
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95045 U.S.A.
650 960-1300

http://www.sun.com/blueprints

Solaris™ Operating
Environment Network Settings
for Security:
Updated for Solaris 9 Operating
Environment

Alex Noordergraaf, Enterprise Server Products

Sun BluePrints™ OnLine—June 2003

Part No. 816-5240-11
Revision 1.0 2/23/04
Edition: June 2003

Please
Recycle

Copyright 2003 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, California 95045 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://
www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,
if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the United States and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Sun BluePrints, Solaris, Solaris Operating Environment, Solaris Security Toolkit, docs.sun.com, SunDocs,
Sun Quad FastEthernet, and Sun Fire are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other
countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the US
and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the Far and its supplements.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, Californie 95045 Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés
à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats-Unis et dans
les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
enregistree aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company Ltd.

Sun, Sun Microsystems, the Sun logo, Sun BluePrints, Solaris, Solaris Operating Environment, Solaris Security Toolkit, docs.sun.com, SunDocs,
Sun Quad FastEthernet, et Sun Fire sont des marques de fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc.
aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.

Solaris™ Operating Environment
Network Settings for Security:
Updated for Solaris 9 Operating
Environment

This article describes network settings available within the Solaris™ Operating
Environment (Solaris OE) and recommends how to adjust network settings to
strengthen the security posture of Solaris OE systems.

Various trade-offs must be made when enhancing Solaris OE security. A balance is
needed between system manageability and security. Not all network security
configurations mentioned in this article can be used in all environments. When
changing a particular network setting adversely affects the default system operation,
the side effects are described.

This article does not discuss high-level network security. High-level network
security involves configuring inetd, NFS, NIS/NIS+, RPC, DNS, and other
application-level services. That topic is addressed in the Sun BluePrints™ OnLine
article, “Solaris Operating Environment Security: Updated for the Solaris 9
Operating Environment” published in July, 2002.

The information in this article is applicable to Solaris 2.5.1, 2.6, 7, 8 and 9 OE
releases. Some evaluation is necessary prior to using the settings in this article with
other Solaris OE releases.

The application of most of these network security settings require planning and
testing but should be applicable to most computing environments. Being cognizant
of the known network attacks will hopefully provide the needed leverage to apply
beneficial changes.
1

A free and publicly available security tool called the SolarisTM Security Toolkit (also
known as JASS) can assist in configuring these network changes and other security
related processes. Many Sun customer sites use this toolkit to configure security on
their Sun systems. Additional information about this toolkit can be found at:
http://www.sun.com/security/jass/.

The ndd Command
Several of the network settings discussed in this article are configured using the ndd
command. It is used to examine and set kernel module parameters, namely the
Transmission Control Protocol/Internet Protocol (TCP/IP) drivers. Most kernel
parameters accessible through ndd can be modified without rebooting the system. To
see which parameters are available, use the following ndd commands:

These commands list the parameters for the Address Resolution Protocol (ARP),
Internet Control Message Protocol (ICMP), IP, TCP, and User Datagram Protocol
(UDP) drivers. In this updated BluePrint OnLine article, the various drivers are
listed in alphabetic order.

The Solaris 8 and 9 OE releases include support for the next version of the Internet
Protocol suite (IPv6) and the Internet Protocol Security architecture (IPsec). These
have additional drivers. A list of parameters for these drivers can be found with the
following commands:

ndd /dev/arp \?
ndd /dev/icmp \?
ndd /dev/ip \?
ndd /dev/tcp \?
ndd /dev/udp \?

ndd /dev/ip6 \?
ndd /dev/icmp6 \?
ndd /dev/tcp6 \?
ndd /dev/udp6 \?
ndd /dev/ipsecesp \?
ndd /dev/ipsecah \?
2 Solaris™ Operating Environment Network Settings for Security: Updated for Solaris 9 Operating Environment • June

The IPv6 parameters for the ICMP, IP, TCP, and UDP drivers are also listed in the
standard (IPv4) parameter lists. This article does not discuss IPsec, but the
parameters are listed here for completeness. Neither IPv6 nor IPsec support will be
supported in any Solaris OE release earlier than Solaris 8 OE.

There are also network interface device drivers with parameters that can be adjusted
using the ndd command. The following command will list the parameters for the
hme (FastEthernet) device driver:

The “\?” string is required to prevent the shell from interpreting the “?” as a special
character. Using “\?” will list all parameters for the driver and indicate whether the
parameter is read only, write only, or read and write. The current parameter value or
status information can be read by specifying the driver and parameter names.

This example shows the output of a ndd command examining the debugging status
of the ARP driver. (The output “0” indicates that the option is disabled.)

ndd-specified parameter values are integers with “0” meaning disable, “1” meaning
enable, or a large integer to set a time or size value. Setting parameters requires the
“-set” option, the driver name, the parameter name, and the new value. For
example, to enable debugging mode in the ARP driver use this ndd command:

Notes on Parameter Changes
Previously, only some ndd parameter documentation was available from Sun. This
has been a known problem. Since the release of the Solaris 8 OE, there is now
documentation of selected tunable TCP/IP parameters. The book is the Solaris
Tunable Parameters Reference Manual and is available on the docs.sun.comSM web
site. Most of the parameter information for the Solaris 9 OE is also applicable to
previous releases.

Network parameters set with the ndd command apply to the currently running
Solaris instance; parameter changes do not last past system reboots. Once a system is
booted, the default parameters will be used. To provide a simple method of setting

ndd /dev/hme \?

ndd /dev/arp arp_debug
0

ndd -set /dev/arp arp_debug 1
The ndd Command 3

the ndd network parameters mentioned in this article at Solaris boot time, a system
init script has been created and is described in “Sample System nddconfig init
Script.”

Setting driver parameters involves making trade-offs. Most parameters involve
changing the default Solaris OE configuration. The default settings are optimal for
most situations. Adjusting parameters might affect normal system operation, so Sun
does not encourage parameter changes.

All ndd parameter changes suggested in this article include a discussion of trade-
offs, where appropriate. Some settings change the expected operation of systems;
these are noted. Most of these recommended parameter changes are being actively
used on production systems at customer sites.

Sun sometimes alters parameter names or adds additional parameters between
releases of the Solaris OE. Most of the IPv4 parameters described in this article are
used consistently across Solaris OE releases. When there are exceptions, the text for
the parameter specifically mentions the OE differences.

