. 2010b Welling
et al., ) in a manner similar to how the mcRBM extends the cRBM. This2003a
is achieved by including nonzero Gaussian means by the addition of Gaussian
RBM-like hidden units. Like the mcRBM, the PoT conditional distribution over the
observation is a multivariate Gaussian (with non-diagonal covariance) distribution;
however, unlike the mcRBM, the complementary conditional distribution over the
hidden variables is given by conditionally independent Gamma distributions. The
Gamma distribution G(k, θ) is a probability distribution over positive real numbers,
with mean kθ. It is not necessary to have a more detailed understanding of the

Gamma distribution to understand the basic ideas underlying the mPoT model.

The mPoT energy function is:

EmPoT(x h, ( )m ,h( )c ) (20.48)

= Em(x h, ( )m ) +
X
j


h
( )c
j


1 +

1

2


r ( )j >x

2
+ (1 − γj) logh

( )c
j



(20.49)

where r( )j is the covariance weight vector associated with unit h
( )c
j and Em(x h, ( )m )

is as defined in Eq. .20.44

Just as with the mcRBM, the mPoT model energy function specifies a mul-
tivariate Gaussian, with a conditional distribution over x that has non-diagonal
covariance. The covariance units h( )c are conditionally Gamma-distributed:

pmPoT(h
( )c
j | Gx) = 


γj , 1 +

1

2


v ( )j >x


2


(20.50)

Learning in the mPoT model—again, like the mcRBM—is complicated by the in-
ability to sample from the non-diagonal Gaussian conditional pmPoT(x h| ( )m ,h ( )c ),
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so ( ) also advocate direct sampling ofRanzato et al. 2010b p(x) via Hamiltonian
(hybrid) Monte Carlo.

Spike and Slab Restricted Boltzmann Machines Spike and slab restricted
Boltzmann machines ( , ) or ssRBMs provide another meansCourville et al. 2011
of modeling the covariance structure of real-valued data. Compared to mcRBMs,
ssRBMs have the advantage of requiring neither matrix inversion nor Hamiltonian
Monte Carlo methods. As a model of natural images, the ssRBM is interesting
in that, like the mcRBM and the mPoT model, its binary hidden units encode
the conditional covariance across pixels through the use of auxiliary real-valued
variables.

The spike and slab RBM has two sets of hidden units: binary unitsspike h,
and real-valued unitsslab s . The mean of the visible units conditioned on the
hidden units is given by (h s )W >. In other words, each column W:,i defines a

component that can appear in the input when hi = 1. The corresponding spike
variable hi determines whether that component is present at all. The corresponding
slab variable si determines the intensity of that component, if it is present. When
a spike variable is active, the corresponding slab variable adds variance to the
input along the axis defined byW:,i. This allows us to model the covariance of the
inputs. Fortunately, contrastive divergence and persistent contrastive divergence
with Gibbs sampling are still applicable. There is no need to invert any matrix.

Formally, the ssRBM model is defined via its energy function:

Ess( ) =x s h, , −
X
i

x>W :,isihi +
1

2
x>

 
Λ +

X
i

Φ ih i

!
x (20.51)

+
1

2

X
i

αis
2
i −

X
i

αiµisihi −
X
i

bihi +
X
i

αiµ
2
i hi, (20.52)

where bi is the offset of the spike h i and Λ is a diagonal precision matrix on the
observations x. The parameter α i > 0 is a scalar precision parameter for the
real-valued slab variable si. The parameter Φi is a non-negative diagonal matrix
that defines an h-modulated quadratic penalty on x. Each µi is a mean parameter
for the slab variable si.

With the joint distribution defined via the energy function, it is relatively
straightforward to derive the ssRBM conditional distributions. For example,
by marginalizing out the slab variables s, the conditional distribution over the

observations given the binary spike variables is given by:h

pss ( ) =x h| 1

P ( )h

1

Z Z exp ( ){−E x s h, , } ds (20.53)
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= N
 
Cssx h|

X
i

W:,iµihi , C
ss
x h|

!
(20.54)

where C =

Λ +

P
Φ h −

P
α h W W


. The last equality holds only if

the covariance matrix C ss
x h| is positive definite.

Gating by the spike variables means that the true marginal distribution over
h s is sparse. This is different from sparse coding, where samples from the model
“almost never” (in the measure theoretic sense) contain zeros in the code, and MAP
inference is required to impose sparsity.

Comparing the ssRBM to the mcRBM and the mPoT models, the ssRBM

parametrizes the conditional covariance of the observation in a significantly different
way. The mcRBM and mPoT both model the covariance structure of the observation

as
P

jh
( )c
j r

( )j r( )j > + I
−1

, using the activation of the hidden units hj > 0 to

enforce constraints on the conditional covariance in the direction r ( )j . In contrast,
the ssRBM specifies the conditional covariance of the observations using the hidden
spike activations hi = 1 to pinch the precision matrix along the direction specified
by the corresponding weight vector. The ssRBM conditional covariance is very
similar to that given by a different model: the product of probabilistic principal
components analysis (PoPPCA) (Williams and Agakov 2002, ). In the overcomplete

setting, sparse activations with the ssRBM parametrization permit significant
variance (above the nominal variance given by Λ−1) only in the selected directions
of the sparsely activated hi. In the mcRBM or mPoT models, an overcomplete
representation would mean that to capture variation in a particular direction in
the observation space requires removing potentially all constraints with positive
projection in that direction. This would suggest that these models are less well
suited to the overcomplete setting.

The primary disadvantage of the spike and slab restricted Boltzmann machine
is that some settings of the parameters can correspond to a covariance matrix
that is not positive definite. Such a covariance matrix places more unnormalized
probability on values that are farther from the mean, causing the integral over

all possible outcomes to diverge. Generally this issue can be avoided with simple
heuristic tricks. There is not yet any theoretically satisfying solution. Using
constrained optimization to explicitly avoid the regions where the probability is
undefined is difficult to do without being overly conservative and also preventing
the model from accessing high-performing regions of parameter space.

Qualitatively, convolutional variants of the ssRBM produce excellent samples
of natural images. Some examples are shown in Fig. .16.1
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The ssRBM allows for several extensions. Including higher-order interactions
and average-pooling of the slab variables ( , ) enables the modelCourville et al. 2014
to learn excellent features for a classifier when labeled data is scarce. Adding a
term to the energy function that prevents the partition function from becoming
undefined results in a sparse coding model, spike and slab sparse coding (Goodfellow
et al., ), also known as S3C.2013d

20.6 Convolutional Boltzmann Machines

As seen in Chapter , extremely high dimensional inputs such as images place9
great strain on the computation, memory and statistical requirements of machine
learning models. Replacing matrix multiplication by discrete convolution with a
small kernel is the standard way of solving these problems for inputs that have
translation invariant spatial or temporal structure. ( )Desjardins and Bengio 2008
showed that this approach works well when applied to RBMs.

Deep convolutional networks usually require a pooling operation so that the
spatial size of each successive layer decreases. Feedforward convolutional networks
often use a pooling function such as the maximum of the elements to be pooled.
It is unclear how to generalize this to the setting of energy-based models. We

could introduce a binary pooling unit p over n binary detector units d and enforce
p = maxi di by setting the energy function to be ∞ whenever that constraint is
violated. This does not scale well though, as it requires evaluating 2n different
energy configurations to compute the normalization constant. For a small 3 ×3
pooling region this requires 29 = 512 energy function evaluations per pooling unit!

Lee 2009et al. ( ) developed a solution to this problem called probabilistic max
pooling (not to be confused with “stochastic pooling,” which is a technique for
implicitly constructing ensembles of convolutional feedforward networks). The
strategy behind probabilistic max pooling is to constrain the detector units so
at most one may be active at a time. This means there are only n+ 1 total
states (one state for each of the n detector units being on, and an additional state

corresponding to all of the detector units being off). The pooling unit is on if
and only if one of the detector units is on. The state with all units off is assigned
energy zero. We can think of this as describing a model with a single variable that
has n+ 1 states, or equivalently as a model that has n + 1 variables that assigns
energy to all but joint assignments of variables.∞ n+ 1

While efficient, probabilistic max pooling does force the detector units to be
mutually exclusive, which may be a useful regularizing constraint in some contexts
or a harmful limit on model capacity in other contexts. It also does not support
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overlapping pooling regions. Overlapping pooling regions are usually required
to obtain the best performance from feedforward convolutional networks, so this
constraint probably greatly reduces the performance of convolutional Boltzmann
machines.

Lee 2009et al. ( ) demonstrated that probabilistic max pooling could be used
to build convolutional deep Boltzmann machines. This model is able to perform
operations such as filling in missing portions of its input. While intellectually
appealing, this model is challenging to make work in practice, and usually does
not perform as well as a classifier as traditional convolutional networks trained

with supervised learning.

Many convolutional models work equally well with inputs of many different
spatial sizes. For Boltzmann machines, it is difficult to change the input size
for a variety of reasons. The partition function changes as the size of the input
changes. Moreover, many convolutional networks achieve size invariance by scaling
up the size of their pooling regions proportional to the size of the input, but scaling
Boltzmann machine pooling regions is awkward. Traditional convolutional neural
networks can use a fixed number of pooling units and dynamically increase the
size of their pooling regions in order to obtain a fixed-size representation of a
variable-sized input. For Boltzmann machines, large pooling regions become too
expensive for the naive approach. The approach of ( ) of makingLee et al. 2009

each of the detector units in the same pooling region mutually exclusive solves
the computational problems, but still does not allow variable-size pooling regions.
For example, suppose we learn a model with 2 × 2 probabilistic max pooling over
detector units that learn edge detectors. This enforces the constraint that only
one of these edges may appear in each 2× 2 region. If we then increase the size of
the input image by 50% in each direction, we would expect the number of edges to
increase correspondingly. Instead, if we increase the size of the pooling regions by
50% in each direction to 3× 3, then the mutual exclusivity constraint now specifies
that each of these edges may only appear once in a 3 × 3 region. As we grow
a model’s input image in this way, the model generates edges with less density.
Of course, these issues only arise when the model must use variable amounts of

pooling in order to emit a fixed-size output vector. Models that use probabilistic
max pooling may still accept variable-sized input images so long as the output of
the model is a feature map that can scale in size proportional to the input image.

Pixels at the boundary of the image also pose some difficulty, which is exac-

The publication describes the model as a “deep belief network” but because it can be described
as a purely undirected model with tractable layer-wise mean field fixed point updates, it best fits
the definition of a deep Boltzmann machine.
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erbated by the fact that connections in a Boltzmann machine are symmetric. If
we do not implicitly zero-pad the input, then there are fewer hidden units than
visible units, and the visible units at the boundary of the image are not modeled
well because they lie in the receptive field of fewer hidden units. However, if we do
implicitly zero-pad the input, then the hidden units at the boundary are driven by
fewer input pixels, and may fail to activate when needed.

20.7 Boltzmann Machines for Structured or Sequential

Outputs

In the structured output scenario, we wish to train a model that can map from
some input x to some output y, and the different entries of y are related to each
other and must obey some constraints. For example, in the speech synthesis task,
y is a waveform, and the entire waveform must sound like a coherent utterance.

A natural way to represent the relationships between the entries in y is to
use a probability distribution p(y | x). Boltzmann machines, extended to model
conditional distributions, can supply this probabilistic model.

