
TM
1

A Guide to Building Secure Web Applications
Part 1: Overview of the OWASP Publication

Brown Bag Presentation by:

Rosie Jergovic, CISSP

October 18, 2002

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

TM
2

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

2

Outline

Today’s Objectives
OWASP
Security Requirements
Highlights from “A Guide to Building Secure Web
Applications”
Where Do We Go from Here?

TM
3

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

3

Today’s Objectives

Communicate security topics relevant to the development
of web applications
Use OWASP’s “Guide to Building Secure Web
Applications” as the framework

Security Guidelines
Architecture
Authentication
Managing User Sessions
Access Control and Authorization
Event Logging
Data Validation
Privacy Considerations
Cryptography

Suggest ways to apply this information

TM
4

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

4

An open source reference point for system architects,
developers, vendors, consumers and security
professionals
OWASP’s goal is to help everyone build more secure web
applications and web services
OWASP will publish guidelines and tools for designing,
developing, deploying, and testing the security of web
applications and web services
First publication is: “A Guide to Building Secure Web
Applications,” Sept. 22, 2002

Authors: Mark Curphey, David Endler, William Hau, Steve Taylor,
Tim Smith, Alex Russell, Gene McKenna, Richard Parke, Kevin
McLaughlin, Nigel Tranter, Amit Klien, Dennis Groves, Izhar By-
Gad

www.owasp.org

TM
5

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

5

Security Requirements

What is information systems security?
Confidentiality - data and services are used only by
authorized entities
Integrity - data are protected from unauthorized
modification in storage, use, and transmission
Availability - data, applications, hosts, and networks
provide their intended services when they are
needed

What is at stake?
Consumer trust in Internet data services
Consumer acceptance of mobile commerce
Acceptance of our software products
Security of network services

TM
6

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

6

Security Requirements

How much security does a web application
require?

Zero risk is not practical
There are usually multiple ways to mitigate risk
Don’t spend $1,000,000.00 to protect $0.10
Security is almost always overhead, either in cost or
performance

TM
7

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

7

Security Guidelines

Validate input and output
User input and output to and from the system is the route for
malicious payloads into or out of the system
Allow only explicitly defined characteristics and drop all other data

Fail securely (closed)
Any security mechanism should fail to a state that rejects all
subsequent security requests rather than allows them

Keep it simple
Often the most effective security is the simplest security, for end
users and administrators
If the steps to secure a function or module of the application are
too complex, they probably won’t be followed properly
Complex code is hard to understand, making maintenance error-
prone

TM
8

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

8

Security Guidelines

Use and reuse trusted components
When someone else has proven they got it right, take advantage of
it
Beneficial from both a resource and security perspective

Only as secure as the weakest link
Attackers will find the weakest point and attempt to exploit it
Don’t leave all the locks on the front door and leave the back door
swinging open

Security by obscurity won’t work
Obscuring information is very different from protecting it
It doesn’t work in the long term, and there is no guarantee it will
work in the short term

TM
9

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

9

Security Guidelines
Defense in depth

Good systems don’t predict the unexpected, but plan for it
If one component fails to catch a security event, a second one
should catch it
Implement a “default deny” stance

Least privilege
The “need to know” approach
Systems, applications, functions, modules, etc., should run
with the least amount of system privilege needed to do the job
Giving the pool man an unlimited bank account to buy
chemicals for your pool while you’re on vacation is unlikely to
be a positive experience!

Compartmentalization (separation of privileges)
Compartmentalizing users, processes, data, and networks
helps contain problems if they do occur
Give the pool man keys only to the pool house . . .

TM
10

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

10

The Big Picture

Code
Application

Operating System
Link Layer Protocol

Transport Protocol

Data

Firewall

Transit Network
Border
Internet

Intrusion Detection Systems

Denial of Service
Defensive
Measures

RDM

Proactive Defensive Measures

Reactive Defensive
Measures (RDM)

Diagram © 2002 Jaime Lopes, CISSP

TM
11

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

11

Architecture

Best practice designs separate tiers for
content presentation
security and control of the user session
downstream data storage services
administration

A firewall is not enough!

