SDR Open Architecture - A European Defence Perspective

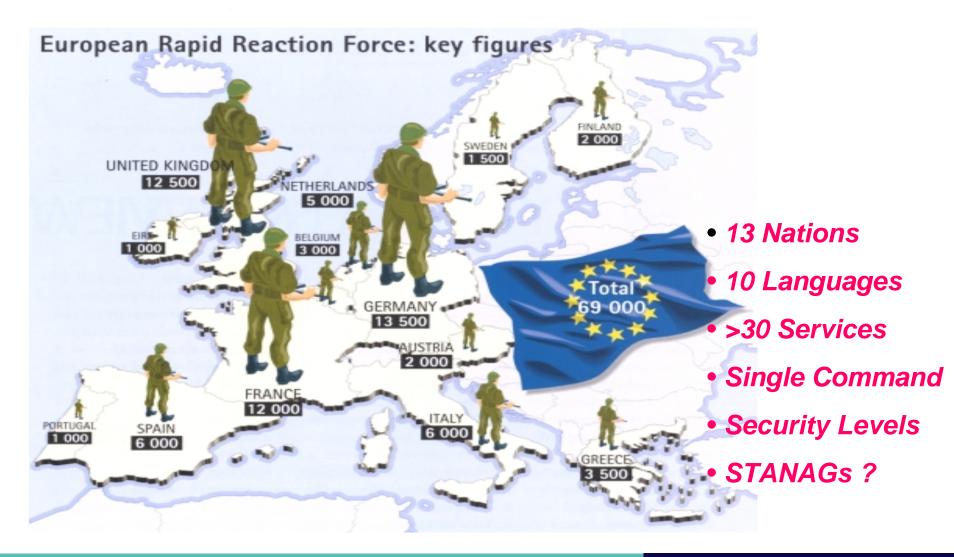
Atlanta - February 7, 2001

Dr Peter Harrop Director of Engineering Thales Communications Ltd. Crawley - UK

peter.harrop@rmel.thomson-csf.com

Outline

- Political background
- Current European Defence Market
- Operational Requirements
- > Open System Architecture
- Reconfigurable Radio Systems and Networks
- Evolution of the European Market
- Conclusions



Political Background

- Recent events in the Gulf, Bosnia, Kosovo, East Timor, Sierra Leone confirm military need for triservice, multinational interoperability to embrace:
 - Rapid Reaction Force a UK tri-service initiative
 - European Rapid Reaction Force a European Community initiative
 - NATO interoperability through standardisation
 - US/UK "Special Relationship"
 - Information Exchange with "Forces Other than War" (e.g. Red Cross)

European Interoperability - Vision

Current European Market

 Industry delivers turn-key validated telecom products and systems
 In contrast to US (JTRS), no major procurement projects mandate (or recommend) SDR with in service dates out to 2006
 Current SDR R&D programmes are national or bi-national
 There is no Euro-JTRS

> Legacy Waveforms are mainly developed on a national base:

No established GFE catalogue of waveforms

Many waveforms - IPR issues

National Security aspect is a major issue:

- Various national crypto and levels of security
- Linked intimately with waveform definition
- Current Interoperability loosely based on STANAGs

But implementation is under Industry responsibility

Greater pressure on business case within European defence industry than in US.

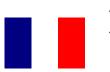
European Defence Agencies

> UK MoD

- Joint, combined and coalition operations require C4I by LOS and BLOS transmissions
 - Not seeking to to define radio architecture but encouraging waveform portability
 - Requires architecture to enable MoD to download its own waveforms
 - COTS waveform capture tool-set to enable software portability in an open environment
- Internal studies in progress with CESG to review INFOSEC:
 - Common humanitarian exercises
 - Coalition forces
 - National requirements for National traffic
- Procuring SDR within Type 45 Destroyer Programme

European Defence Agencies

France DGA


- SDR will replace all H/V/UHF radios by 2010 and contribute significantly to battlespace digitisation
 - Requirement for Information Interoperability
 - Data exchanged between systems (Carthage & PR4G by 2008)
 - Interoperability between media
 - Systematic renewal programme 2010.
- Interoperability between command structures
 - France wishes to be capable of adopting Command role in Coalition Force
- Impediment is current autonomous procurement programmes
- Industry's exploitation of COTS and IP technologies to produce COTS systems is a rallying point

Current European SDR R&D Programmes

UK (2000 - 2003)

Waveform Description Language (WDL) initiative perceived as COTS waveform capture tool-set. Phase 1 complete 2000.