The same tool of conditional modeling with a Boltzmann machine can be used
not just for structured output tasks, but also for sequence modeling. In the latter
case, rather than mapping an input x to an output y, the model must estimate a
probability distribution over a sequence of variables, p(x(1), . . . ,x( )τ ). Conditional

Boltzmann machines can represent factors of the form p(x( )t | x(1), . . . ,x( 1)t− ) in
order to accomplish this task.

An important sequence modeling task for the video game and film industry
is modeling sequences of joint angles of skeletons used to render 3-D characters.
These sequences are often collected using motion capture systems to record the
movements of actors. A probabilistic model of a character’s movement allows
the generation of new, previously unseen, but realistic animations. To solve
this sequence modeling task, Taylor 2007et al. ( ) introduced a conditional RBM
modeling p(x( )t | x( 1)t− , . . . ,x( )t m− ) for small m. The model is an RBM over
p(x( )t ) whose bias parameters are a linear function of the preceding m values of x.
When we condition on different values of x( 1)t− and earlier variables, we get a new

RBM over x. The weights in the RBM over x never change, but by conditioning on
different past values, we can change the probability of different hidden units in the
RBM being active. By activating and deactivating different subsets of hidden units,
we can make large changes to the probability distribution induced on x . Other
variants of conditional RBM ( , ) and other variants of sequenceMnih et al. 2011
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modeling using conditional RBMs are possible (Taylor and Hinton 2009 Sutskever, ;
et al., ;2009 Boulanger-Lewandowski 2012et al., ).

Another sequence modeling task is to model the distribution over sequences
of musical notes used to compose songs. Boulanger-Lewandowski 2012et al. ( )
introduced the sequence model and applied it to this task. The RNN-RNN-RBM
RBM is a generative model of a sequence of frames x( )t consisting of an RNN
that emits the RBM parameters for each time step. Unlike the model described
above, the RNN emits all of the parameters of the RBM, including the weights.
To train the model, we need to be able to back-propagate the gradient of the

loss function through the RNN. The loss function is not applied directly to the
RNN outputs. Instead, it is applied to the RBM. This means that we must
approximately differentiate the loss with respect to the RBM parameters using
contrastive divergence or a related algorithm. This approximate gradient may then
be back-propagated through the RNN using the usual back-propagation through
time algorithm.

20.8 Other Boltzmann Machines

Many other variants of Boltzmann machines are possible.

Boltzmann machines may be extended with different training criteria. We have
focused on Boltzmann machines trained to approximately maximize the generative
criterion log p(v). It is also possible to train discriminative RBMs that aim to
maximize log p(y | v) instead ( , ). This approach oftenLarochelle and Bengio 2008
performs the best when using a linear combination of both the generative and
the discriminative criteria. Unfortunately, RBMs do not seem to be as powerful
supervised learners as MLPs, at least using existing methodology.

Most Boltzmann machines used in practice have only second-order interactions
in their energy functions, meaning that their energy functions are the sum of many
terms and each individual term only includes the product between two random
variables. An example of such a term is viWi,jhj . It is also possible to train

higher-order Boltzmann machines ( , ) whose energy function termsSejnowski 1987
involve the products between many variables. Three-way interactions between a
hidden unit and two different images can model spatial transformations from one
frame of video to the next ( , , ). Multiplication by aMemisevic and Hinton 2007 2010
one-hot class variable can change the relationship between visible and hidden units
depending on which class is present ( , ). One recent exampleNair and Hinton 2009
of the use of higher-order interactions is a Boltzmann machine with two groups of
hidden units, with one group of hidden units that interact with both the visible
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units v and the class label y, and another group of hidden units that interact only
with the v input values ( , ). This can be interpreted as encouragingLuo et al. 2011
some hidden units to learn to model the input using features that are relevant to
the class but also to learn extra hidden units that explain nuisance details that
are necessary for the samples of v to be realistic but do not determine the class
of the example. Another use of higher-order interactions is to gate some features.
Sohn 2013et al. ( ) introduced a Boltzmann machine with third-order interactions
with binary mask variables associated with each visible unit. When these masking
variables are set to zero, they remove the influence of a visible unit on the hidden

units. This allows visible units that are not relevant to the classification problem
to be removed from the inference pathway that estimates the class.

More generally, the Boltzmann machine framework is a rich space of models
permitting many more model structures than have been explored so far. Developing
a new form of Boltzmann machine requires some more care and creativity than
developing a new neural network layer, because it is often difficult to find an energy
function that maintains tractability of all of the different conditional distributions
needed to use the Boltzmann machine, but despite this required effort the field
remains open to innovation.

20.9 Back-Propagation through Random Operations

Traditional neural networks implement a deterministic transformation of some
input variables x. When developing generative models, we often wish to extend
neural networks to implement stochastic transformations of x. One straightforward
way to do this is to augment the neural network with extra inputs z that are

sampled from some simple probability distribution, such as a uniform or Gaussian
distribution. The neural network can then continue to perform deterministic
computation internally, but the function f(x z, ) will appear stochastic to an
observer who does not have access to z. Provided that f is continuous and
differentiable, we can then compute the gradients necessary for training using
back-propagation as usual.

As an example, let us consider the operation consisting of drawing samples y
from a Gaussian distribution with mean and varianceµ σ2:

y ∼ N (µ, σ2). (20.55)

Because an individual sample of y is not produced by a function, but rather by
a sampling process whose output changes every time we query it, it may seem
counterintuitive to take the derivatives of y with respect to the parameters of
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its distribution, µ and σ2. However, we can rewrite the sampling process as
transforming an underlying random value z ∼ N(z; 0, 1) to obtain a sample from
the desired distribution:

y µ σz= + (20.56)

We are now able to back-propagate through the sampling operation, by regard-
ing it as a deterministic operation with an extra input z. Crucially, the extra input
is a random variable whose distribution is not a function of any of the variables
whose derivatives we want to calculate. The result tells us how an infinitesimal
change in µ or σ would change the output if we could repeat the sampling operation
again with the same value of z.

Being able to back-propagate through this sampling operation allows us to
incorporate it into a larger graph. We can build elements of the graph on top of the
output of the sampling distribution. For example, we can compute the derivatives
of some loss function J(y). We can also build elements of the graph whose outputs

are the inputs or the parameters of the sampling operation. For example, we could
build a larger graph with µ= f(x; θ) and σ= g(x; θ). In this augmented graph,
we can use back-propagation through these functions to derive ∇ θJ y( ).

The principle used in this Gaussian sampling example is more generally appli-
cable. We can express any probability distribution of the form p(y; θ) or p(y | x;θ)
as p(y | ω ), where ω is a variable containing both parameters θ , and if applicable,
the inputs x . Given a value y sampled from distribution p(y | ω), where ω may in
turn be a function of other variables, we can rewrite

y y ∼ p( | ω) (20.57)

as
y z ω= (f ; ), (20.58)

where z is a source of randomness. We may then compute the derivatives of y with
respect toω using traditional tools such as the back-propagation algorithm applied
to f , so long as f is continuous and differentiable almost everywhere. Crucially, ω
must not be a function of z, and z must not be a function of ω. This technique is
often called the reparametrization trick stochastic back-propagation perturbation, or
analysis.

The requirement that f be continuous and differentiable of course requires y
to be continuous. If we wish to back-propagate through a sampling process that
produces discrete-valued samples, it may still be possible to estimate a gradient on
ω, using reinforcement learning algorithms such as variants of the REINFORCE
algorithm ( , ), discussed in Sec. .Williams 1992 20.9.1
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In neural network applications, we typically choose z to be drawn from some
simple distribution, such as a unit uniform or unit Gaussian distribution, and
achieve more complex distributions by allowing the deterministic portion of the
network to reshape its input.

The idea of propagating gradients or optimizing through stochastic operations
dates back to the mid-twentieth century ( , ; , ) and wasPrice 1958 Bonnet 1964
first used for machine learning in the context of reinforcement learning ( ,Williams
1992). More recently, it has been applied to variational approximations (Opper
and Archambeau 2009, ) and stochastic or generative neural networks (Bengio

et al., ; , ;2013b Kingma 2013 Kingma and Welling 2014b a Rezende 2014, , ; et al., ;
Goodfellow 2014cet al., ). Many networks, such as denoising autoencoders or
networks regularized with dropout, are also naturally designed to take noise
as an input without requiring any special reparametrization to make the noise
independent from the model.

When a model emits a discrete variable y, the reparametrization trick is not
applicable. Suppose that the model takes inputs x and parameters θ, both
encapsulated in the vector ω, and combines them with random noise z to produce
y:

y z ω= (f ; ). (20.59)

Because y is discrete, f must be a step function. The derivatives of a step function

are not useful at any point. Right at each step boundary, the derivatives are
undefined, but that is a small problem. The large problem is that the derivatives
are zero almost everywhere, on the regions between step boundaries. The derivatives
of any cost function J(y ) therefore do not give any information for how to update
the model parameters .θ

The REINFORCE algorithm (REward Increment = Non-negative Factor ×
Offset Reinforcement × Characteristic Eligibility) provides a framework defining a
family of simple but powerful solutions ( , ). The core idea is thatWilliams 1992
even though J(f(z;ω)) is a step function with useless derivatives, the expected
cost ∼p( ) J f( ( ; ))z ω is often a smooth function amenable to gradient descent.
Although that expectation is typically not tractable when y is high-dimensional

(or is the result of the composition of many discrete stochastic decisions), it can be
estimated without bias using a Monte Carlo average. The stochastic estimate of
the gradient can be used with SGD or other stochastic gradient-based optimization
techniques.
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The simplest version of REINFORCE can be derived by simply differentiating
the expected cost:

z [ ( )] =J y
X
y

J p( )y ( )y (20.60)

∂ J[ ( )]y

∂ω
=

X
y

J( )y
∂p( )y

∂ω
(20.61)

=
X
y

J p( )y ( )y
∂ plog ( )y

∂ω
(20.62)

≈ 1

m

mX
∼p , i( )y =1

J(y ( )i )
∂ plog (y( )i )

∂ω
. (20.63)

Eq. relies on the assumption that20.61 J does not reference ω directly. It is trivial
to extend the approach to relax this assumption. Eq. exploits the derivative20.62
rule for the logarithm, ∂ plog ( )y

∂ω = 1
p( )y

∂p( )y
∂ω . Eq. gives an unbiased Monte20.63

Carlo estimator of the gradient.

Anywhere we write p(y ) in this section, one could equally write p(y x| ). This
is because p(y) is parametrized byω , and ω contains both θ and x, if x is present.