TM
12

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

12

Architecture

TM
13

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

13

Architecture

In general, abstract security services from the
operating system

Too many system compromises have been caused by
applications with direct access to parts of the operating
system
Don’t expose OS security interfaces to applications
Kernels generally don’t protect themselves

Exception: trusted operating systems designed with a security
kernel, or reference monitor
Reference monitor mediates all accesses, is protected from
modification, and is verified as correct

Contrary to Microsoft’s .NET and Sun’s JAAS

TM
14

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

14

Authentication

Authentication – the process of verifying a
claimed identity
Two types

User authentication
The process of determining that a user is who he/she claims to
be
Usually happens only once per session
May need to re-authenticate during a session, e.g., before a
significant monetary transaction

Entity authentication
The process of determining if an entity is who it claims to be
Usually takes place with every request

TM
15

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

15

Authentication

Consider all input hostile until proven otherwise
and code accordingly

SSL does not solve the problems of authentication
SSL does not protect data once it reaches the client

HTTP provides protocol-level authentication
HTTP Basic (401 status code sent to client) – clear text
transmission of username and password
HTTP Digest

Authentication data obscured by method that includes MD5
hashing before transmission
Protocol includes additional protection for replay attacks,
mutual authentication, and integrity

TM
16

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

16

Authentication
Form-based authentication

Essential for authentication forms to be submitted using a POST
request

GET requests show up in the user’s browser history and may be
visible to other users of the same browser

Use SSL to protect POST request in transmission
Never prefill password fields for a user
Best practice

Have a blank password field asking the user to confirm the current
password
Use two password fields to enter and confirm a new password
Keep the ability to change a password on a page separate from that
for changing other profile information

Highest authentication security requires client side
authentication, likely using Public Key Infrastructure (PKI)

Emerging standards for XML-based key management:
www.w3.org.TR/xkms

TM
17

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

17

Authentication

Entity authentication
Cookies
Do not use the Referer Header – it is implemented by
the user’s browser and can be changed at will

Infrastructure authentication
Inherent insecurities of DNS make the use of IP
Address or DNS names an unreliable source of
authentication data
IP address spoofing also makes use of this data for
authentication unreliable.
Consider using X.509 certificates or implementing SSL

TM
18

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

18

Authentication
Best practices for usernames and passwords

Few security requirements for usernames, but consider privacy
issues (e.g., real names, SSN, tax IDs, MSISDN …)
Encrypt passwords before storage, e.g., using a hash algorithm
Ensure password strength, e.g., at least 8 characters, one
alphanumeric, one mixed case, at least one special character
Employ password lockout mechanisms
Age passwords and limit reuse of passwords
If a system distributes new passwords (manually or
programmatically), the password should be set to change the
first time the new user logs on with the changed password

TM
19

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

19

Authentication
Best practices for usernames and passwords

Single Sign On (SSO) across multiple DNS domains
Microsoft Passport and Project Liberty
SSL-based protection schemes are subject to man-in-the-
middle attacks
To do secure SSO, the token must be protected outside of
SSL (“out of band”)
Use symmetric key algorithms with a pre-exchanged key
and including a timestamp in the token to prevent replay
attacks

TM
20

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

20

Managing User Sessions

Cookies
Persistent and Secure

Stored in a text file on the client and valid until expiry date
Requires SSL protection during transmission

Persistent and Non-secure
Stored in a text file on the client and valid until expiry date
Protection by SSL during transmission is optional

Non-persistent and Secure
Stored in RAM on the client and destroyed when the browser is closed
or the cookie is explicitly killed by a log-off script
Requires SSL protection during transmission

Non-persistent and Non-secure
Stored in RAM on the client and destroyed when the browser is closed
or the cookie is explicitly killed by a log-off script
Protection by SSL during transmission is optional

TM
21

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

21

Managing User Sessions

Session tokens
Cryptographic algorithms

All session tokens should be user unique, non-predictable, and
resistant to reverse engineering
Use a trusted random number generator
Map session tokens in some way to a specific HTTP client instance to
prevent hijacking and replay attacks

Example: use page tokens which are unique for any generated page and
may be tied to session tokens on the server

Do not base a session token algorithm on or use as variables any user
personal information

Appropriate key space
A token’s cryptographic key space should be sufficiently large enough
to prevent brute force attacks

TM
22

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

22

Managing User Sessions
Session management schemes

Expire session tokens on the HTTP server when the session ends
Static session tokens are vulnerable to capture and brute-force
cracking if they are stored indefinitely on the client or logged/cached in
proxy servers

Regenerate session tokens while the session is active
Results in a smaller window of time for replay exploitation of each
legitimate token
Can be based on number of requests or time

Build methods to detect session forging/brute-forcing and/or
lockout

Use “booby trapped” session tokens that never actually get assigned
but will detect if an attacker is trying to brute force a range of tokens
Design anomaly/misuse detection hooks to detect if a legitimate user
tries to manipulate their token to gain elevated privileges