Ultimately, you must decide which settings are appropriate for a specific computing
environment.

ARP
The Address Resolution Protocol (ARP) is used to map 32-bit IPv4 addresses to the
address scheme used by the data-link layer. The data-link layer, sometimes referred
to as the network link layer, consists of the operating system device driver and
corresponding network interface card. This layer is responsible for dealing with the
physical transport media. Sun network devices use a system-wide hardware
address, sometimes referred to as the Media Access Control (MAC) address. This
means that a Sun system with multiple Ethernet interfaces will, by default, have the
same hardware address for each interface.

A Sun Quad FastEthernet™ card has a unique hardware address assigned to each of
its four interfaces. It is also possible to configure the card to use the hardware
address from the cards programmable read only memory (PROM). Refer to the Sun
Quad FastEthernet card documentation for more information.

It should be noted that many operating systems, including the Solaris OE, allow the
hardware or MAC address, of a network interface, to be defined through software.
By explicitly setting the hardware address of a network interface in software, the
vendor-defined hardware address will be overridden.
4 Solaris™ Operating Environment Network Settings for Security: Updated for Solaris 9 Operating Environment • June

ARP is often referred to as a dynamic protocol. This is due to the fact that its
operation occurs automatically. The protocol works in the background, without
concern to the application user or even the network administrator. It is this dynamic
nature of ARP that causes security issues.

For the purposes of this discussion, we use Ethernet (IEEE 802.3). Token ring and
Fiber Distributed Data Interface (FDDI) have similar schemes.

ARP operates by broadcasting an address request and collecting the response to
create its map of addresses. The hardware addresses are only needed for hosts on
the local network. At the lowest level, the Ethernet driver needs the hardware
address of the remote system, to send it a packet. When it does not have that
address, it broadcasts a request for the missing address. This request, called an ARP
request, contains the IP address of the host in question and is sent to all systems on
the local network. A system might respond with a reply, called an ARP reply, which
contains the host IP address and hardware address. The received response is used to
build a table of IP addresses and the corresponding hardware addresses.

In the Solaris OE kernel, there are two tables that maintain the addresses. One table,
maintained by the ARP layer, is called the ARP cache. It provides a layer of efficiency
to the protocol. For instance, when a hardware address is requested by the IP layer,
the ARP cache is checked first. If the address information does not exist in the local
cache, an ARP request is sent, and the corresponding reply is processed. The Solaris
OE also adds unsolicited address information to the ARP cache. These unsolicited
address entries are special because they were not directly requested. These
unsolicited entries are kept in case the IP layer requests them. After a period of time,
all unsolicited entries are deleted from the cache. The default timeout value for
unsolicited entries is five minutes and can be adjusted.

The other table for host address mappings is maintained by the IP layer. It contains
information supplied by requests to the ARP layer. By default, an entry will expire
20 minutes after it was added to the table.

Another feature of the protocol is called gratuitous ARP. This occurs when a host
broadcasts an ARP request for its own hardware address. A Solaris OE system does
this at boot time. It is used to detect if another system is using its IP address,
indicating a misconfigured system. The other use of gratuitous ARP is to send
updated hardware address information. Systems that receive gratuitous ARP
information will automatically update the hardware address information.
ARP 5

ARP Attacks
Several ARP problems can affect a system’s expected operation. The TCP/IP
network protocol suite requires correct hardware address information to ensure
proper delivery of data. An Ethernet frame with an incorrect hardware address will
not be processed by the intended system. All hardware address information is
collected by the ARP layer. It gathers this information as it is needed and accepts
information sent to it. The protocol is also stateless. The problems lie in the fact that
the protocol allows any host to provide its own address information (correct or not).
One system can provide information on the behalf of another system. Address
information received by the ARP layer is processed whether it was directly
requested or not. Additionally and more importantly, all address information
received by a system is believed to be accurate.

There are two basic types of attacks possible with ARP: denial of service and
spoofing. These attacks can prevent normal operations and can be used to
compromise other systems on the local network. A denial of service attack can
prevent one system from exchanging packets with another. This makes the system
appear to be off the network. During a spoofing attack, one system masquerades as
another.

These attacks take advantage of the dynamic nature of the protocol. The simplest
attack is denial of service. There are two forms to this attack: local and remote. On
the local system, an attacker who has administrative control of the system can insert
bogus address information into the ARP cache. Packets destined for systems with
bogus hardware addresses will not be received by the intended system. An attacker
can feed a remote system incorrect address information as well. This is known as
cache poisoning. Since the ARP layer always trusts the information it receives, wrong
information can be inserted and current ARP entries can be corrupted. An attacker
might use the publish feature of the ARP layer to broadcast incorrect information
about other systems. If two ARP replies are received, the last one will be used. It
might be the correct one, or it may not. This situation can spread discord throughout
systems on the local network and be difficult to diagnose.

ARP spoofing attacks are more serious because they are used to compromise remote
systems on the local network. By masquerading as another system, it is possible for
an attacker to exploit a trust relationship and gain entry to other systems. This attack
involves sending false hardware address information to a target system that the
system will use to update its ARP tables. Once the false information is implanted,
the attacking system changes its IP address and attempts a connection to the target.

For example, host A trusts host B. An attacker on host C wants to log into host A.
First, the attacker must disable host B to prevent it from responding to ARP requests.
The attacker then configures host C’s IP address on a logical network interface and
sends an ARP reply to host A containing host B’s IP address and host C’s hardware
address. As discussed previously, host A will update the address information from
the ARP reply. Host C now acts as host B, and the attacker can now log into host A.
6 Solaris™ Operating Environment Network Settings for Security: Updated for Solaris 9 Operating Environment • June

ARP Defenses
Defending against ARP attacks is difficult. Changing the protocol in significant ways
would break compatibility with all TCP/IP based systems on a network. Attempting
to eliminate the dynamic nature of the protocol makes network administration a
nightmare. However, there are some things that can be done to improve security on
the network.

If false entries are inserted into the ARP and IP routing tables, there are two ways
they can be deleted:

■ Entries can be deleted manually using the arp -d host_entry command.
■ Entries will timeout and be deleted by the system.

RFC 826, which defines ARP, specifies that ARP cache entries should be deleted
automatically after a reasonable period of time. The default timeout values for
unsolicited ARP cache entries are five minutes for all releases of the Solaris OE. IP
routing table entries timeout after 20 minutes.