One issue with the above simple REINFORCE estimator is that it has a very
high variance, so that many samples of y need to be drawn to obtain a good
estimator of the gradient, or equivalently, if only one sample is drawn, SGD will
converge very slowly and will require a smaller learning rate. It is possible to
considerably reduce the variance of that estimator by using variance reduction
methods ( , ; , ). The idea is to modify the estimator soWilson 1984 L’Ecuyer 1994
that its expected value remains unchanged but its variance get reduced. In the
context of REINFORCE, the proposed variance reduction methods involve the

computation of a baseline that is used to offset J (y). Note that any offset b(ω)
that does not depend on y would not change the expectation of the estimated
gradient because

Ep( )y


∂ plog ( )y

∂ω


=

X
y

p( )y
∂ plog ( )y

∂ω
(20.64)

=

X
y

∂p( )y

∂ω
(20.65)

=
∂

∂ωXy
p( ) =y

∂

∂ω
1 = 0, (20.66)
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which means that

Ep( )y


( ( ) ( ))J y − b ω ∂ plog ( )y

∂ω


= Ep( )y


J( )y

∂ plog ( )y

∂ω


− b E( )ω p( )y


∂ plog ( )y

∂ω


(20.67)

= Ep( )y


J( )y

∂ plog ( )y

∂ω


. (20.68)

Furthermore, we can obtain the optimal b(ω) by computing the variance of (J(y)−
b(ω)) ∂ plog ( )y

∂ω under p(y ) and minimizing with respect to b(ω). What we find is

that this optimal baseline b∗ ( )ω i is different for each element ωi of the vector :ω

b∗( )ω i =
Ep( )y

h
J( )y ∂ plog ( )y

∂ω

2i
Ep( )y

h
∂ plog ( )y
∂ω

2i . (20.69)

The gradient estimator with respect to ω i then becomes

( ( ) ( )J y − b ω i)
∂ plog ( )y

∂ωi
(20.70)

where b(ω)i estimates the above b∗(ω)i. The estimate b is usually obtained by
adding extra outputs to the neural network and training the new outputs to estimate

Ep( )y [J(y)∂ plog ( )y
∂ω

2
] and Ep( )y

h
∂ plog ( )y
∂ω

2i
for each element of ω. These extra

outputs can be trained with the mean squared error objective, using respectively

J(y )
∂ plog ( )y
∂ω

2
and

∂ plog ( )y
∂ω

2
as targets when y is sampled from p(y), for a given

ω. The estimate b may then be recovered by substituting these estimates into Eq.
20.69. ( ) preferred to use a single shared output (across allMnih and Gregor 2014
elements i of ω) trained with the target J(y), using as baseline b(ω) ≈ Ep( )y [J(y)].

Variance reduction methods have been introduced in the reinforcement learning

context ( , ;Sutton et al. 2000 Weaver and Tao 2001, ), generalizing previous work
on the case of binary reward by Dayan 1990 Bengio 2013b Mnih( ). See et al. ( ),
and Gregor 2014 Ba 2014 Mnih 2014 Xu 2015( ), et al. ( ), et al. ( ), or et al. ( ) for
examples of modern uses of the REINFORCE algorithm with reduced variance in
the context of deep learning. In addition to the use of an input-dependent baseline
b(ω) (, ( ) found that the scale ofMnih and Gregor 2014 J(y) − b(ω)) could be
adjusted during training by dividing it by its standard deviation estimated by a
moving average during training, as a kind of adaptive learning rate, to counter
the effect of important variations that occur during the course of training in the
magnitude of this quantity. ( ) called this heuristicMnih and Gregor 2014 variance
normalization.
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REINFORCE-based estimators can be understood as estimating the gradient
by correlating choices of y with corresponding values of J (y). If a good value of y
is unlikely under the current parametrization, it might take a long time to obtain it
by chance, and get the required signal that this configuration should be reinforced.

20.10 Directed Generative Nets

As discussed in Chapter , directed graphical models make up a prominent class16

of graphical models. While directed graphical models have been very popular
within the greater machine learning community, within the smaller deep learning
community they have until roughly 2013 been overshadowed by undirected models
such as the RBM.

In this section we review some of the standard directed graphical models that
have traditionally been associated with the deep learning community.

We have already described deep belief networks, which are a partially directed
model. We have also already described sparse coding models, which can be thought
of as shallow directed generative models. They are often used as feature learners
in the context of deep learning, though they tend to perform poorly at sample
generation and density estimation. We now describe a variety of deep, fully directed

models.

Sigmoid belief networks ( , ) are a simple form of directed graphical modelNeal 1990
with a specific kind of conditional probability distribution. In general, we can
think of a sigmoid belief network as having a vector of binary states s, with each
element of the state influenced by its ancestors:

p s( i ) = σ


X
j<i

Wj,isj + bi


 . (20.71)

The most common structure of sigmoid belief network is one that is divided
into many layers, with ancestral sampling proceeding through a series of many
hidden layers and then ultimately generating the visible layer. This structure is
very similar to the deep belief network, except that the units at the beginning of
the sampling process are independent from each other, rather than sampled from
a restricted Boltzmann machine. Such a structure is interesting for a variety of
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reasons. One reason is that the structure is a universal approximator of probability
distributions over the visible units, in the sense that it can approximate any
probability distribution over binary variables arbitrarily well, given enough depth,
even if the width of the individual layers is restricted to the dimensionality of the
visible layer (Sutskever and Hinton 2008, ).

While generating a sample of the visible units is very efficient in a sigmoid
belief network, most other operations are not. Inference over the hidden units given
the visible units is intractable. Mean field inference is also intractable because the
variational lower bound involves taking expectations of cliques that encompass

entire layers. This problem has remained difficult enough to restrict the popularity
of directed discrete networks.

One approach for performing inference in a sigmoid belief network is to construct
a different lower bound that is specialized for sigmoid belief networks ( ,Saul et al.
1996). This approach has only been applied to very small networks. Another
approach is to use learned inference mechanisms as described in Sec. . The19.5
Helmholtz machine (Dayan 1995 Dayan and Hinton 1996et al., ; , ) is a sigmoid belief
network combined with an inference network that predicts the parameters of the
mean field distribution over the hidden units. Modern approaches ( ,Gregor et al.
2014 Mnih and Gregor 2014; , ) to sigmoid belief networks still use this inference
network approach. These techniques remain difficult due to the discrete nature of

the latent variables. One cannot simply back-propagate through the output of the
inference network, but instead must use the relatively unreliable machinery for back-
propagating through discrete sampling processes, described in Sec. . Recent20.9.1
approaches based on importance sampling, reweighted wake-sleep (Bornschein
and Bengio 2015, ) and bidirectional Helmholtz machines (Bornschein 2015et al., )
make it possible to quickly train sigmoid belief networks and reach state-of-the-art
performance on benchmark tasks.

A special case of sigmoid belief networks is the case where there are no latent
variables. Learning in this case is efficient, because there is no need to marginalize
latent variables out of the likelihood. A family of models called auto-regressive
networks generalize this fully visible belief network to other kinds of variables

besides binary variables and other structures of conditional distributions besides log-
linear relationships. Auto-regressive networks are described later, in Sec. .20.10.7

Many generative models are based on the idea of using a differentiable generator
network. The model transforms samples of latent variables z to samples x or
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to distributions over samples x using a differentiable function g(z; θ( )g ) which is
typically represented by a neural network. This model class includes variational
autoencoders, which pair the generator net with an inference net, generative
adversarial networks, which pair the generator network with a discriminator
network, and techniques that train generator networks in isolation.

Generator networks are essentially just parametrized computational procedures
for generating samples, where the architecture provides the family of possible
distributions to sample from and the parameters select a distribution from within
that family.

As an example, the standard procedure for drawing samples from a normal
distribution with mean µ and covariance Σ is to feed samples z from a normal
distribution with zero mean and identity covariance into a very simple generator
network. This generator network contains just one affine layer:

x z Lz= (g ) = +µ (20.72)

where is given by the Cholesky decomposition of .L Σ

Pseudorandom number generators can also use nonlinear transformations of
simple distributions. For example, inverse transform sampling (Devroye 2013, )
draws a scalar z from U (0,1) and applies a nonlinear transformation to a scalar
x. In this case g(z) is given by the inverse of the cumulative distribution function
F (x) =

R x
−∞ p(v)dv . If we are able to specify p(x), integrate over x, and invert the

resulting function, we can sample from without using machine learning.p x( )

To generate samples from more complicated distributions that are difficult
to specify directly, difficult to integrate over, or whose resulting integrals are
difficult to invert, we use a feedforward network to represent a parametric family
of nonlinear functions g , and use training data to infer the parameters selecting
the desired function.

We can think of g as providing a nonlinear change of variables that transforms
the distribution over into the desired distribution over .z x

Recall from Eq. that, for invertible, differentiable, continuous ,3.47 g

pz( ) = z px( ( ))g z





det(
∂g

∂z
)





. (20.73)

This implicitly imposes a probability distribution over :x

px( ) =x
pz (g−1( ))x


det(∂g∂z )

. (20.74)
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Of course, this formula may be difficult to evaluate, depending on the choice of
g, so we often use indirect means of learning g, rather than trying to maximize
log ( )p x directly.

In some cases, rather than using g to provide a sample of x directly, we use g
to define a conditional distribution over x. For example, we could use a generator
net whose final layer consists of sigmoid outputs to provide the mean parameters
of Bernoulli distributions:

p(xi= 1 ) = ( )| z g z i . (20.75)

In this case, when we use g to define p(x z| ), we impose a distribution over x by
marginalizing :z

p( ) = x zp .( )x z| (20.76)

Both approaches define a distribution pg(x) and allow us to train various
criteria of pg using the reparametrization trick of Sec. .20.9

The two different approaches to formulating generator nets—emitting the
parameters of a conditional distribution versus directly emitting samples—have
complementary strengths and weaknesses. When the generator net defines a

conditional distribution over x, it is capable of generating discrete data as well
as continuous data. When the generator net provides samples directly, it is
capable of generating only continuous data (we could introduce discretization in
the forward propagation, but this would lose the ability to learn the model using
back-propagation). The advantage to direct sampling is that we are no longer
forced to use conditional distributions whose form can be easily written down and
algebraically manipulated by a human designer.

Approaches based on differentiable generator networks are motivated by the
success of gradient descent applied to differentiable feedforward networks for
classification. In the context of supervised learning, deep feedforward networks
trained with gradient-based learning seem practically guaranteed to succeed given

enough hidden units and enough training data. Can this same recipe for success
transfer to generative modeling?

Generative modeling seems to be more difficult than classification or regression
because the learning process requires optimizing intractable criteria. In the context
of differentiable generator nets, the criteria are intractable because the data does
not specify both the inputs z and the outputs x of the generator net. In the case
of supervised learning, both the inputs x and the outputs y were given, and the
optimization procedure needs only to learn how to produce the specified mapping.
In the case of generative modeling, the learning procedure needs to determine how
to arrange space in a useful way and additionally how to map from to .z z x

697



CHAPTER 20. DEEP GENERATIVE MODELS

Dosovitskiy 2015et al. ( ) studied a simplified problem, where the correspondence
between z and x is given. Specifically, the training data is computer-rendered
imagery of chairs. The latent variables z are parameters given to the rendering
engine describing the choice of which chair model to use, the position of the chair,
and other configuration details that affect the rendering of the image. Using this
synthetically generated data, a convolutional network is able to learn to map z
descriptions of the content of an image to x approximations of rendered images.
This suggests that contemporary differentiable generator networks have sufficient
model capacity to be good generative models, and that contemporary optimization

algorithms have the ability to fit them. The difficulty lies in determining how to
train generator networks when the value of z for each x is not fixed and known
ahead of each time.

The following sections describe several approaches to training differentiable
generator nets given only training samples of .x

The variational autoencoder VAEor ( , ; , ) is aKingma 2013 Rezende et al. 2014
directed model that uses learned approximate inference and can be trained purely
with gradient-based methods.

To generate a sample from the model, the VAE first draws a sample z from
the code distribution pmodel(z). The sample is then run through a differentiable
generator network g(z). Finally, x is sampled from a distribution pmodel(x; g(z)) =
pmodel(x z| ). However, during training, the approximate inference network (or
encoder) q(z x| ) is used to obtain z and pmodel (x z| ) is then viewed as a decoder
network.