TM
23

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

23

Managing User Sessions

Session management schemes
Re-authenticate users before significant actions

Sensitive user actions (e.g., money transfer) should require the
user to re-authenticate or be reissued another session token
immediately prior to significant actions
Segment data and user actions to the extent where re-
authentication is required upon crossing certain boundaries to
prevent some types of cross-site scripting attacks that exploit
user accounts

Encrypt session tokens during transmission
Use web encryption technologies (e.g., SSL or TLS protocols) to
safeguard the session token from replay or hijacking attacks if it
is captured in transit through network interception

TM
24

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

24

Managing User Sessions

Session management schemes
Use page-specific tokens in conjunction with session-specific
tokens

When used with encrypted transport, helps to ensure that the client on
the other end of the session is the same client which requested the
last page in a given session
May be stored in cookies or query strings and must be completely
random
Can avoid sending session token information to the client by using
page tokens and creating a mapping between them on the server side

Overwrite session tokens on logout
Internet kiosks and shared internet environments usually maintain the
same browser thread; the browser only destroys session cookies
when the browser thread is torn down
Overwrite session cookies when the user logs out of the application

TM
25

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

25

Access Control and Authorization

Limits what users can do, which resources they have
access to, and what functions they are allowed to perform
on the data
Authorization

The act of checking to see if a user has the proper permission to
access a particular file or perform a particular action

Access Control
The more general way of controlling access to web resources,
including restrictions based on things like the time of day, the IP
address or domain of the client browser, the type of encryption the
HTTP client can support, number of times the user has
authenticated that day, etc.
Any access control mechanism depends on effective and forge-
resistant authentication controls for authorization

TM
26

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

26

Access Control and Authorization

Discretionary access control
Restricts access to information based on the identity of
users and/or membership in certain groups
Decentralized model - the owner of the controlled
resource can change its permissions at will

Mandatory access control
Secures information by assigning sensitivity labels on
information and comparing this to the level of sensitivity
at which a user operates
Appropriate for extremely secure systems, such as,
military applications or mission critical data applications

TM
27

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

27

Access Control and Authorization

Role-based access control
Access decisions are based on an individual’s roles
and responsibilities within the organization or user base
Centralized administration
Scalable

TM
28

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

28

Event Logging
Importance of logging

Provides key security information about a web application and
its associated process and integrated technologies
Makes individual users accountable for their actions
Often the only record of suspicious behavior; can feed IDS

Permits reconstruction of events
May be needed in legal proceedings to prove wrongdoing (actual
handling of log data is crucial)

What to log
In general, time of event, initiating process or owner of
process, detailed description of the event
Reading/writing/modification/deletion of data
Network communications at all points
All authentication/authorization events
All administrative functions, regardless of overlap
Miscellaneous debugging information that can be
enabled/disabled on the fly

TM
29

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

29

Event Logging

Best practices for log management
Collect and consolidate logs on a separate dedicated logging host
Encrypt network connections and log data contents to protect
confidentiality and integrity
Set log file attributes so that only new information can be written
(older records cannot be rewritten or deleted)
Copy logs at regular intervals, depending on size and volume
Verify regularly that logging is operational
Copy log files to permanent storage and include in data center’s
backup strategy
Dispose of log files according to company record retention policies
Synchronize all logging components with a time server so that all
logging can be consolidated effectively without latency errors

Harden the time server and limit its services to time

TM
30

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

30

Data Validation

One of the most important aspects of designing a secure
web application
Applies to input to and output from a web application
Validation strategies

Accept only known valid data
Accept only input that is known to be safe and expected
The best possible strategy, but not always feasible

Reject known bad data
Can limit exposure
Relies on the application knowing about specific malicious payloads
Easy for knowledge base of web application attack signatures to be
out-of-date

Sanitize all data
An effective second line of defense
Too difficult to be relied upon as a primary defense

TM
31

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

31

Data Validation

All three data validation strategies must check
Data type (extremely important – don’t let an object
through if you are expecting a string!)
Syntax
Length

Never rely on client-side data validation
Data validation must be done on the trusted server or
under the control of the application
Client-side data validation can always be bypassed

An attacker can watch the return value and modify it at will

TM
32

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

32

Privacy Considerations

Warn users about the dangers of communal
web browsers

Pages may be retained in the browser cache
Recommend logging out and closing the browser to
kill session cookies
Temp files may remain
Proxy servers and other LAN users may intercept
traffic

Design sites with the assumption that no part
of a client is secure and make no assumptions
about integrity