In Solaris OE versions 8 and newer, the following timeout intervals can be altered.

In Solaris OE versions 2.5.1 through 7, the ip_ire_arp_interval parameter is
named ip_ire_flush_interval.

The timeout interval is specified in milliseconds. One minute equals 60000
milliseconds. Both these commands reduce the timeout period for the ARP cache
and IP routing table. Entries will be deleted at a faster rate. This might slow down
an ARP attack since bogus entries do not remain as long. These commands are
available in the system init script provided in “Sample System nddconfig init
Script” on page 26.” The major side effect of this change is a greater number of ARP
requests and replies will be sent. It might not be prudent to use on congested
networks.

Another alternative is to manually create hardware address entries in the ARP cache.
This solution can protect against some ARP attacks but breaks the dynamic nature of
ARP, can increase maintenance costs, and may not be effective in most
environments. A static entry in the ARP cache is a mapping of an IP address to

ndd -set /dev/arp arp_cleanup_interval 60000
ndd -set /dev/ip ip_ire_arp_interval
ARP 7

hardware address. These entries can be loaded at system boot time. Create a file
containing IP addresses and the corresponding hardware addresses, similar to the
following:

Load the contents of this using the arp -f <file> command where file contains a
table of hostnames and hardware addresses. These entries are now marked as
permanent entries in the cache and will not be deleted by timeout. They can,
however, be overridden by unsolicited information. In addition, they can still be
deleted by using the arp -d <host_entry> command where host_entry is the host
name to delete. This solution might not be appropriate in environments that
frequently change equipment.

Note – Permanent ARP entries are only permanent in that they will not be timed-
out. They can be overwritten by ARP information received over the network.

It is also possible to disable ARP completely for an interface. This means that the
network interface will no longer send ARP requests nor process ARP replies. To
disable ARP processing, use the ifconfig <interface> -arp command. Every
system that disables ARP must have static ARP entries. Also, any system that might
need to communicate with systems without ARP will need static ARP entries (such
as routers). This solution is not recommended for most environments because of the
high administrative costs. It might be effective with a small number of machines that
need to communicate with each other and do not interact with other systems on the
local network.

gort.eng.sun.com 08:00:20:ba:a3:c5
olympics.eng.sun.com 08:00:20:4d:6d:30
switchblade.eng.sun.com 08:00:20:b3:48:57
8 Solaris™ Operating Environment Network Settings for Security: Updated for Solaris 9 Operating Environment • June

ICMP
The Internet Control Message Protocol (ICMP) provides a mechanism to report
errors and request information. The configuration parameters discussed here are
managed in the IP driver.

Broadcasts
ICMP broadcasts are, at times, troublesome. A significant number of replies to a
ICMP broadcast from all systems on a network could cause significant network
performance degradation. An attacker might use ICMP broadcast requests to initiate
a denial of service attack. It is best to disable the ability to respond to ICMP
broadcasts. Internal ICMP rules prevent broadcast storms by governing when error
messages should not be generated. The Solaris OE has several ICMP broadcast
parameters, as described in the following sections.

Echo Request Broadcast

An echo request is a common network diagnostic created with the ping command.
Echo requests can be sent to broadcast addresses. All systems configured to respond
to broadcasted echo requests will send an echo reply. That can be a large number of
packets. Even more devastating is the ability to increase the payload size of the
packet. The receiving system will return all of the data contained in the payload.
Extremely large payloads will be fragmented across several packets, thus further
increasing network traffic. Use the following ndd command to disable response to
echo request broadcasts:

Add this command to the system startup scripts. It is also included in the init
script described in “Sample System nddconfig init Script” on page 26.”

ndd -set /dev/ip ip_respond_to_echo_broadcast 0
ICMP 9

Echo Request Multicast

This option is similar to the broadcast echo request in IPv4, and it is subject to the
same attacks described in the previous section. This option determines whether to
respond to ICMP echo requests (pings) sent to a multicast IP address. An attacker
might try to create a denial of service (DOS) attack on subnets or multicast groups
by sending many multicast echo requests to which all systems in the multicast group
would respond. This also provides information on systems that are available on the
network. The default value is 1 (true). A Solaris 9 OE system can be instructed to
ignore echo requests sent to a multicast address with the following ndd command:

IPv6 does not have broadcast packets. It uses multicast packets instead. This is
equivalent to the IPv4 multicast echo request, so all the same attacks apply. A
Solaris 8 OE or Solaris 9 OE with IPv6 enabled interfaces can be instructed to ignore
multicast echo requests with the following ndd command:

Add this command to the system start-up scripts. It is also included in the init
script described in “Sample System nddconfig init Script” on page 26.”

Timestamp Request Broadcast

Timestamp requests are often used to synchronize clocks between two systems.
Individual timestamp requests are normal, but there is no need for a system to
respond to a broadcasted request. Although these timestamp requests can be used to
set a system’s clock, they are not related to the Network Time Protocol (NTP). To
synchronize system clock’s throughout an enterprise, the recommended mechanism
is NTP. Use the ndd command to disable responses to timestamp broadcasts.

Add this command to the system start-up scripts. It is also included in the init
script described in “Sample System nddconfig init Script” on page 26.”

ndd -set /dev/ip ip_respond_to_echo_multicast 0

ndd -set /dev/ip6 ip6_respond_to_echo_multicast 0

ndd -set /dev/ip ip_respond_to_timestamp_broadcast 0
10 Solaris™ Operating Environment Network Settings for Security: Updated for Solaris 9 Operating Environment • June

Address Mask Broadcast

An address mask request is used to determine the netmask for a network. It can be
sent by diskless systems, such as printers or X-terminals, while booting. This type of
request is typically broadcast. These requests are ignored by default and that
configuration can be verified with the following ndd command:

This setting is also included in the init script described in “Sample System
nddconfig init Script” on page 26.”

Redirect Errors
Redirect errors are used by a router to inform a host sending data to forward the
packets to a different router. Both routers involved in the redirection must be
connected to the same subnet. The sending host will then install a new host routing
entry in the routing table for the destination host. Unlike ARP entries, these will not
time out and be deleted. Most systems check the redirect message for errors and
potential problems prior to modifying the routing table.