The key insight behind variational autoencoders is that they may be trained

by maximizing the variational lower bound associated with data point :L( )q x

L( ) = q z z x∼q( | ) log pmodel( ) + ( ( ))z x, H q z | x (20.77)

= z z x∼q( | ) log pmodel( )x z| −DKL( ( )q z | x ||pmodel( ))z (20.78)

≤ log pmodel( )x . (20.79)

In Eq. , we recognize the first term as the joint log-likelihood of the visible20.77
and hidden variables under the approximate posterior over the latent variables (just
like with EM, except that we use an approximate rather than the exact posterior).
We recognize also a second term, the entropy of the approximate posterior. When
q is chosen to be a Gaussian distribution, with noise added to a predicted mean
value, maximizing this entropy term encourages increasing the standard deviation
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of this noise. More generally, this entropy term encourages the variational posterior
to place high probability mass on many z values that could have generated x,
rather than collapsing to a single point estimate of the most likely value. In Eq.
20.78, we recognize the first term as the reconstruction log-likelihood found in
other autoencoders. The second term tries to make the approximate posterior
distribution and the model priorq( )z | x pmodel( )z approach each other.

Traditional approaches to variational inference and learning infer q via an
optimization algorithm, typically iterated fixed point equations (Sec. ). These19.4
approaches are slow and often require the ability to compute ∼q log pmodel (z x, )

in closed form. The main idea behind the variational autoencoder is to train a
parametric encoder (also sometimes called an inference network or recognition
model) that produces the parameters of q . So long asz is a continuous variable, we
can then back-propagate through samples of z drawn from q(z x| ) = q (z; f(x;θ ))
in order to obtain a gradient with respect to θ. Learning then consists solely of
maximizing L with respect to the parameters of the encoder and decoder. All of
the expectations in may be approximated by Monte Carlo sampling.L

The variational autoencoder approach is elegant, theoretically pleasing, and
simple to implement. It also obtains excellent results and is among the state of
the art approaches to generative modeling. Its main drawback is that samples
from variational autoencoders trained on images tend to be somewhat blurry. The

causes of this phenomenon are not yet known. One possibility is that the blurriness
is an intrinsic effect of maximum likelihood, which minimizes DKL(pdatakpmodel ).
As illustrated in Fig. , this means that the model will assign high probability to3.6
points that occur in the training set, but may also assign high probability to other
points. These other points may include blurry images. Part of the reason that the
model would choose to put probability mass on blurry images rather than some
other part of the space is that the variational autoencoders used in practice usually
have a Gaussian distribution for pmodel(x; g(z)). Maximizing a lower bound on
the likelihood of such a distribution is similar to training a traditional autoencoder
with mean squared error, in the sense that it has a tendency to ignore features
of the input that occupy few pixels or that cause only a small change in the

brightness of the pixels that they occupy. This issue is not specific to VAEs and
is shared with generative models that optimize a log-likelihood, or equivalently,
DKL(pdatakpmodel), as argued by ( ) and by ( ). AnotherTheis et al. 2015 Huszar 2015
troubling issue with contemporary VAE models is that they tend to use only a small
subset of the dimensions of z, as if the encoder was not able to transform enough
of the local directions in input space to a space where the marginal distribution
matches the factorized prior.
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The VAE framework is very straightforward to extend to a wide range of model
architectures. This is a key advantage over Boltzmann machines, which require
extremely careful model design to maintain tractability. VAEs work very well
with a diverse family of differentiable operators. One particularly sophisticated
VAE is the deep recurrent attention writer DRAWor model ( , ).Gregor et al. 2015
DRAW uses a recurrent encoder and recurrent decoder combined with an attention
mechanism. The generation process for the DRAW model consists of sequentially
visiting different small image patches and drawing the values of the pixels at those
points. VAEs can also be extended to generate sequences by defining variational

RNNs (Chung 2015bet al., ) by using a recurrent encoder and decoder within
the VAE framework. Generating a sample from a traditional RNN involves only
non-deterministic operations at the output space. Variational RNNs also have
random variability at the potentially more abstract level captured by the VAE
latent variables.

The VAE framework has been extended to maximize not just the traditional
variational lower bound, but instead the importance weighted autoencoder (Burda
et al., ) objective:2015

Lk( ) = x, q ,..., ∼ |q(z x)

"
log

1

k

kX
i=1

pmodel(x z,
( )i )

q(z( )i | x)

#
. (20.80)

This new objective is equivalent to the traditional lower bound L when k = 1.
However, it may also be interpreted as forming an estimate of the true log pmodel (x)
using importance sampling of z from proposal distribution q(z x| ). The importance

weighted autoencoder objective is also a lower bound on log pmodel (x) and becomes
tighter as increases.k

Variational autoencoders have some interesting connections to the MP-DBM
and other approaches that involve back-propagation through the approximate
inference graph ( , ;Goodfellow et al. 2013b Stoyanov 2011 Brakel 2013et al., ; et al., ).
These previous approaches required an inference procedure such as mean field fixed
point equations to provide the computational graph. The variational autoencoder
is defined for arbitrary computational graphs, which makes it applicable to a wider
range of probabilistic model families because there is no need to restrict the choice
of models to those with tractable mean field fixed point equations. The variational
autoencoder also has the advantage that it increases a bound on the log-likelihood
of the model, while the criteria for the MP-DBM and related models are more

heuristic and have little probabilistic interpretation beyond making the results of
approximate inference accurate. One disadvantage of the variational autoencoder
is that it learns an inference network for only one problem, inferring z given x.
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The older methods are able to perform approximate inference over any subset of
variables given any other subset of variables, because the mean field fixed point
equations specify how to share parameters between the computational graphs for
all of these different problems.

One very nice property of the variational autoencoder is that simultaneously
training a parametric encoder in combination with the generator network forces
the model to learn a predictable coordinate system that the encoder can capture.
This makes it an excellent manifold learning algorithm. See Fig. for examples20.6
of low-dimensional manifolds learned by the variational autoencoder. In one of the

cases demonstrated in the figure, the algorithm discovered two independent factors
of variation present in images of faces: angle of rotation and emotional expression.

Figure 20.6: Examples of two-dimensional coordinate systems for high-dimensional mani-
folds, learned by a variational autoencoder (Kingma and Welling 2014a, ). Two dimensions
may be plotted directly on the page for visualization, so we can gain an understanding of
how the model works by training a model with a 2-D latent code, even if we believe the
intrinsic dimensionality of the data manifold is much higher. The images shown are not
examples from the training set but images x actually generated by the model p (x z| ),
simply by changing the 2-D “code” z (each image corresponds to a different choice of “code”
z on a 2-D uniform grid). (Left) The two-dimensional map of the Frey faces manifold.
One dimension that has been discovered (horizontal) mostly corresponds to a rotation of
the face, while the other (vertical) corresponds to the emotional expression. The(Right)
two-dimensional map of the MNIST manifold.
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Generative adversarial networks or GANs ( , ) are anotherGoodfellow et al. 2014c
generative modeling approach based on differentiable generator networks.

Generative adversarial networks are based on a game theoretic scenario in
which the generator network must compete against an adversary. The generator
network directly produces samples x = g (z; θ( )g ). Its adversary, the discriminator
network, attempts to distinguish between samples drawn from the training data
and samples drawn from the generator. The discriminator emits a probability value
given by d(x;θ( )d ), indicating the probability that x is a real training example
rather than a fake sample drawn from the model.

The simplest way to formulate learning in generative adversarial networks is
as a zero-sum game, in which a function v(θ( )g ,θ( )d ) determines the payoff of the
discriminator. The generator receives −v(θ( )g ,θ( )d ) as its own payoff. During
learning, each player attempts to maximize its own payoff, so that at convergence

g∗ = arg min
g

max
d
v g, d .( ) (20.81)

The default choice for isv

v(θ ( )g ,θ( )d ) = ∼p log ( ) +d x x∼p log (1 ( ))− d x . (20.82)

This drives the discriminator to attempt to learn to correctly classify samples as real
or fake. Simultaneously, the generator attempts to fool the classifier into believing
its samples are real. At convergence, the generator’s samples are indistinguishable
from real data, and the discriminator outputs 1

2 everywhere. The discriminator
may then be discarded.

The main motivation for the design of GANs is that the learning process
requires neither approximate inference nor approximation of a partition function

gradient. In the case where maxd v(g, d) is convex in θ ( )g (such as the case where
optimization is performed directly in the space of probability density functions)
then the procedure is guaranteed to converge and is asymptotically consistent.

Unfortunately, learning in GANs can be difficult in practice when g and d
are represented by neural networks and maxd v(g, d) is not convex. Goodfellow
( ) identified non-convergence as an issue that may cause GANs to underfit.2014
In general, simultaneous gradient descent on two players’ costs is not guaranteed
to reach an equilibrium. Consider for example the value function v(a, b) = ab,
where one player controls a and incurs cost ab, while the other player controls b
and receives a cost −ab. If we model each player as making infinitesimally small
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gradient steps, each player reducing their own cost at the expense of the other
player, then a and b go into a stable, circular orbit, rather than arriving at the
equilibrium point at the origin. Note that the equilibria for a minimax game are
not local minima of v. Instead, they are points that are simultaneously minima
for both players’ costs. This means that they are saddle points of v that are local
minima with respect to the first player’s parameters and local maxima with respect
to the second player’s parameters. It is possible for the two players to take turns
increasing then decreasing v forever, rather than landing exactly on the saddle
point where neither player is capable of reducing their cost. It is not known to

what extent this non-convergence problem affects GANs.

Goodfellow 2014( ) identified an alternative formulation of the payoffs, in
which the game is no longer zero-sum, that has the same expected gradient
as maximum likelihood learning whenever the discriminator is optimal. Because
maximum likelihood training converges, this reformulation of the GAN game should
also converge, given enough samples. Unfortunatley, this alternative formulation
does not seem to perform well in practice, possibly due to suboptimality of the
discriminator, or possibly due to high variance around the expected gradient.

In practice, the best-performing formulation of the GAN game is a different for-
mulation that is neither zero-sum nor equivalent to maximum likelihood, introduced
by Goodfellow 2014cet al. ( ) with a heuristic motivation. In this best-performing

formulation, the generator aims to increase the log probability that the discrimina-
tor makes a mistake, rather than aiming to decrease the log probability that the
discriminator makes the correct prediction. This reformulation is motivated solely
by the observation that it causes the derivative of the generator’s cost function
with respect to the discriminator’s logits to remain large even in the situation
where the discriminator confidently rejects all generator samples.