> F (2000 - 2003)

Joint funding of Multiband Multirole Radio (MMR_ADM) programme - Focus on radio functionalities

> Ge (2000 - 2003)

Joint funding of (MMR_ADM) programme

For more information, refer to: SDR Forum Meeting September 2000, Paris - France WDL Workshop, November 2000, Rome N.Y. - USA

Operational Requirement

> Tri Services Interoperability: Air, Naval, Ground

Network Centric Operations

Networking of information between disparate systems

Enhanced Services

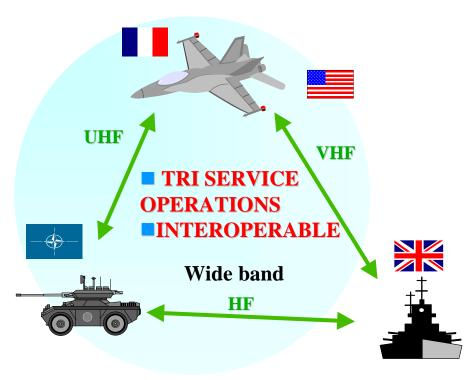
- Multimedia applications: Voice, Data, Image
- Situation awareness
- Positional awareness
- Precision targeting
- Increase of data rate
- Rapid tasking of assets

Future-proofing

Expandability

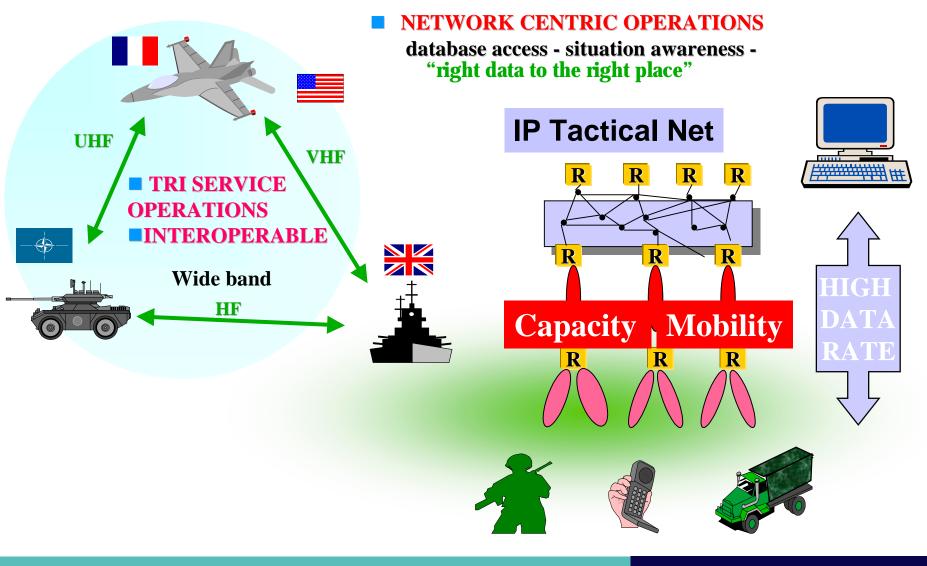
Security - INFOSEC

Interoperability Levels : National, NATO, Coalition

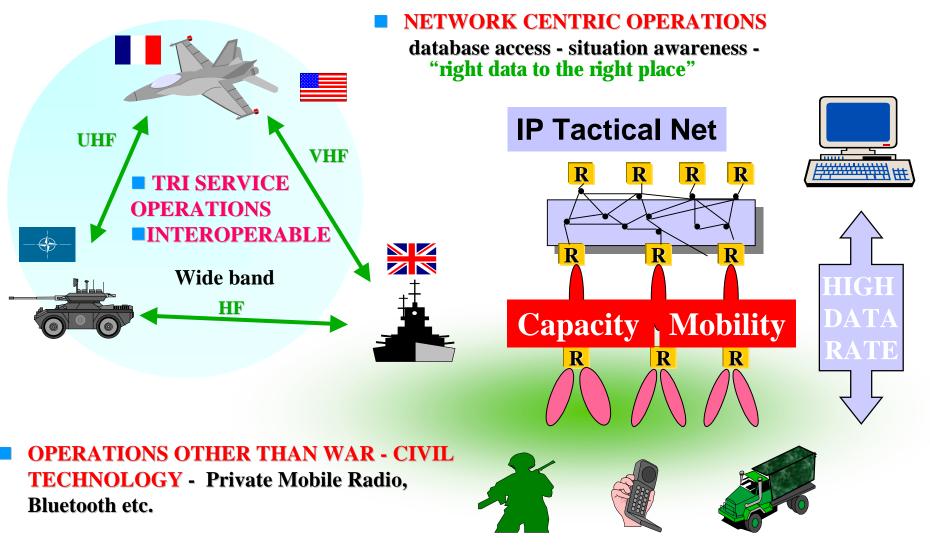

European initiatives:

- QACISIG Quadra-National (US, UK, F, D) Communications INFOSEC Interest Group
 - Common Waveforms for Interoperability
- BATON A NATO Common INFOSEC Algorithm
- PIM A UK Programmable INFOSEC Module enabling the reconfiguration of an INFOSEC algorithm
- "de facto" Standards
 - Tactical comms: KG84 (US and NATO), BID1650 (UK)
 - Shore to Ship: KWR46 (NATO NACISA)

Current Policy would preclude running different levels of security on the same hardware

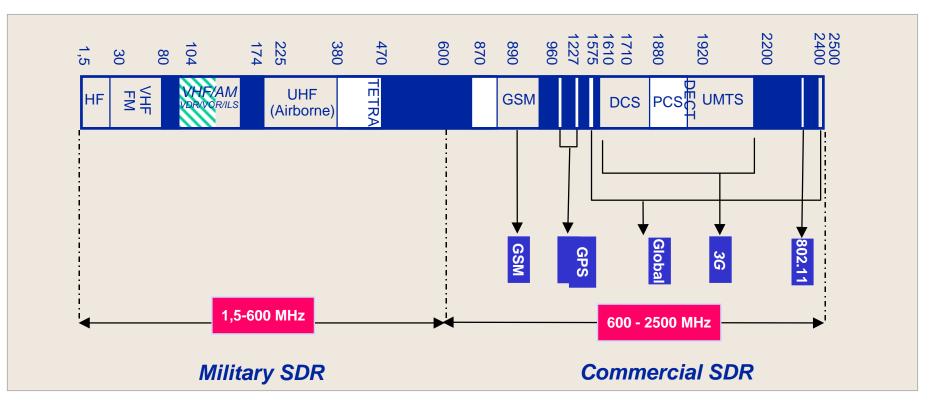


Battlespace Major Changes to 2010



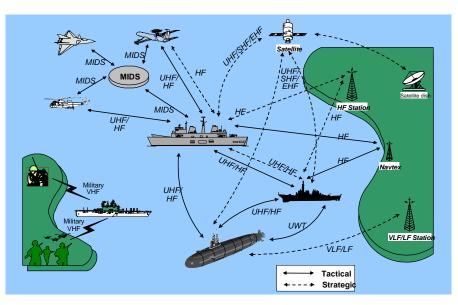
Battlespace Major Changes to 2010

THALES

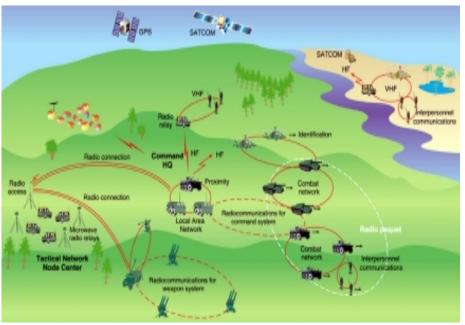

Battlespace Major Changes to 2010

Bandwidth Requirement

For Military SDR, focus on HF-VHF-UHF bandwidths supported services (1.5 MHz - 600 MHz)

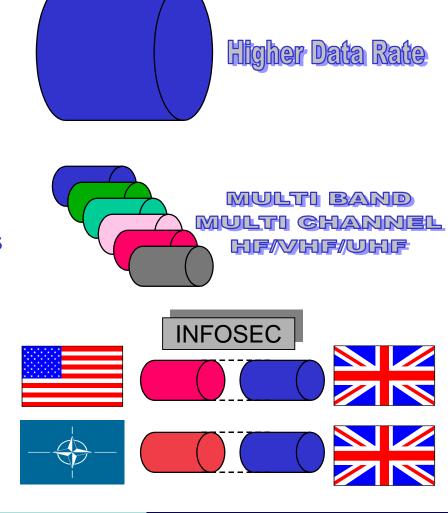


Vision 2010 - Future Naval ICS


> Interoperability

- Email band independent
- Internet terrestrial to complement Satcom
- Large file transfer
- Videoconferencing
- Co-operative Engagement
- Expanding Services
 New HF/UHF Waveforms
 HDR LOS Comms
- > Incremental acquisition
 - Provide expansion capability
 - Software radio for ease of implementation
 - NATO STANAGs