Receiving Redirect Errors

An attacker might forge redirect errors to install bogus routes. This could initiate a
denial of service attack if the newly specified router is not a router at all. There are
rules governing valid redirect errors, all of which can be spoofed easily. Use this ndd
command to ignore IPv4 ICMP redirect errors:

Similarly, for IPv6, the system can be instructed to ignore redirects with this
command:

Most environments with a single default router for each subnet will not need to
accept redirects. Add this command to the system start-up scripts. It is also included
in the init script described in “Sample System nddconfig init Script” on
page 26.”

ndd /dev/ip ip_respond_to_address_mask_broadcast
0

ndd -set /dev/ip ip_ignore_redirect 1

ndd -set /dev/ip ip6_ignore_redirect 1
ICMP 11

Sending Redirect Errors

Only routers need to send redirect errors, not hosts or multihomed systems. Disable
the sending of IPv4 redirect errors with this ndd command:

Similarly, for IPv6, it is also possible to disable the generation of redirect errors with
this ndd command:

Add this command to the system start-up scripts. It is also included in the init
script described in “Sample System nddconfig init Script” on page 26”.

Timestamp Requests

As mentioned previously, ICMP timestamp broadcasts are unnecessary in most
environments. The Solaris OE software has the ability to disable unicast timestamp
request responses. Disabling this setting prevents the system from responding to
timestamp requests. Some UNIX® systems using the rdate command will no
longer be able to retrieve the time remotely. The Solaris OE rdate command uses
the TCP time service provided by inetd and is not affected by remote systems that
do not respond to ICMP timestamp requests. The following ndd command disables
a Solaris OE systems from responding to unicast timestamp requests:

Add this command to the system start-up scripts. It is also included in the init
script described in “Sample System nddconfig init Script” on page 26”.

The Solaris 2.6, 7, 8, and 9 OE releases include a better method for time
synchronization across multiple systems using the Network Time Protocol (NTP)
system. Refer to the xntpd man page for additional details.

ndd -set /dev/ip ip_send_redirects 0

ndd -set /dev/ip ip6_send_redirects 0

ndd -set /dev/ip ip_respond_to_timestamp 0
12 Solaris™ Operating Environment Network Settings for Security: Updated for Solaris 9 Operating Environment • June

IP
The Internet Protocol (IP) is the lower level protocol that provides bulk data
transport. It is connectionless and makes no provisions for reliable delivery. The
configuration parameters discussed in this article are controlled by the Solaris OE IP
driver.

IP Forwarding
IP forwarding is the process of routing packets between network interfaces on one
system. A packet arriving on one network interface and addressed to a host on a
different network is forwarded to the appropriate interface. Routers handle a
majority of this work, but a computer with multiple network interfaces can do this
as well.

A Solaris OE system with more than one configured network interface forwards IP
datagrams between network interfaces. It functions as a router. This is the default
Solaris OE behavior.

Systems with multiple interfaces can be configured to function as multihomed servers.
A multihomed system has several network interfaces, each with a separate IP
address. It is not intended to route or forward packets but processes network
requests from multiple, directly attached networks. A large NFS server can serve
clients on several networks. The server response is faster and the throughput is
greater when the NFS server is directly attached to each network of clients it serves.

Systems that allow packet forwarding are targets for attackers as they provide access
to other systems and networks. Some of these systems are not normally accessible
through routers. Multihomed servers can be attached to private, non-routed
networks. If IP forwarding is enabled on a multihomed server, the private network is
publicly reachable. Internal firewalls that limit access can be bypassed by forwarding
packets through a multihomed server that is directly attached to the protected
internal network.

Packet forwarding can easily be disabled on a Solaris OE system. Simply creating a
file named /etc/notrouter will disable IPv4 IP forwarding at boot time. IP
forwarding can also be switched on or off while the system is operating, using the
ndd command. Use this command to disable IP forwarding for IPv4:

ndd -set /dev/ip ip_forwarding 0
IP 13

Similarly, the following command will disable forwarding of IPv6 packets:

An attacker might compromise a system to enable packet forwarding; thereby,
gaining access to normally inaccessible systems. This is another reason to make sure
all servers are secure.

Since the release of the Solaris 8 OE there is an additional capability to enable IPv4
forwarding on an interface-by-interface basis. This provides greater flexibility in
determining which interfaces will forward packets for the purposes of creating IP-in-
IP tunnels. The following ndd commands will enable IPv4 IP forwarding on the
hme1 and hme2 interfaces while disabling it on hme0:

Strict Destination Multihoming
Strict destination multihoming prevents packet spoofing on non-routing
multihomed systems. A Solaris OE system with IP forwarding disabled and strict
destination multihoming enabled will ignore packets coming into an interface that
has addresses belonging to a network that is connected only to a different interface.
This prevents attackers from creating packets destined for networks connected only
to a multihomed server that does not forward packets. The system is aware of which
interface the packet arrives on and if a packet appears to be from a network attached
to another interface, the packet is dropped.

This feature can be enabled on the Solaris OE. It is disabled by default. Use the
following ndd command to enable it for IPv4:

Similarly, for IPv6, strict destination multihoming can also be enabled through the
following command:

ndd -set /dev/ip6 ip6_forwarding 0

ndd -set /dev/ip hme0:ip_forwarding 0
ndd -set /dev/ip hme1:ip_forwarding 1
ndd -set /dev/ip hme2:ip_forwarding 1

ndd -set /dev/ip ip_strict_dst_multihoming 1

ndd -set /dev/ip ip6_strict_dst_multihoming 1
14 Solaris™ Operating Environment Network Settings for Security: Updated for Solaris 9 Operating Environment • June

Add this command to the system startup scripts. Or alternatively, install the init
script described in “Sample System nddconfig init Script” on page 26.”

Forwarding Directed Broadcasts
A directed broadcast is a unicast datagram from a system on a remote network
addressed to all systems on another network. Once the datagram reaches the router
connected to the intended network, the datagram is forwarded to all systems as a
data-link layer broadcast.

Directed broadcasts can be problematic due to the amount of network traffic
generated by broadcasts and the ability to send a packet to all systems on a network.
An attacker might take advantage of forwarded directed broadcasts to attack and
probe systems. CERT Advisory CA-98.01 describes a denial of service attack called
the smurf attack after its exploit program. It involves forged ICMP echo request
packets sent to broadcast addresses. In this forged packet, the source address will be
defined as a victim system or router. The result is that the victim and intermediate
routing systems that forwarded the forged packet will suffer from network
congestion. One recommended action is to disable directed broadcast forwarding at
all routers. Attackers might also send directed broadcasts to probe the network and
determine which systems have exploitable vulnerabilities.