Stabilization of GAN learning remains an open problem. Fortunately, GAN
learning performs well when the model architecture and hyperparameters are care-
fully selected. ( ) crafted a deep convolutional GAN (DCGAN)Radford et al. 2015
that performs very well for image synthesis tasks, and showed that its latent
representation space captures important factors of variation, as shown in Fig. .15.9

See Fig. for examples of images generated by a DCGAN generator.20.7

The GAN learning problem can also be simplified by breaking the generation
process into many levels of detail. It is possible to train conditional GANs (Mirza
and Osindero 2014, ) that learn to sample from a distribution p(x y| ) rather
than simply sampling from a marginal distribution p(x). Denton 2015et al. ( )
showed that a series of conditional GANs can be trained to first generate a very
low-resolution version of an image, then incrementally add details to the image.
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Figure 20.7: Images generated by GANs trained on the LSUN dataset. (Left) Images
of bedrooms generated by a DCGAN model, reproduced with permission from Radford
et al. ( ). 2015 (Right) Images of churches generated by a LAPGAN model, reproduced
with permission from ( ).Denton et al. 2015

This technique is called the LAPGAN model, due to the use of a Laplacian pyramid
to generate the images containing varying levels of detail. LAPGAN generators
are able to fool not only discriminator networks but also human observers, with
experimental subjects identifying up to 40% of the outputs of the network as being
real data. See Fig. for examples of images generated by a LAPGAN generator.20.7

One unusual capability of the GAN training procedure is that it can fit proba-
bility distributions that assign zero probability to the training points. Rather than
maximizing the log probability of specific points, the generator net learns to trace
out a manifold whose points resemble training points in some way. Somewhat para-
doxically, this means that the model may assign a log-likelihood of negative infinity

to the test set, while still representing a manifold that a human observer judges
to capture the essence of the generation task. This is not clearly an advantage or
a disadvantage, and one may also guarantee that the generator network assigns
non-zero probability to all points simply by making the last layer of the generator
network add Gaussian noise to all of the generated values. Generator networks
that add Gaussian noise in this manner sample from the same distribution that one
obtains by using the generator network to parametrize the mean of a conditional
Gaussian distribution.

Dropout seems to be important in the discriminator network. In particular,
units should be stochastically dropped while computing the gradient for the
generator network to follow. Following the gradient of the deterministic version of

the discriminator with its weights divided by two does not seem to be as effective.
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Likewise, never using dropout seems to yield poor results.

While the GAN framework is designed for differentiable generator networks,
similar principles can be used to train other kinds of models. For example, self-
supervised boosting can be used to train an RBM generator to fool a logistic
regression discriminator (Welling 2002et al., ).

Generative moment matching networks ( , ; , )Li et al. 2015 Dziugaite et al. 2015

are another form of generative model based on differentiable generator networks.
Unlike VAEs and GANs, they do not need to pair the generator network with any
other network—neither an inference network as used with VAEs nor a discriminator
network as used with GANs.

These networks are trained with a technique called . Themoment matching
basic idea behind moment matching is to train the generator in such a way that
many of the statistics of samples generated by the model are as similar as possible
to those of the statistics of the examples in the training set. In this context, a
moment is an expectation of different powers of a random variable. For example,
the first moment is the mean, the second moment is the mean of the squared
values, and so on. In multiple dimensions, each element of the random vector may

be raised to different powers, so that a moment may be any quantity of the form

xΠix
n
i (20.83)

where n = [n 1, n2, . . . , nd]
> is a vector of non-negative integers.

Upon first examination, this approach seems to be computationally infeasible.
For example, if we want to match all the moments of the form xi xj , then we need
to minimize the difference between a number of values that is quadratic in the
dimension of x. Moreover, even matching all of the first and second moments

would only be sufficient to fit a multivariate Gaussian distribution, which captures
only linear relationships between values. Our ambitions for neural networks are to
capture complex nonlinear relationships, which would require far more moments.
GANs avoid this problem of exhaustively enumerating all moments by using a
dynamically updated discriminator, that automatically focuses its attention on
whichever statistic the generator network is matching the least effectively.

Instead, generative moment matching networks can be trained by minimizing
a cost function called maximum mean discrepancy (Schölkopf and Smola 2002, ;
Gretton 2012et al., ) or MMD. This cost function measures the error in the first
moments in an infinite-dimensional space, using an implicit mapping to feature
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space defined by a kernel function in order to make computations on infinite-
dimensional vectors tractable. The MMD cost is zero if and only if the two
distributions being compared are equal.

Visually, the samples from generative moment matching networks are somewhat
disappointing. Fortunately, they can be improved by combining the generator
network with an autoencoder. First, an autoencoder is trained to reconstruct the
training set. Next, the encoder of the autoencoder is used to transform the entire
training set into code space. The generator network is then trained to generate
code samples, which may be mapped to visually pleasing samples via the decoder.

Unlike GANs, the cost function is defined only with respect to a batch of
examples from both the training set and the generator network. It is not possible
to make a training update as a function of only one training example or only
one sample from the generator network. This is because the moments must be
computed as an empirical average across many samples. When the batch size is too
small, MMD can underestimate the true amount of variation in the distributions
being sampled. No finite batch size is sufficiently large to eliminate this problem
entirely, but larger batches reduce the amount of underestimation. When the batch
size is too large, the training procedure becomes infeasibly slow, because many
examples must be processed in order to compute a single small gradient step.

As with GANs, it is possible to train a generator net using MMD even if that

generator net assigns zero probability to the training points.

When generating images, it is often useful to use a generator network that includes
a convolutional structure (see for example Goodfellow 2014c Dosovitskiyet al. ( ) or
et al. ( )). To do so, we use the “transpose” of the convolution operator,2015
described in Sec. . This approach often yields more realistic images and does9.5

so using fewer parameters than using fully connected layers without parameter
sharing.

Convolutional networks for recognition tasks have information flow from the
image to some summarization layer at the top of the network, often a class label.
As this image flows upward through the network, information is discarded as the
representation of the image becomes more invariant to nuisance transformations.
In a generator network, the opposite is true. Rich details must be added as
the representation of the image to be generated propagates through the network,
culminating in the final representation of the image, which is of course the image
itself, in all of its detailed glory, with object positions and poses and textures and
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lighting. The primary mechanism for discarding information in a convolutional
recognition network is the pooling layer. The generator network seems to need to
add information. We cannot put the inverse of a pooling layer into the generator
network because most pooling functions are not invertible. A simpler operation is
to merely increase the spatial size of the representation. An approach that seems
to perform acceptably is to use an “un-pooling” as introduced by Dosovitskiy et al.
( ). This layer corresponds to the inverse of the max-pooling operation under2015
certain simplifying conditions. First, the stride of the max-pooling operation is
constrained to be equal to the width of the pooling region. Second, the maximum

input within each pooling region is assumed to be the input in the upper-left
corner. Finally, all non-maximal inputs within each pooling region are assumed to
be zero. These are very strong and unrealistic assumptions, but they do allow the
max-pooling operator to be inverted. The inverse un-pooling operation allocates
a tensor of zeros, then copies each value from spatial coordinate i of the input
to spatial coordinate i k× of the output. The integer value k defines the size
of the pooling region. Even though the assumptions motivating the definition of
the un-pooling operator are unrealistic, the subsequent layers are able to learn to
compensate for its unusual output, so the samples generated by the model as a
whole are visually pleasing.

Auto-regressive networks are directed probabilistic models with no latent random
variables. The conditional probability distributions in these models are represented
by neural networks (sometimes extremely simple neural networks such as logistic
regression). The graph structure of these models is the complete graph. They
decompose a joint probability over the observed variables using the chain rule of
probability to obtain a product of conditionals of the form P (xd | xd−1, . . . , x1).
Such models have been called (FVBNs) and usedfully-visible Bayes networks

successfully in many forms, first with logistic regression for each conditional
distribution (Frey 1998, ) and then with neural networks with hidden units (Bengio
and Bengio 2000b Larochelle and Murray 2011, ; , ). In some forms of auto-
regressive networks, such as NADE ( , ), described inLarochelle and Murray 2011
Sec. below, we can introduce a form of parameter sharing that brings both20.10.10
a statistical advantage (fewer unique parameters) and a computational advantage
(less computation). This is one more instance of the recurring deep learning motif
of reuse of features.
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Figure 20.8: A fully visible belief network predicts the i-th variable from the i − 1
previous ones. (Top) (Bottom)The directed graphical model for an FVBN. Corresponding
computational graph, in the case of the logistic FVBN, where each prediction is made by
a linear predictor.

The simplest form of auto-regressive network has no hidden units and no sharing
of parameters or features. Each P (x i | xi−1, . . . , x1 ) is parametrized as a linear
model (linear regression for real-valued data, logistic regression for binary data,

softmax regression for discrete data). This model was introduced by Frey 1998( )
and has O(d2) parameters when there are d variables to model. It is illustrated in
Fig. .20.8

If the variables are continuous, a linear auto-regressive model is merely another
way to formulate a multivariate Gaussian distribution, capturing linear pairwise
interactions between the observed variables.

Linear auto-regressive networks are essentially the generalization of linear
classification methods to generative modeling. They therefore have the same
advantages and disadvantages as linear classifiers. Like linear classifiers, they may
be trained with convex loss functions, and sometimes admit closed form solutions
(as in the Gaussian case). Like linear classifiers, the model itself does not offer

a way of increasing its capacity, so capacity must be raised using techniques like
basis expansions of the input or the kernel trick.
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Figure 20.9: A neural auto-regressive network predicts the i-th variable x from the i− 1
previous ones, but is parametrized so that features (groups of hidden units denoted h )
that are functions of x , . . . , x can be reused in predicting all of the subsequent variables
x , x , . . . , x .

Neural auto-regressive networks ( , , ) have the sameBengio and Bengio 2000a b
left-to-right graphical model as logistic auto-regressive networks (Fig. ) but20.8
employ a different parametrization of the conditional distributions within that
graphical model structure. The new parametrization is more powerful in the sense
that its capacity can be increased as much as needed, allowing approximation of

any joint distribution. The new parametrization can also improve generalization
by introducing a parameter sharing and feature sharing principle common to deep
learning in general. The models were motivated by the objective of avoiding the
curse of dimensionality arising out of traditional tabular graphical models, sharing
the same structure as Fig. . In tabular discrete probabilistic models, each20.8
conditional distribution is represented by a table of probabilities, with one entry
and one parameter for each possible configuration of the variables involved. By
using a neural network instead, two advantages are obtained:

1. The parametrization of each P(xi | xi−1, . . . , x1) by a neural network with
(i − 1) × k inputs and k outputs (if the variables are discrete and take k
values, encoded one-hot) allows one to estimate the conditional probability
without requiring an exponential number of parameters (and examples), yet

still is able to capture high-order dependencies between the random variables.

2. Instead of having a different neural network for the prediction of each xi ,
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a connectivity illustrated in Fig. allows one to merge allleft-to-right 20.9
the neural networks into one. Equivalently, it means that the hidden layer
features computed for predicting xi can be reused for predicting xi k+ (k > 0).
The hidden units are thus organized in groups that have the particularity
that all the units in the i-th group only depend on the input values x1, . . . , xi.
The parameters used to compute these hidden units are jointly optimized
to improve the prediction of all the variables in the sequence. This is
an instance of the reuse principle that recurs throughout deep learning in
scenarios ranging from recurrent and convolutional network architectures to

multi-task and transfer learning.

Each P (xi | xi−1, . . . , x 1) can represent a conditional distribution by having
outputs of the neural network predict parameters of the conditional distribution
of xi, as discussed in Sec. . Although the original neural auto-regressive6.2.1.1
networks were initially evaluated in the context of purely discrete multivariate
data (with a sigmoid output for a Bernoulli variable or softmax output for a
multinoulli variable) it is natural to extend such models to continuous variables or
joint distributions involving both discrete and continuous variables.

The neural autoregressive density estimator (NADE) is a very successful recent form
of neural auto-regressive network (Larochelle and Murray 2011, ). The connectivity
is the same as for the original neural auto-regressive network of Bengio and
Bengio 2000b( ) but NADE introduces an additional parameter sharing scheme, as
illustrated in Fig. . The parameters of the hidden units of different groups20.10 j
are shared.