Vision 2010 - Future Digital Battlefield


- Interoperability
 - Between CNRs
 - Between Multi-national Nets
- Expanding Services
 - New HF/UHF Waveforms
 - Tactical Internet
 - Full Mobility Networks on the move
- Incremental acquisition
 - Take into account legacy CNR base
 - Rigorous waveform capture process
- Cooperative Engagement/Network CentricW arfare

Vision 2010 - Wideband Systems

- > Expanding Services
 - Networks (LAN/WAN) Architecture
 - Supporting Multimedia Services
 - Voice, Data, Image
 - Internet
- ➢ Evolving Technologies
 - Multi Band / Multi Channels Radios
 - Higher Data rate
 - Automation (Reduced Manning)
 - Dynamic Line Allocation
- Infosec Interoperability
 COMSEC / TRANSEC

System Requirement

> In Summary:

- Services, new and old, are required to be delivered any time, any place, any band, any mode
- Requires end to end seamless military communications with interconnected tri-service, multinational networks
 - Security integrity
 - Survivability
 - Complex cosite environment with increased data rates
 - Global Networks Open Architecture based on Standards

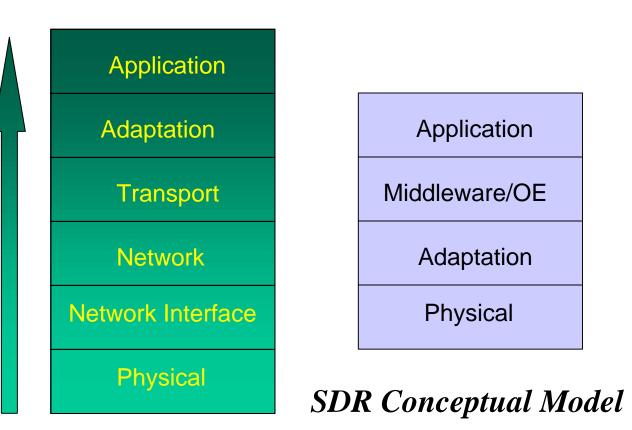
Open System Architecture

- > An Open System Architecture is:
 - "A system in which the physical modularity and functional partitioning is aligned to facilitate the replacement of specific sub-systems and components without impacting others."
- > Is interpreted as:
 - A solution to interoperability
 - Providing cost-competitive, multiple-sourced, COTS technology for military applications
 - A software only solution to future-proofing
 - Promoting competition, technology insertion, quick upgrades, software reuse, extendibility, and scalability

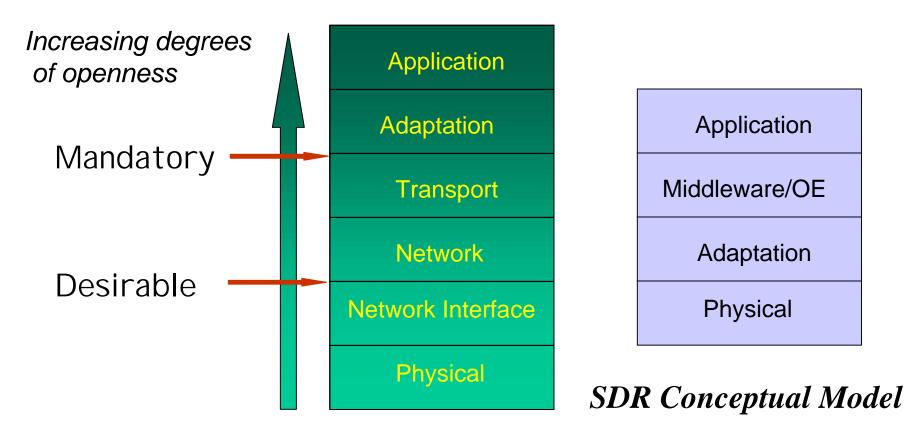
Open System Architecture

- It is an evolving concept.
 - From SDR initial concept:
 - Ease of introduction and future upgrades of waveforms
 - to the enlarged (Inter-) Networking vision:
 - Adaptable and Reconfigurable Networks
 - Dynamic interaction between radio, networking and application support layers in secure modes