When IP forwarding is enabled on a Solaris OE system, directed broadcasts will be
forwarded by default.

Disable it by using the following ndd command:

Add this command to the system startup scripts. Or alternatively, install the init
script described in “Sample System nddconfig init Script” on page 26.

ndd -set /dev/ip ip_forward_directed_broadcasts 0
IP 15

Routing
The process of routing involves examining a table of route information and making
a decision about which interface to send datagrams based on the destination IP
address. The routing table is the central point of information for each network host
to determine where to send packets. Even a simple desktop system must determine
whether the destination is on the local subnet (a direct route) or is reachable through
a local router (an indirect route).

The routing table is periodically updated. Several routing information protocols exist
to propagate routing information between systems and routers. The Solaris OE
includes the in.routed and in.rdisc daemons to dynamically manage routing
information. The in.routed daemon implements Routing Information Protocol
(RIP), while the in.rdisc daemon implements ICMP Router Discovery. When a
Solaris OE system is configured to forward packets as a router (IP forwarding
enabled), by default these daemons advertise routing information to clients and
other routers and listen to other routers for information. As new information is
received, these daemons update the routing table. This method of managing routing
information is known as dynamic routing.

Note – With the release of Solaris 9 OE (12/02) and RIPv2 compliance, a new MD5
authentication mechanism for RIP is supported in Solaris. For more information on
how to use this new capability, refer to the rdisc and in.routed man pages. This
new capability is based on RFC 2082 and provides more robust security capabilities
then RIPv1. However, even with this authentication mechanism, the RIP packets are
vulnerable to some attacks. Refer to Internet-Draft “RIPv2 authentication flaws.”

There are several problems with dynamic routing that attackers can use to initiate
denial of service attacks or view packet data from inaccessible systems. First, routing
information can be forged. Routing information is typically sent via broadcast or
multicast packets. An attacker can generate routing information packets claiming to
be from a router and send them out to hosts or routers. These packets can direct
hosts to send packets to a system that is not a router or to a busy router that cannot
handle the increase in traffic. Misconfigured routers generate their own denial of
service problems. A more sophisticated attack involves directing packets through a
multihomed system to examine the packet data as it flows across this system that
now functions as a router. The attacker sends forged routing information packets to
a router claiming a lower hop count metric to a destination network that the attacker
cannot access. The target router then routes packets through the compromised
system allowing the attacker to examine the traffic.
16 Solaris™ Operating Environment Network Settings for Security: Updated for Solaris 9 Operating Environment • June

By default, a Solaris OE system uses system daemons to dynamically manage
routing information. Static routing can be used to prevent malicious remote routing
changes. The Solaris OE defines a default route during startup based on the IP
address of the router for the local subnet contained in /etc/defaultrouter.
Define other static routes by using the route command. See the route man page
for additional information. Static routing works in environments with a single router
on each subnet. Networks with redundant routers may need to use dynamic routing
so that systems can switch routers should one fail. A Solaris OE system functioning
as a network router should continue to use dynamic routing.

Forwarding Source-Routed Packets
A source-routed packet specifies a routing path to follow. Normally, routing
decisions are handled by routers. They maintain information on available routes and
dynamically update them as new route information is received. Source-routed
packets define their own paths and bypass routing decisions made by routers.

There is little need for source routing in most networks. Properly configured routers
make better routing decisions. Source-routed packets are frequently an indication of
nefarious activity. An attacker might attempt to use source-routed packets to bypass
specific routers or internal firewalls or try to avoid a known network intrusion
detection system by routing packets around it. Source-routed packets are rare.
Silently dropping them should affect few, if any, legitimate applications.

When IP forwarding is enabled on a Solaris OE system, source-routed packets will
be forwarded by default. It can be disabled for IPv4 with this ndd command:

Similarly, for IPv6, source-routed packets can be disabled through the use of this ndd
command:

Add this command to the system startup scripts. Or alternatively, install the init
script described in “Sample System nddconfig init Script” on page 26.

ndd -set /dev/ip ip_forward_src_routed 0

ndd -set /dev/ip6 ip6_forward_src_routed 0
IP 17

TCP
The Transmission Control Protocol (TCP) provides connection-based, reliable data
transport. It uses a lower protocol, IP, to manage the delivery of datagrams. TCP
handles connection management and reliable data delivery. The network
configuration options described here are managed in the Solaris OE TCP driver.

SYN Flood Attacks
In 1996, Issue 48 of the electronic journal Phrack contained an article, “Project
Neptune,” describing a network denial of service attack against TCP called SYN
flooding. This attack makes a system respond very slowly (or not at all) to incoming
network connections. A web site can appear to be down because it cannot establish
connections for incoming browser requests. The Phrack article also contained source
code to a program for initiating SYN flood attacks against remote systems. Soon
after publication, several large Internet Service Providers (ISP) and web sites were
victims of these network attacks. Attackers launched attacks from their dial-up
modem connections to the Internet, which brought down sites with much faster
connections to the network. Often it was difficult to trace the attack back to the
source.

TCP is part of the TCP/IP network protocol suite and is connection-oriented. Prior
to exchanging data using TCP, two systems must create a connection. Connection
establishment is a three-step process in TCP, often called the three-way handshake.
During this handshake, destination port information is exchanged and the two
systems synchronize sequence numbers. (The SYN name refers to this
synchronization step.)

The handshake works in the following manner:

1. A client sends a TCP segment to a server with the SYN flag set in the header, an
Initial Sequence Number (ISN), and port number.

2. The server returns a segment to the client with the SYN flag set, an
acknowledgement (or ACK flag), the original ISN + 1, and its own ISN.

3. The client sends a segment with the ACK flag set and the server’s ISN + 1.

A connection is now established and data can be exchanged starting with the agreed
upon sequence number.
18 Solaris™ Operating Environment Network Settings for Security: Updated for Solaris 9 Operating Environment • June

The sequence numbers are used to provide reliability to the TCP protocol. The
sequence numbers are incremented and sent with each outgoing packet. This allows
the remote system to put packets in the proper order. If a packet is missing from the
sequence, it can be detected and retransmitted.