The weights W 0
j,k,i from the i-th input xi to the k -th element of the j-th group

of hidden unit h
( )j
k ( ) are shared among the groups:j i≥

W 0
j,k,i = Wk,i . (20.84)

The remaining weights, where , are zero.j < i

Larochelle and Murray 2011( ) chose this sharing scheme so that forward
propagation in a NADE model loosely resembles the computations performed in
mean field inference to fill in missing inputs in an RBM. This mean field inference
corresponds to running a recurrent network with shared weights and the first step
of that inference is the same as in NADE. The only difference is that with NADE,
the output weights connecting the hidden units to the output are parametrized
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Figure 20.10: An illustration of the neural autoregressive density estimator (NADE). The
hidden units are organized in groups h so that only the inputs x , . . . , x participate
in computing h and predicting P (x | x , . . . , x ), for j > i. NADE is differentiated
from earlier neural auto-regressive networks by the use of a particular weight sharing
pattern: W =W is shared (indicated in the figure by the use of the same line pattern
for every instance of a replicated weight) for all the weights going out from x to the k-th
unit of any group . Recall that the vectorj i≥ (W ,W , . . . ,W ) is denoted W .

independently from the weights connecting the input units to the hidden units. In

the RBM, the hidden-to-output weights are the transpose of the input-to-hidden
weights. The NADE architecture can be extended to mimic not just one time step
of the mean field recurrent inference but to mimic k steps. This approach is called
NADE- (k Raiko 2014et al., ).

As mentioned previously, auto-regressive networks may be extend to process
continuous-valued data. A particularly powerful and generic way of parametrizing a
continuous density is as a Gaussian mixture (introduced in Sec. ) with mixture3.9.6
weights αi (the coefficient or prior probability for component i), per-component
conditional mean µi and per-component conditional variance σ 2i . A model called
RNADE ( , ) uses this parametrization to extend NADE to realUria et al. 2013
values. As with other mixture density networks, the parameters of this distribution

are outputs of the network, with the mixture weight probabilities produced by a
softmax unit, and the variances parametrized so that they are positive. Stochastic
gradient descent can be numerically ill-behaved due to the interactions between the
conditional means µi and the conditional variances σ2i . To reduce this difficulty,
Uria 2013et al. ( ) use a pseudo-gradient that replaces the gradient on the mean, in
the back-propagation phase.
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Another very interesting extension of the neural auto-regressive architectures
gets rid of the need to choose an arbitrary order for the observed variables (Murray
and Larochelle 2014, ). In auto-regressive networks, the idea is to train the network
to be able to cope with any order by randomly sampling orders and providing the
information to hidden units specifying which of the inputs are observed (on the
right side of the conditioning bar) and which are to be predicted and are thus
considered missing (on the left side of the conditioning bar). This is nice because
it allows one to use a trained auto-regressive network to perform any inference
problem (i.e. predict or sample from the probability distribution over any subset

of variables given any subset) extremely efficiently. Finally, since many orders of
variables are possible (n! for n variables) and each order o of variables yields a
different , we can form an ensemble of models for many values of :p o(x | ) o

p ( ) =x
1

k

kX
i=1

p o(x | ( )i ). (20.85)

This ensemble model usually generalizes better and assigns higher probability to
the test set than does an individual model defined by a single ordering.

In the same paper, the authors propose deep versions of the architecture, but
unfortunately that immediately makes computation as expensive as in the original
neural auto-regressive neural network ( , ). The first layerBengio and Bengio 2000b
and the output layer can still be computed in O(nh) multiply-add operations,
as in the regular NADE, where h is the number of hidden units (the size of the
groups hi , in Fig. and Fig. ), whereas it is20.10 20.9 O(n2h) in Bengio and Bengio
( ). However, for the other hidden layers, the computation is2000b O(n2h2) if every
“previous” group at layer l participates in predicting the “next” group at layer l+ 1,

assuming n groups of h hidden units at each layer. Making the i-th group at layer
l+ 1 only depend on the i-th group, as in Murray and Larochelle 2014( ) at layer l
reduces it to O nh( 2), which is still times worse than the regular NADE.h

20.11 Drawing Samples from Autoencoders

In Chapter , we saw that many kinds of autoencoders learn the data distribution.14
There are close connections between score matching, denoising autoencoders, and
contractive autoencoders. These connections demonstrate that some kinds of
autoencoders learn the data distribution in some way. We have not yet seen how

to draw samples from such models.

Some kinds of autoencoders, such as the variational autoencoder, explicitly
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represent a probability distribution and admit straightforward ancestral sampling.
Most other kinds of autoencoders require MCMC sampling.

Contractive autoencoders are designed to recover an estimate of the tangent
plane of the data manifold. This means that repeated encoding and decoding with
injected noise will induce a random walk along the surface of the manifold (Rifai
et al. et al., ;2012 Mesnil , ). This manifold diffusion technique is a kind of2012
Markov chain.

There is also a more general Markov chain that can sample from any denoising

autoencoder.

The above discussion left open the question of what noise to inject and where, in
order to obtain a Markov chain that would generate from the distribution estimated
by the autoencoder. ( ) showed how to construct such a MarkovBengio et al. 2013c
chain for generalized denoising autoencoders. Generalized denoising autoencoders

are specified by a denoising distribution for sampling an estimate of the clean input
given the corrupted input.

Each step of the Markov chain that generates from the estimated distribution
consists of the following sub-steps, illustrated in Fig. :20.11

1. Starting from the previous state x, inject corruption noise, sampling x̃ from
C(x̃ x| ).

2. Encode x̃ into h = (f x̃).

3. Decode to obtain the parameters ofh ω h= (g ) p g p( = x | ω ( )) = h (x | x̃).

4. Sample the next state fromx p g p( = x | ω ( )) = h (x | x̃).

Bengio 2014et al. ( ) showed that if the autoencoder p(x | x̃) forms a consistent
estimator of the corresponding true conditional distribution, then the stationary
distribution of the above Markov chain forms a consistent estimator (albeit an
implicit one) of the data generating distribution of .x

Similarly to Boltzmann machines, denoising autoencoders and their generalizations
(such as GSNs, described below) can be used to sample from a conditional distri-
bution p(xf | x o), simply by clamping the observed units xf and only resampling
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Figure 20.11: Each step of the Markov chain associated with a trained denoising autoen-
coder, that generates the samples from the probabilistic model implicitly trained by the
denoising log-likelihood criterion. Each step consists in (a) injecting noise via corruption
process C in state x, yielding x̃, (b) encoding it with function f, yielding h = f (x̃),
(c) decoding the result with function g, yielding parameters ω for the reconstruction
distribution, and (d) given ω, sampling a new state from the reconstruction distribution
p(x | ω = g(f(x̃ ))). In the typical squared reconstruction error case, g (h) = x̂, which
estimates [x | x̃], corruption consists in adding Gaussian noise and sampling from
p(x | ω) consists in adding Gaussian noise, a second time, to the reconstruction x̂. The
latter noise level should correspond to the mean squared error of reconstructions, whereas
the injected noise is a hyperparameter that controls the mixing speed as well as the
extent to which the estimator smooths the empirical distribution (Vincent 2011, ). In the
example illustrated here, only the C and p conditionals are stochastic steps (f and g are
deterministic computations), although noise can also be injected inside the autoencoder,
as in generative stochastic networks ( , ).Bengio et al. 2014
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the free units x o given xf and the sampled latent variables (if any). For example,
MP-DBMs can be interpreted as a form of denoising autoencoder, and are able
to sample missing inputs. GSNs later generalized some of the ideas present in
MP-DBMs to perform the same operation ( , ). ( )Bengio et al. 2014 Alain et al. 2015
identified a missing condition from Proposition 1 of ( ), which isBengio et al. 2014
that the transition operator (defined by the stochastic mapping going from one
state of the chain to the next) should satisfy a property called detailed balance,
which specifies that a Markov Chain at equilibrium will remain in equilibrium
whether the transition operator is run in forward or reverse.

An experiment in clamping half of the pixels (the right part of the image) and
running the Markov chain on the other half is shown in Fig. .20.12

Figure 20.12: Illustration of clamping the right half of the image and running the Markov
Chain by resampling only the left half at each step. These samples come from a GSN
trained to reconstruct MNIST digits at each time step using the walkback procedure.

The walk-back training procedure was proposed by ( ) as a wayBengio et al. 2013c
to accelerate the convergence of generative training of denoising autoencoders.
Instead of performing a one-step encode-decode reconstruction, this procedure

consists in alternative multiple stochastic encode-decode steps (as in the generative
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Markov chain) initialized at a training example (just like with the contrastive
divergence algorithm, described in Sec. ) and penalizing the last probabilistic18.2
reconstructions (or all of the reconstructions along the way).

Training with k steps is equivalent (in the sense of achieving the same stationary
distribution) as training with one step, but practically has the advantage that
spurious modes farther from the data can be removed more efficiently.

20.12 Generative Stochastic Networks

Generative stochastic networks GSNsor ( , ) are generalizations ofBengio et al. 2014
denoising autoencoders that include latent variables h in the generative Markov
chain, in addition to the visible variables (usually denoted ).x

A GSN is parametrized by two conditional probability distributions which
specify one step of the Markov chain:

1. p(x( )k | h( )k ) tells how to generate the next visible variable given the current
latent state. Such a “reconstruction distribution” is also found in denoising
autoencoders, RBMs, DBNs and DBMs.

2. p(h( )k | h( 1)k− ,x( 1)k− ) tells how to update the latent state variable, given
the previous latent state and visible variable.

Denoising autoencoders and GSNs differ from classical probabilistic models
(directed or undirected) in that they parametrize the generative process itself rather
than the mathematical specification of the joint distribution of visible and latent
variables. Instead, the latter is defined implicitly, , as the stationaryif it exists
distribution of the generative Markov chain. The conditions for existence of the
stationary distribution are mild and are the same conditions required by standard
MCMC methods (see Sec. ). These conditions are necessary to guarantee17.3

that the chain mixes, but they can be violated by some choices of the transition
distributions (for example, if they were deterministic).

One could imagine different training criteria for GSNs. The one proposed and
evaluated by ( ) is simply reconstruction log-probability on theBengio et al. 2014
visible units, just like for denoising autoencoders. This is achieved by clamping
x(0) = x to the observed example and maximizing the probability of generating x
at some subsequent time steps, i.e., maximizing log p(x( )k = x | h( )k ), where h( )k

is sampled from the chain, given x(0) = x. In order to estimate the gradient of
log p(x( )k = x | h( )k ) with respect to the other pieces of the model, Bengio et al.
( ) use the reparametrization trick, introduced in Sec. .2014 20.9
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The walk-back training protocol (described in Sec. ) was used (20.11.3 Bengio
et al., ) to improve training convergence of GSNs.2014

The original formulation of GSNs ( , ) was meant for unsupervisedBengio et al. 2014

learning and implicitly modeling p(x) for observed data x, but it is possible to
modify the framework to optimize .p( )y | x

For example, Zhou and Troyanskaya 2014( ) generalize GSNs in this way, by only
back-propagating the reconstruction log-probability over the output variables, keep-
ing the input variables fixed. They applied this successfully to model sequences
(protein secondary structure) and introduced a (one-dimensional) convolutional
structure in the transition operator of the Markov chain. It is important to re-
member that, for each step of the Markov chain, one generates a new sequence for
each layer, and that sequence is the input for computing other layer values (say
the one below and the one above) at the next time step.