TM
33

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

33

Privacy Considerations

Display personal data only when absolutely needed
Set pages to pre-expire
Set the no-cache meta tags
Set the no-pragma-cache meta tags
Otherwise, mask personal data, displaying only a subset

Offer an enhanced privacy login option to the user,
which

Sets pages to pre-expire
Sets the no-cache meta tags
Sets the no-pragma-cache meta tags
Uses SSL or TLS

Keep sensitive data out of the browser history by using
POST for all form submissions

TM
34

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

34

Cryptography

Important part of building secure web applications
No silver bullet!
Beware of snake oil cryptography

www.interhack.net/people/cmcurtin/snake-oil-faq.html
Good cryptography is based on the secrecy of the key, not
the security of the algorithm

64-bit RC5 key broken in 4 years, 10 months of computing …
A cryptographic system typically consists of algorithms,
keys, and key management facilities

Symmetric cryptographic systems (one shared key)
Asymmetric cryptographic systems (two keys; one public and one
private)

TM
35

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

35

Cryptography

Symmetric cryptography
Single private key to encrypt and decrypt data
Algorithms are fast and suitable for processing large
streams of data
Presumes two parties have agreed on a key and have
been able to exchange that key in a secure manner
before communicating.
Usually mixed with public key algorithms to obtain a
blend of security and speed

TM
36

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

36

Cryptography

Asymmetric, or public key, cryptography
Private key that must be kept from unauthorized users
and a public key that can be known by anyone
Public and private key are mathematically linked

Data encrypted with the public key can be decrypted only by the
private key
Data signed with the private key can only be verified with the
public key

Useful for small amounts of data
Digital signature (nonrepudiation, authentication)
Securing transmission of shared keys

TM
37

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

37

Cryptography

Hash value
One-way mathematical algorithms that take an arbitrary length
input and produce a fixed length output string – the hash value
A unique and extremely compact numerical representation of a
piece of data (e.g., MD5 produces a 128- bit value)
Computationally improbable to find two distinct inputs that hash to
the same value
Useful

Digital signatures
Integrity protection
Allowing a party to prove they know something without revealing what
it is, e.g., password protection schemes

TM
38

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

38

Cryptography

Implementing cryptography
Cryptographic toolkits and libraries

Java Cryptography Extensions (JCE-cannot export) and Java Secure
Socket Extensions (JSSE) (part of JDK 1.4)
Cryptix

Open source clean-room implementation of the official JCE 1.2 API as
published by Sun
PGP library

OpenSSL
Legion of the Bouncy Castle – Java cryptography library for JSSE and
J2ME

Key generation – design securely
Random number generation

Use for generating keys so it is infeasible to reproduce or predict them
EGADS (www.securesoftware.com/egads.php); YARROW
(www.counterpane.com/yarrow.html)

Key lengths – large enough to provide “cover time”

TM
39

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

39

Where do we go from here?

Security-focused architecture workshops
Use the OWASP guide as a template during architecture
workshops to ensure that security concerns are considered and
informed tradeoffs are made

Future topics for security brown bags
Preventing common problems

Generic meta-characters problem
Attacks on the users
Attacks on the system
Canonicalization

Parameter manipulations
Miscellaneous

Secure coding practices

TM
40

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

40

Where do we go from here?

Version 2 of the Guide is due January 2003
Topics being considered include

Language security
Java
J2E
Project Liberty
SAML
Error handling

OWASP Testing Framework Group
Working on a comprehensive web application testing methodology

Will cover “white box” (source code) analysis
Will cover “black box” (penetration test) analysis

Expected late 2002

TM
41

© 2002 Rosie Jergovic with content derived from the OWASP Guide to Building Secure
Web Applications and Web Services, v1.1, which is © 2002 Free Software Foundation, Inc.

41

Security is a Bodyguard, not a Policeman

	A Guide to Building Secure Web Applications
	Outline
	Today’s Objectives
	Security Requirements
	Security Requirements
	Security Guidelines
	Security Guidelines
	Security Guidelines
	The Big Picture
	Architecture
	Architecture
	Architecture
	Authentication
	Authentication
	Authentication
	Authentication
	Authentication
	Authentication
	Managing User Sessions
	Managing User Sessions
	Managing User Sessions
	Managing User Sessions
	Managing User Sessions
	Access Control and Authorization
	Access Control and Authorization
	Access Control and Authorization
	Event Logging
	Event Logging
	Data Validation
	Data Validation
	Privacy Considerations
	Privacy Considerations
	Cryptography
	Cryptography
	Cryptography
	Cryptography
	Cryptography
	Where do we go from here?
	Where do we go from here?
	Security is a Bodyguard, not a Policeman