The SYN flood attack takes advantage of the following weakness in the TCP protocol
handshake. When a server receives the first SYN segment, it sends a SYN/ACK
segment to the client address listed in the SYN segment. However, if that client is
unreachable, the server will resend the SYN/ACK segment until a time limit is
reached. (ICMP errors returned by the IP layer are ignored by the TCP layer.) If an
attacking host sends many SYN segments for unreachable hosts, the server spends
much time and system resources attempting to establish connections. Eventually, the
server will reach its maximum of partially open connections. These incoming
connections still in the handshake phase are part of the backlog queue for the
specified port. In older versions of Solaris OE, the backlog queue was small. Once
the queue is full, no further incoming SYN segments can be processed. Either the
system will no longer respond for the specified port or the initial response becomes
very sluggish. Systems with many network services could exhaust system memory
because of the high number of uncompleted connections in the backlog queues.

In response to this attack, the Solaris 2.5.1 OE kernel TCP connection queue was
changed and patches were issued. Previously, the size of the connection queue
defined the size of the backlog queue. Now, there are two queues. There is still the
queue for established connections. The new queue is for unestablished connections,
where the handshake process is incomplete. SYN flood attacks affect this queue.
When an attack occurs and the unestablished connection queue fills, an algorithm
drops the oldest SYN segments first and allows the legitimate connections to
complete. Patch 103582-11 (and later) adds this new queue system to the Solaris 2.5.1
OE release. The Solaris 2.6, 7, 8, and 9 OE releases have it incorporated. When a
system is under attack, this message will appear in the logs:

This message indicates that the system is handling the attack as designed.

The sizes of the new queues are adjustable. Busy web servers might need to increase
the size of the unestablished connection queue. The default size of the queue is 1024.
Use this ndd command to increase it to 4096:

Add this command to the system startup scripts, or use the script described in
“Sample System nddconfig init Script” on page 26. Any time a kernel queue is
increased in size, there must be adequate system memory to handle the increase.

Mar 8 19:24:01 example unix: WARNING: High TCP connect timeout
rate! System (port 80) may be under a SYN flood attack!

ndd -set /dev/tcp tcp_conn_req_max_q0 4096
TCP 19

Connection Exhaustion Attacks
While SYN flood attacks attack the TCP three-way handshake, connection
exhaustion attacks work on established connections. These attacks are not common
because the connections can be traced back to the source in most cases, unlike SYN
flood attacks. Most operating systems have a limit on the number of established
connections that can be maintained whether set by a kernel parameter or available
physical memory. Once this limit is reached, no new connections are established. The
active connections must be completed and closed before new connections are
established. For most web servers, this limit is never reached due the fact that HTTP
connections are typically short-lived. An attacker can open many connections to a
server and hold them open for long periods of time, effectively pushing the server
closer to its connection limit. A web server will close connections that have
completed and accept new connections. An attacker who continually and quickly
requests new connections will eventually hold all of the available connections.
Normal users of the web server will receive messages indicating that the web server
is not responding. This is another denial of service attack.

One defense against this type of attack can be provided by tuning kernel and
application parameters. This is not a complete solution, since it is basically a battle
of resources. Whoever has the most resources (systems, memory, etc.) will most
likely win the battle. An attacker can spread the connection attacks out to multiple
systems to increase the total connection requests. However, some application and
kernel adjustments can be made to reduce the effectiveness of such attacks. Most
web servers have a parameter that sets the connection timeout value. For example,
the Apache 1.3.9 web server has a configuration parameter named Timeout (in /
etc/apache/http.conf of the Solaris 8 OE) that sets the maximum time a
connection can be established. Once this time limit is reached, the server closes the
connection. Setting this value to a lower value shortens the timeout period.
Additionally, the Solaris 2.5.1 (with patch 103582-11 or later), 2.6, 7, 8, and 9 OE
releases have a common parameter to adjust the maximum number of established
network connections. The default value is 128. Use this ndd command to increase
the default value to 1024:

Decreasing the connection time and increasing the maximum number of established
connections should be sufficient to ride out most connection exhaustion attacks. It
may still be possible to create an effective denial of service even with the changes.
However, the attacker must devote significant resources to be successful.

ndd -set /dev/tcp tcp_conn_req_max_q 1024
20 Solaris™ Operating Environment Network Settings for Security: Updated for Solaris 9 Operating Environment • June

IP Spoofing Attacks
Predictable ISNs make it possible for attackers to compromise some systems. The
TCP three-way handshake discussed previously involves two systems synchronizing
sequence numbers prior to data exchange. For each new connection, most systems
use ISNs that have fixed and predictable counter increments. An attacker uses this
knowledge to create a three-way handshake by predicting the required ISN to
establish a connection and execute a command.

This is a sophisticated attack that involves exploiting a trust relationship between
two systems. Typically, a remote shell command (rsh) is attempted due to the trust
configuration of a .rhosts file. This attack is carried out with the attacker unable to
see the packets returned from the target host. It is due to the fact that the attacker is
not on the same local network and the packets will be destined for the spoofed host.
For this example, assume host A trusts host B. An attacker on host C (on a different
network) wants to execute a command on host A. The first step in this attack is to
disable host B. This can be done using the SYN flood attack described earlier. The
attacker then establishes a TCP connection (or several connections to judge network
delays) to the target host to sample the ISN used. This will be used to predict the
next ISN.

The attacker uses the following steps in the TCP three-way handshake:

1. The attacker creates a TCP segment with the SYN flag set and an arbitrary ISN.
The source address is set to the trusted host, and it is sent to the target system.

2. The target system returns a segment to the trusted system with the SYN and ACK
flags set, the attacker ISN + 1, and its own ISN. The attacker cannot see this
packet.

3. The attacker waits a period of time to allow the SYN/ACK segment to be sent and
then sends a segment with the ACK flag set and the predicted ISN + 1.

If the attacker predicts the target’s ISN accurately, then the remote shell daemon
(in.rshd) will believe it has a valid connection to the trusted host. The attacker can
now execute a command on the remote system.

RFC 1948 defines a better method for generating ISNs to prevent IP spoofing attacks.
Using the procedure defined in this RFC, each connection has a unique and
seemingly random ISN. A system using this technique is now a difficult target for an
attacker attempting to predict the ISN.

There are several settings available on Solaris OE systems: the predictable method
(0), an improved method with random increment value (1), and the RFC 1948
method (2). The default method for all revisions of the Solaris OE is 1. The 2.6, 7, 8,
and 9 releases have all of these methods. The Solaris 2.5.1 OE release only has
methods 0 and 1. Solaris 2.6, 7, 8, and 9 OE releases should be modified to use
method 2.
TCP 21

There are two mechanisms to implement this change. The first option is to edit the
/etc/default/inetinit file and change this line:

to

Reboot the system after this change.