Hence the Markov chain is really over the output variable (and associated

higher-level hidden layers), and the input sequence only serves to condition that
chain, with back-propagation allowing to learn how the input sequence can condition
the output distribution implicitly represented by the Markov chain. It is therefore
a case of using the GSN in the context of structured outputs, where p(y x| )
does not have a simple parametric form but instead the components of y are
statistically dependent of each other, given , in complicated ways.x

Zöhrer and Pernkopf 2014( ) introduced a hybrid model that combines a super-
vised objective (as in the above work) and an unsupervised objective (as in the
original GSN work), by simply adding (with a different weight) the supervised and
unsupervised costs i.e., the reconstruction log-probabilities of y and x respectively.
Such a hybrid criterion had previously been introduced for RBMs by Larochelle

and Bengio 2008( ). They show improved classification performance using this
scheme.

20.13 Other Generation Schemes

The methods we have described so far use either MCMC sampling, ancestral
sampling, or some mixture of the two to generate samples. While these are the
most popular approaches to generative modeling, they are by no means the only
approaches.
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Sohl-Dickstein 2015et al. ( ) developed a training schemediffusion inversion
for learning a generative model, based on non-equilibrium thermodynamics. The
approach is based on the idea that the probability distributions we wish to sample
from have structure. This structure can gradually be destroyed by a diffusion
process that incrementally changes the probability distribution to have more
entropy. To form a generative model, we can run the process in reverse, by training
a model that gradually restores the structure to an unstructured distribution. By
iteratively applying a process that brings a distribution closer to the target one, we
can gradually approach that target distribution. This approach resembles MCMC

methods in the sense that it involves many iterations to produce a sample. However,
the model is defined to be the probability distribution produced by the final step
of the chain. In this sense, there is no approximation induced by the iterative
procedure. The approach introduced by Sohl-Dickstein 2015et al. ( ) is also very
close to the generative interpretation of the denoising autoencoder (Sec. ).20.11.1
Like with the denoising autoencoder, the training objective trains a transition
operator which attempts to probabilistically undo the effect of adding some noise,
trying to undo one step of the diffusion process. If we compare with the walkback
training procedure (Sec. ) for denoising autoencoders and GSNs, the main20.11.3
difference is that instead of reconstructing only towards the observed training point
x, the objective function only tries to reconstruct towards the previous point in

the diffusion trajectory that started at x (which should be easier). This addresses
the following dilemma present with the ordinary reconstruction log-likelihood
objective of denoising autoencoders: with small levels of noise the learner only sees
configurations near the data points, while with large levels of noise it is asked to do
an almost impossible job (because the denoising distribution is going to be highly
complex and multi-modal). With the diffusion inversion objective, the learner can
learn more precisely the shape of the density around the data points as well as
remove spurious modes that could show up far from the data points.

Another approach to sample generation is the approximate Bayesian computa-
tion (ABC) framework ( , ). In this approach, samples are rejectedRubin et al. 1984
or modified in order to make the moments of selected functions of the samples
match those of the desired distribution. While this idea uses the moments of the

samples like in moment matching, it is different from moment matching because it
modifies the samples themselves, rather than training the model to automatically
emit samples with the correct moments. Bachman and Precup 2015( ) showed how
to use ideas from ABC in the context of deep learning, by using ABC to shape the
MCMC trajectories of GSNs.

We expect that many other possible approaches to generative modeling await
discovery.
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20.14 Evaluating Generative Models

Researchers studying generative models often need to compare one generative
model to another, usually in order to demonstrate that a newly invented generative
model is better at capturing some distribution than the pre-existing models.

This can be a difficult and subtle task. In many cases, we can not actually
evaluate the log probability of the data under the model, but only an approximation.

In these cases, it is important to think and communicate clearly about exactly what
is being measured. For example, suppose we can evaluate a stochastic estimate of
the log-likelihood for model A, and a deterministic lower bound on the log-likelihood
for model B. If model A gets a higher score than model B, which is better? If we
care about determining which model has a better internal representation of the
distribution, we actually cannot tell, unless we have some way of determining how
loose the bound for model B is. However, if we care about how well we can use
the model in practice, for example to perform anomaly detection, then it is fair to
say that a model is preferable based on a criterion specific to the practical task of
interest, e.g., based on ranking test examples and ranking criteria such as precision
and recall.

Another subtlety of evaluating generative models is that the evaluation metrics
are often hard research problems in and of themselves. It can be very difficult
to establish that models are being compared fairly. For example, suppose we use
AIS to estimate logZ in order to compute log p̃(x) − logZ for a new model we
have just invented. A computationally economical implementation of AIS may fail
to find several modes of the model distribution and underestimate Z, which will
result in us overestimating log p(x). It can thus be difficult to tell whether a high
likelihood estimate is due to a good model or a bad AIS implementation.

Other fields of machine learning usually allow for some variation in the pre-
processing of the data. For example, when comparing the accuracy of object
recognition algorithms, it is usually acceptable to preprocess the input images

slightly differently for each algorithm based on what kind of input requirements
it has. Generative modeling is different because changes in preprocessing, even
very small and subtle ones, are completely unacceptable. Any change to the input
data changes the distribution to be captured and fundamentally alters the task.
For example, multiplying the input by 0.1 will artificially increase likelihood by a
factor of 10.

Issues with preprocessing commonly arise when benchmarking generative models
on the MNIST dataset, one of the more popular generative modeling benchmarks.
MNIST consists of grayscale images. Some models treat MNIST images as points
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in a real vector space, while others treat them as binary. Yet others treat the
grayscale values as probabilities for a binary samples. It is essential to compare
real-valued models only to other real-valued models and binary-valued models only
to other binary-valued models. Otherwise the likelihoods measured are not on the
same space. For binary-valued models, the log-likelihood can be at most zero, while
for real-valued models it can be arbitrarily high, since it is the measurement of a
density. Among binary models, it is important to compare models using exactly
the same kind of binarization. For example, we might binarize a gray pixel to 0 or 1
by thresholding at 0.5, or by drawing a random sample whose probability of being

1 is given by the gray pixel intensity. If we use the random binarization, we might
binarize the whole dataset once, or we might draw a different random example for
each step of training and then draw multiple samples for evaluation. Each of these
three schemes yields wildly different likelihood numbers, and when comparing
different models it is important that both models use the same binarization scheme
for training and for evaluation. In fact, researchers who apply a single random
binarization step share a file containing the results of the random binarization, so
that there is no difference in results based on different outcomes of the binarization
step.

Because being able to generate realistic samples from the data distribution
is one of the goals of a generative model, practitioners often evaluate generative

models by visually inspecting the samples. In the best case, this is done not by the
researchers themselves, but by experimental subjects who do not know the source
of the samples (Denton 2015et al., ). Unfortunately, it is possible for a very poor
probabilistic model to produce very good samples. A common practice to verify
if the model only copies some of the training examples is illustrated in Fig. .16.1
The idea is to show for some of the generated samples their nearest neighbor in
the training set, according to Euclidean distance in the space of x. This test is
intended to detect the case where the model overfits the training set and just
reproduces training instances. It is even possible to simultaneously underfit and
overfit yet still produce samples that individually look good. Imagine a generative
model trained on images of dogs and cats that simply learns to reproduce the
training images of dogs. Such a model has clearly overfit, because it does not

produces images that were not in the training set, but it has also underfit, because
it assigns no probability to the training images of cats. Yet a human observer
would judge each individual image of a dog to be high quality. In this simple
example, it would be easy for a human observer who can inspect many samples to
determine that the cats are absent. In more realistic settings, a generative model
trained on data with tens of thousands of modes may ignore a small number of
modes, and a human observer would not easily be able to inspect or remember
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enough images to detect the missing variation.

Since the visual quality of samples is not a reliable guide, we often also
evaluate the log-likelihood that the model assigns to the test data, when this is
computationally feasible. Unfortunately, in some cases the likelihood seems not
to measure any attribute of the model that we really care about. For example,
real-valued models of MNIST can obtain arbitrarily high likelihood by assigning
arbitrarily low variance to background pixels that never change. Models and
algorithms that detect these constant features can reap unlimited rewards, even
though this is not a very useful thing to do. The potential to achieve a cost

approaching negative infinity is present for any kind of maximum likelihood
problem with real values, but it is especially problematic for generative models of
MNIST because so many of the output values are trivial to predict. This strongly
suggests a need for developing other ways of evaluating generative models.

Theis 2015et al. ( ) review many of the issues involved in evaluating generative
models, including many of the ideas described above. They highlight the fact
that there are many different uses of generative models and that the choice of
metric must match the intended use of the model. For example, some generative
models are better at assigning high probability to most realistic points while other
generative models are better at rarely assigning high probability to unrealistic
points. These differences can result from whether a generative model is designed

to minimize DKL(pdatakpmodel ) or DKL(pmodelkpdata), as illustrated in Fig. .3.6
Unfortunately, even when we restrict the use of each metric to the task it is most
suited for, all of the metrics currently in use continue to have serious weaknesses.
One of the most important research topics in generative modeling is therefore not
just how to improve generative models, but in fact, designing new techniques to
measure our progress.

20.15 Conclusion

Training generative models with hidden units is a powerful way to make models

understand the world represented in the given training data. By learning a model
pmodel(x) and a representation pmodel (h x| ), a generative model can provide
answers to many inference problems about the relationships between input variables
in x and can provide many different ways of representing x by taking expectations
of h at different layers of the hierarchy. Generative models hold the promise to
provide AI systems with a framework for all of the many different intuitive concepts
they need to understand, and the ability to reason about these concepts in the
face of uncertainty. We hope that our readers will find new ways to make these
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approaches more powerful and continue the journey to understanding the principles
that underlie learning and intelligence.
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AIS, see annealed importance sampling
Almost everywhere, 71
Almost sure convergence, 130
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ANN, see Artificial neural network
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Artificial neural network, see Neural net-

work
ASR, see automatic speech recognition
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Back-propagation through time, 385
Backprop, see back-propagation
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Bayesian hyperparameter optimization, 439
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Bayesian statistics, 135
Belief network, see directed graphical model
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Bias parameter, 110
Biased importance sampling, 596
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Block Gibbs sampling, 602
Boltzmann distribution, 573
Boltzmann machine, ,573 656
BPTT, see back-propagation through time
Broadcasting, 34
Burn-in, 600
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CD, see contrastive divergence
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Collider, see explaining away
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Cost function, see objective function
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Covariance matrix, 62
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DAE, see denoising autoencoder
Data generating distribution, ,111 131
Data generating process, 111
Data parallelism, 450
Dataset, 105
Dataset augmentation, ,270 460
DBM, see deep Boltzmann machine
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Deep learning, ,2 5
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Empirical risk, 276
Empirical risk minimization, 276
Encoder, 4
Energy function, 572
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Ensemble methods, 255
Epoch, 247
Equality constraint, 94
Equivariance, 339
Error function, see objective function
ESN, see echo state network
Euclidean norm, 39
Euler-Lagrange equation, 649
Evidence lower bound, ,636 663
Example, 99
Expectation, 60
Expectation maximization, 637
Expected value, see expectation
Explaining away, , ,577 634 647
Exploitation, 484
Exploration, 484
Exponential distribution, 65