The second mechanism is to enable this method while a system is in operation. Use
the following command:

Note – This method can only be set by using the ndd -set command.

Unfortunately, the Solaris 2.5.1 OE software does not offer the RFC 1948 method,
and there are no plans to backport it. There might be a minor performance penalty
for using the RFC 1948 method.

TCP Reverse Source Routing
As previously discussed, source-routed packets define a specific routing path instead
of allowing network routers to make such decisions. Systems should be configured
to not forward source-routed packets even when IP forwarding is enabled.

Additionally, the Solaris OE can be configured to ignore the reverse route on
incoming TCP source-routed packets. Normally, the reverse routing path is copied
into all packets destined for the system from which they were received. With TCP
reverse source routing disabled, source-routed packets are processed normally,
except that the reverse route information is removed from all response packets. It is
available in Solaris 8 OE and newer OS releases.

TCP_STRONG_ISS=1

TCP_STRONG_ISS=2

ndd -set /dev/tcp tcp_strong_iss 2
22 Solaris™ Operating Environment Network Settings for Security: Updated for Solaris 9 Operating Environment • June

This feature is disabled by default and that configuration can be verified with the
ndd command:

Ignoring the reverse route prevents an attacker from spoofing another system during
the TCP handshake process. It is also included in the init script in “Sample System
nddconfig init Script” on page 26.

Common TCP and UDP Parameters
There are parameters common to both the TCP and UDP drivers. These parameters
implement concepts that are similar and independent of the protocol.

The Solaris OE and other UNIX variants restrict access to network socket port
numbers less than 1024. Ports 1–1023 are considered reserved and require superuser
privilege to acquire them. The range of these privilege ports can be increased.
Specific ports can also be marked as privileged.

The Solaris OE also provides a mechanism to define the range of dynamically
assigned ports. These ports are commonly referred to as ephemeral because they are
typically short-lived and primarily exist for outbound network connections. The
upper and lower bound of this port range can be adjusted.

Adding Privileged Ports
The Solaris 2.5.1, 2.6, 7, 8, and 9 OE releases provide a method to extend the
privileged port range beyond 1023 for both the TCP and UDP drivers. Additionally,
the Solaris 2.6, 7, 8, and 9 OE releases have a mechanism to add additional,
individual privileged ports.

Some services operate with superuser privilege outside the privileged port range.
The NFS server process (nfsd) attaches to port 2049. Unfortunately, an attacker
without superuser privilege can start a server process on a system that normally
does not operate as an NFS server. This nonprivileged process can offer a false NFS
service to unsuspecting clients. There are other services and applications that
operate outside the standard privileged port range as well.

ndd /dev/tcp tcp_rev_src_routes
0

Common TCP and UDP Parameters 23

The privilege port range is extended using the tcp_smallest_nonpriv_port
parameter in the TCP and UDP drivers. It is used to specify the smallest
nonprivileged port number. Use the following ndd command to extend the
privileged port range to 4096 for both the TCP and UDP drivers:

Add this command to the system init scripts to enable this behavior at system
start.

It is also possible to specify additional privileged ports. The current list of privileged
ports can be viewed using these ndd commands:

This output shows that the NFS server port (2049) and the NFS lock manager port
(4045) are already protected as privileged ports. These two ports are the default
additional privileged ports for the Solaris 2.6, 7, 8, and 9 OE releases.

Adding privileged TCP or UDP ports involves similar but separate parameter
names. Add TCP privileged ports using the tcp_extra_priv_ports_add
parameter for the TCP driver. Add UDP privileged ports using the
udp_extra_priv_ports_add parameter for the UDP driver. For example, to add
TCP and UDP port numbers to the privileged list use this ndd command:

TCP port 7007 and UDP port 7009 are now part of the list of additional privileged
ports.

It is also possible to delete defined additional privileged ports. Use the
tcp_extra_priv_ports_del or udp_extra_priv_ports_del parameters to
remove previously configured ports for the appropriate driver.

ndd -set /dev/tcp tcp_smallest_nonpriv_port 4097
ndd -set /dev/udp udp_smallest_nonpriv_port 4097

ndd /dev/tcp tcp_extra_priv_ports
2049
4045
ndd /dev/udp udp_extra_priv_ports
2049
4045

ndd -set /dev/tcp tcp_extra_priv_ports_add 7007
ndd -set /dev/udp udp_extra_priv_ports_add 7009
24 Solaris™ Operating Environment Network Settings for Security: Updated for Solaris 9 Operating Environment • June

Extending the privileged port range can break applications. Prior to configuring
additional privileged ports, determine which server processes run with superuser
privilege outside of the privileged port range. Remember, that some services can run
as normal user processes. Extending the range or including a port inappropriately
will prevent the server from acquiring the network port needed to operate.
Whenever possible, add specific ports to the privileged port list instead of changing
the range of privileged ports.

Changing the Ephemeral Port Range
The Solaris 2.5.1, 2.6, 7, 8, and 9 OE releases provide a method to change the
ephemeral port range for both the TCP and UDP drivers. The upper and lower range
can be altered.

The following ndd commands show the range values for the TCP and UDP drivers:

Alter the ephemeral port ranges by specifying the smallest and largest port number
for both the TCP and the UDP drivers.

Adjusting these values can be useful, particularly in firewall environments. Define a
smaller range to simplify firewall rules for specific applications. Take care when
defining a small range, because the ability to establish outbound network
connections might be limited.

ndd /dev/tcp tcp_smallest_anon_port
32768
ndd /dev/tcp tcp_largest_anon_port
65535
ndd /dev/udp udp_smallest_anon_port
32768
ndd /dev/udp udp_largest_anon_port
65535
Common TCP and UDP Parameters 25

Sample System nddconfig init Script
This shell script implements most of the ndd commands mentioned in this article.
Make any variable adjustments before using. Follow the instructions in the
comments of the script to install it.

Download the nddconfig system init script at:

http://www.sun.com/blueprints/tools/

About the Author
Alex Noordergraaf has over 10 years experience in the areas of computer and
network security. As the Security Architect of the Enterprise Server Products (ESP)
group at Sun Microsystems, he is responsible for providing technical leadership to
define the security of Sun’s next generation servers while addressing security for
current products. He is the driving force behind the very popular freeware Solaris
Security Toolkit. Prior to his role in ESP, he was a Senior Staff Engineer in the
Enterprise Engineering (EE) group of Sun Microsystems, where he developed,
documented, and published security best practices through the Sun BluePrints
program. Published topics include: Sun Fire™ Midframe 15K system security, secure
N-tier environments, Solaris OE minimization, Solaris OE network settings, and
Solaris OE security. He has co-authored two Sun BluePrint books Jumpstart
Technology - Effective Use in the Solaris Operating Environment and Enterprise Security
Solaris Operating Environment, Security Journal.

Prior to his role in EE, he was a Senior Security Architect with Sun Professional
Services where he worked with many Fortune 500 companies on projects that
included security assessments, architecture development, architectural reviews, and
policy/procedure review and development. He developed and delivered an
enterprise security assessment methodology and training curriculum to be used
worldwide by SunPS. His customers included major telecommunication firms,
financial institutions, ISPs, and ASPs. Before joining Sun, Alex was an independent
contractor specializing in network security. His clients included BTG, Inc. and
Thinking Machines Corporation.

Note – Alex Noordergraaf would like to acknowledge Keith Watson’s contributions
to previous versions of this article. In 2002, Keith Watson left Sun and returned to
the Center for Education and Research in Information Assurance and Security
(CERIAS) at Purdue University.
26 Solaris™ Operating Environment Network Settings for Security: Updated for Solaris 9 Operating Environment • June

Related Resources
■ Bellovin, Steven. Defending Against Sequence Number Attacks, RFC 1948, AT&T

Research, Murray Hill, NJ, May 1996.

■ CERT. IP Spoofing Attacks and Hijacked Terminal Connections, CERT Advisory CA-
95.01 http://www.cert.org/advisories/CA-1995-01.html.

■ CERT. “smurf” IP Denial-of-Service Attacks, CERT Advisory CA-98.01
http://www.cert.org/advisories/CA-1998-01.html.

■ CERT. TCP SYN Flooding and IP Spoofing Attacks, CERT Advisory CA-96.21
http://www.cert.org/advisories/CA-1996-21.html.

■ daemon9. IP-spoofing Demystified, Phrack 48, file 14.

■ daemon9. Project Neptune, Phrack 48, file 13.

■ Graff, Mark. Sun Microsystems Security Bulletin: #00136, 1996. http://
sunsolve.Sun.COM/pub-cgi/retrieve.pl?doctype=coll&doc=secbull/
136&type=0&nav=sec.sba.

■ Noordergraaf, Alex and Brunette, Glenn. “The Solaris Security Toolkit -
Installation, Configuration, and Usage Guide: Updated for version 0.3,” Sun
BluePrints OnLine, June 2001, http://sun.com/blueprints/0601/
jass_config_install-v03.pdf.

■ Noordergraaf, Alex and Brunette, Glenn. “The Solaris Security Toolkit - Quick
Start: Updated for version 0.3,” Sun BluePrints OnLine, June 2001,
http://sun.com/blueprints/0601/jass_quick_start-v03.pdf.

■ Noordergraaf, Alex. “Minimizing the Solaris Operating Environment for Security:
Updated for Solaris 9 Operating Environment,” Sun BluePrints OnLine,
November 2002, http://sun.com/blueprints/1102/816-5241.html.

■ Noordergraaf, Alex and Watson, Keith. “Solaris Operating Environment Security:
Updated for the Solaris 9 Operating Environment,” Sun BluePrints OnLine,
December 2002, http://www.sun.com/solutions/blueprints/1202/816-
5242.pdf.

■ Morris, R. T. A Weakness in the 4.2BSD UNIX TCP/IP Software, CSTR 117, 1985,
AT&T Bell Laboratories.

■ Plummer, Dave. An Ethernet Address Resolution Protocol, RFC 826, Network
Information Center, SRI International, Menlo Park, CA., November 1982.

■ Stevens, W. Richard. TCP/IP Illustrated, Volume 1, 1995. Addison-Wesley.

■ Sun Microsystems, Solaris Tunable Parameters Reference Manual, December 2001.
Related Resources 27

Ordering Sun Documents
The SunDocsSM program provides more than 250 manuals from Sun Microsystems,
Inc. If you live in the United States, Canada, Europe, or Japan, you can purchase
documentation sets or individual manuals through this program.

Accessing Sun Documentation Online
The docs.sun.com web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title
or subject. The URL is http://docs.sun.com/

To reference Sun BluePrints OnLine articles, visit the Sun BluePrints OnLine Web
site at: http://www.sun.com/blueprints/online.html
28 Solaris™ Operating Environment Network Settings for Security: Updated for Solaris 9 Operating Environment • June

	Solaris™ Operating Environment Network Settings for Security: Updated for Solaris 9 Operating Env...
	Alex Noordergraaf, Enterprise Server Products
	Sun BluePrints™ OnLine—June 2003

	Solaris™ Operating Environment Network Settings for Security: Updated for Solaris 9 Operating Env...
	The ndd Command
	Notes on Parameter Changes
	ARP

	ARP Attacks
	ARP Defenses
	ICMP

	Broadcasts
	Echo Request Broadcast
	Echo Request Multicast
	Timestamp Request Broadcast
	Address Mask Broadcast

	Redirect Errors
	Receiving Redirect Errors
	Sending Redirect Errors
	Timestamp Requests
	IP

	IP Forwarding
	Strict Destination Multihoming
	Forwarding Directed Broadcasts
	Routing
	Forwarding Source-Routed Packets
	TCP

	SYN Flood Attacks
	1. A client sends a TCP segment to a server with the SYN flag set in the header, an Initial Seque...
	2. The server returns a segment to the client with the SYN flag set, an acknowledgement (or ACK f...
	3. The client sends a segment with the ACK flag set and the server’s ISN + 1.

	Connection Exhaustion Attacks
	IP Spoofing Attacks
	1. The attacker creates a TCP segment with the SYN flag set and an arbitrary ISN. The source addr...
	2. The target system returns a segment to the trusted system with the SYN and ACK flags set, the ...
	3. The attacker waits a period of time to allow the SYN/ACK segment to be sent and then sends a s...

	TCP Reverse Source Routing
	Common TCP and UDP Parameters

	Adding Privileged Ports
	Changing the Ephemeral Port Range
	Sample System nddconfig init Script
	About the Author
	Related Resources