F-score, 426
Factor (graphical model), 570
Factor analysis, 493
Factor graph, 582
Factors of variation, 4
Feature, 99
Feature selection, 236
Feedforward neural network, 167
Fine-tuning, 324
Finite differences, 442
Forget gate, 306
Forward propagation, 203
Fourier transform, ,361 363
Fovea, 367
FPCD, 617
Free energy, ,574 682
Freebase, 486
Frequentist probability, 55
Frequentist statistics, 135
Frobenius norm, 46
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Functional derivatives, 648
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Gabor function, 369
GANs, see generative adversarial networks
Gated recurrent unit, 428
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Gaussian kernel, 142
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GCN, see global contrast normalization
GeneOntology, 486
Generalization, 110
Generalized Lagrange function, see general-

ized Lagrangian
Generalized Lagrangian, 94
Generative adversarial networks, ,691 702
Generative moment matching networks, 705
Generator network, 695
Gibbs distribution, 571
Gibbs sampling, ,584 602
Global contrast normalization, 457
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Gradient, 84
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Graphics processing unit, 447
Greedy algorithm, 324
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Harmonium, see restricted Boltzmann ma-

chine
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Helmholtz free energy, see evidence lower

bound
Hessian, 223
Hessian matrix, ,xiii 87
Heteroscedastic, 187
Hidden layer, ,6 167
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Hyperparameter optimization, 435
Hyperparameters, ,120 433
Hypothesis space, ,112 118

i.i.d. assumptions, , ,111 122 267
Identity matrix, 36
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ImageNet Large-Scale Visual Recognition

Challenge, 23
Immorality, 580
Importance sampling, , ,595 627 700
Importance weighted autoencoder, 700
Independence, ,xiii 60
Independent and identically distributed, see
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Independent component analysis, 494
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Information retrieval, 528
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Integral, xiii
Invariance, 343
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k-nearest neighbors, ,143 551
Karush-Kuhn-Tucker conditions, ,95 237
Karush–Kuhn–Tucker, 94
Kernel (convolution), ,332 333
Kernel machine, 551
Kernel trick, 141
KKT, see Karush–Kuhn–Tucker
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Krylov methods, 224
Kullback-Leibler divergence, ,xiii 74

Label smoothing, 243
Lagrange multipliers, ,94 649
Lagrangian, see generalized Lagrangian
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Laplace distribution, , ,65 499 500
Latent variable, 67
Layer (neural network), 167
LCN, see local contrast normalization
Leaky ReLU, 192
Leaky units, 409
Learning rate, 85
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Linear dependence, 38
Linear factor models, 492
Linear regression, , ,107 110 140
Link prediction, 487
Lipschitz constant, 92
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Local contrast normalization, 459
Logistic regression, , ,3 140 140
Logistic sigmoid, ,7 67
Long short-term memory, , , ,18 25 306 411,

428
Loop, 582
Loopy belief propagation, 588
Loss function, see objective function
L norm, 39
LSTM, see long short-term memory

M-step, 637
Machine learning, 2
Machine translation, 101
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Manifold, 160
Manifold hypothesis, 161
Manifold learning, 161
Manifold tangent classifier, 270
MAP approximation, ,138 508
Marginal probability, 58
Markov chain, 598
Markov chain Monte Carlo, 598
Markov network, see undirected model
Markov random field, see undirected model
Matrix, , ,xi xii 32
Matrix inverse, 36
Matrix product, 34
Max norm, 40
Max pooling, 340
Maximum likelihood, 131
Maxout, ,192 428
MCMC, see Markov chain Monte Carlo
Mean field, , ,641 642 674
Mean squared error, 108
Measure theory, 71
Measure zero, 71
Memory network, ,419 421
Method of steepest descent, see gradient

descent
Minibatch, 279
Missing inputs, 100
Mixing (Markov chain), 604

Mixture density networks, 188
Mixture distribution, 66
Mixture model, ,188 513
Mixture of experts, ,453 551
MLP, see multilayer perception
MNIST, , ,21 22 674
Model averaging, 255
Model compression, 451
Model identifiability, 284
Model parallelism, 450
Moment matching, 705
Moore-Penrose pseudoinverse, ,45 240
Moralized graph, 580
MP-DBM, see multi-prediction DBM
MRF (Markov Random Field), see undi-

rected model
MSE, see mean squared error
Multi-modal learning, 542
Multi-prediction DBM, 676
Multi-task learning, ,245 541
Multilayer perception, 5
Multilayer perceptron, 27
Multinomial distribution, 62
Multinoulli distribution, 62

n-gram, 464
NADE, 710
Naive Bayes, 3
Nat, 73
Natural image, 562
Natural language processing, 464
Nearest neighbor regression, 115
Negative definite, 89
Negative phase, , ,473 609 611
Neocognitron, , , ,16 24 27 368
Nesterov momentum, 300
Netflix Grand Prize, ,256 482
Neural language model, ,466 479
Neural network, 13
Neural Turing machine, 421
Neuroscience, 15
Newton’s method, ,89 310
NLM, see neural language model
NLP, see natural language processing
No free lunch theorem, 116
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Noise-contrastive estimation, 623
Non-parametric model, 114
Norm, ,xiv 39
Normal distribution, , ,63 64 125
Normal equations, , , ,109 109 112 234
Normalized initialization, 303
Numerical differentiation, see finite differ-

ences

Object detection, 456
Object recognition, 456
Objective function, 82
OMP- ,k see orthogonal matching pursuit
One-shot learning, 541
Operation, 204
Optimization, ,80 82
Orthodox statistics, see frequentist statistics
Orthogonal matching pursuit, ,27 254
Orthogonal matrix, 42
Orthogonality, 41
Output layer, 167

Parallel distributed processing, 17
Parameter initialization, ,301 408
Parameter sharing, , , , ,251 336 374 376 389
Parameter tying, see Parameter sharing
Parametric model, 114
Parametric ReLU, 192
Partial derivative, 84
Partition function, , ,571 608 671
PCA, see principal components analysis
PCD, see stochastic maximum likelihood
Perceptron, ,15 27
Persistent contrastive divergence, see stochas-

tic maximum likelihood
Perturbation analysis, see reparametrization

trick
Point estimator, 122
Policy, 483
Pooling, ,331 685
Positive definite, 89
Positive phase, , , , ,473 609 611 658 670
Precision, 426
Precision (of a normal distribution), ,63 65
Predictive sparse decomposition, 526

Preprocessing, 456
Pretraining, ,324 531
Primary visual cortex, 366
Principal components analysis, , – ,48 146 148

493 634,
Prior probability distribution, 135
Probabilistic max pooling, 685
Probabilistic PCA, , ,493 494 635
Probability density function, 58
Probability distribution, 56
Probability mass function, 56
Probability mass function estimation, 103
Product of experts, 573
Product rule of probability, see chain rule

of probability
PSD, see predictive sparse decomposition
Pseudolikelihood, 618

Quadrature pair, 370
Quasi-Newton condition, 316
Quasi-Newton methods, 316

Radial basis function, 196
Random search, 437
Random variable, 56
Ratio matching, 621
RBF, 196
RBM, see restricted Boltzmann machine
Recall, 426
Receptive field, 338
Recommender Systems, 481
Rectified linear unit, , , ,171 192 428 510
Recurrent network, 27
Recurrent neural network, 379
Regression, 101
Regularization, , , , ,120 120 177 228 433
Regularizer, 119
REINFORCE, 691
Reinforcement learning, , , ,25 106 483 691
Relational database, 486
Reparametrization trick, 690
Representation learning, 3
Representational capacity, 114
Restricted Boltzmann machine, , ,357 462

482 590 634 658 659 674 678, , , , , , ,
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680 683 685, ,
Ridge regression, see weight decay
Risk, 275
RNN-RBM, 688

Saddle points, 285
Sample mean, 125
Scalar, , ,xi xii 31
Score matching, ,516 620
Secant condition, 316
Second derivative, 86
Second derivative test, 89
Self-information, 73
Semantic hashing, 528
Semi-supervised learning, 244
Separable convolution, 363
Separation (probabilistic modeling), 575
Set, xii
SGD, see stochastic gradient descent
Shannon entropy, ,xiii 73
Shortlist, 469
Sigmoid, ,xiv see logistic sigmoid
Sigmoid belief network, 27
Simple cell, 366
Singular value, see singular value decompo-

sition
Singular value decomposition, , ,44 148 482
Singular vector, see singular value decom-

position
Slow feature analysis, 496
SML, see stochastic maximum likelihood
Softmax, , ,183 421 453
Softplus, , ,xiv 68 196
Spam detection, 3
Sparse coding, , , , ,322 357 499 634 694
Sparse initialization, ,304 408
Sparse representation, , , , ,146 226 253 508

559
Spearmint, 439
Spectral radius, 407
Speech recognition, see automatic speech

recognition
Sphering, see whitening
Spike and slab restricted Boltzmann ma-

chine, 683

SPN, see sum-product network
Square matrix, 38
ssRBM, see spike and slab restricted Boltz-

mann machine
Standard deviation, 61
Standard error, 127
Standard error of the mean, ,128 278
Statistic, 122
Statistical learning theory, 110
Steepest descent, see gradient descent
Stochastic back-propagation, see reparametriza-

tion trick
Stochastic gradient descent, , , ,15 150 279

294, 674
Stochastic maximum likelihood, ,615 674
Stochastic pooling, 265
Structure learning, 585
Structured output, ,101 687
Structured probabilistic model, ,77 561
Sum rule of probability, 58
Sum-product network, 556
Supervised fine-tuning, ,532 664
Supervised learning, 105
Support vector machine, 140
Surrogate loss function, 276
SVD, see singular value decomposition
Symmetric matrix, ,41 43

Tangent distance, 269
Tangent plane, 519
Tangent prop, 269
TDNN, see time-delay neural network
Teacher forcing, ,383 384
Tempering, 606
Template matching, 141
Tensor, , ,xi xii 33
Test set, 110
Tikhonov regularization, see weight decay
Tiled convolution, 353
Time-delay neural network, ,369 375
Toeplitz matrix, 334
Topographic ICA, 496
Trace operator, 46
Training error, 110
Transcription, 101
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Transfer learning, 539
Transpose, ,xii 33
Triangle inequality, 39
Triangulated graph, see chordal graph
Trigram, 465

Unbiased, 124
Undirected graphical model, ,77 510
Undirected model, 569
Uniform distribution, 57
Unigram, 465
Unit norm, 41
Unit vector, 41
Universal approximation theorem, 197
Universal approximator, 556
Unnormalized probability distribution, 570
Unsupervised learning, ,105 146
Unsupervised pretraining, ,462 531

V-structure, see explaining away
V1, 366
VAE, see variational autoencoder
Vapnik-Chervonenkis dimension, 114
Variance, , ,xiii 61 229
Variational autoencoder, ,691 698
Variational derivatives, see functional deriva-

tives
Variational free energy, see evidence lower

bound
VC dimension, see Vapnik-Chervonenkis di-

mension
Vector, , ,xi xii 32
Virtual adversarial examples, 268
Visible layer, 6
Volumetric data, 361

Wake-sleep, ,654 663
Weight decay, , , ,118 177 231 434
Weight space symmetry, 284
Weights, ,15 107
Whitening, 458
Wikibase, 486
Wikibase, 486
Word embedding, 467
Word-sense disambiguation, 487

WordNet, 486

Zero-data learning, see zero-shot learning
Zero-shot learning, 541
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