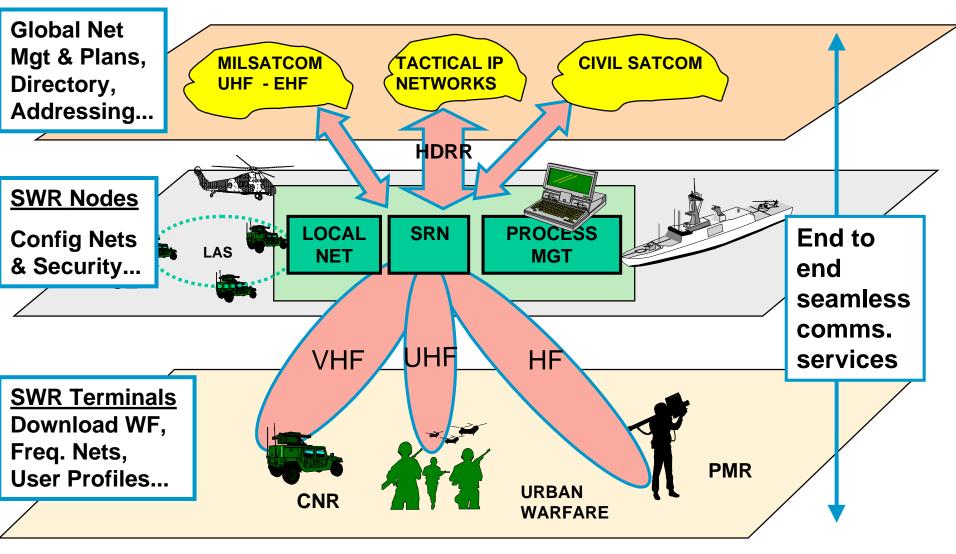
Ease introduction of New Services and Applications at System and Network levels


- Transparent Service Provision
- Application updates / Services enhancements / Personalisation
- Application level is mandated to become open (IP, Email,...)

Open System Architecture Migrates Towards Reconfigurable Radio Systems & Networks

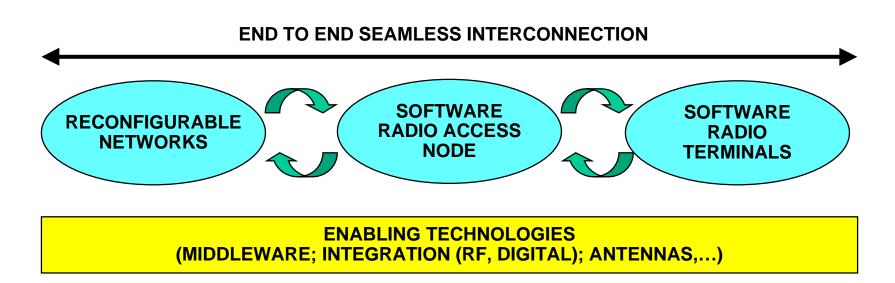

Architectural Overview

Increasing degrees of openness



Architectural Overview

System Integration of the Software Radio



Open System Architecture

NEW ACQUISTION STRATEGY - A NEW BUSINESS MODEL

UPGRADE OF SERVICES & APPLICATIONS

End to End Seamless Interconnection based on Standards: ISO, STANAG, SDR...

Reconfigurable Radio Systems & Networks

> Imposes a redefinition of "Reconfigurability"

- Reconfigurability through Software Download
 - Elements of the Networks / Services / Applications
- Reconfigurability cuts across Heterogeneous Networks:
 - Wireline (IP, ATM,...); Multiband Wireless: HF, VHF, UHF...
- Reconfigurability takes into account the "Defence Wireless Environment"
 - Full Mobile operations with no pre-deployed infrastructure or fixed base stations
 - Environment is subject to significant changes: Jamming, link quality (QoS), variable connectivity
 - Interoperability
 - Security
 - Survivability

Reconfigurable Radio Systems & Networks

Technology issue

- Multimode / Multiband / Multichannel radio
- Adaptable transmission capability
 - Real time flexible Network Spectrum Manager
 - Dynamic bandwidth allocations
 - Real time flexible Network Management / Network Planning
- Procedures to update functionalities and manage the process:
 - Secure downloading procedures
- Short / Medium / Long term issue
 - Evolution taking into account the legacy infrastructure
 - Progressive introduction of new services and applications inside Defence Networks and Radio Systems
- Standards issue
 - ISO, STANAG, SDR...

From Procurement Strategy to Business Model

- Competitive market requires that industry delivers turn-key Radio Systems:
 - MoD procurement demands Interoperable Radio Systems
 - System Integrator has final responsibility in term of functionalities and performances
 - System Integrator builds Interoperable Radio Systems with Radio Platforms and Waveforms provided by its subcontractors
 - Interoperable Radio Systems definition needs to take into account the various legacy waveforms with their security constraints
 - Small independent market for COTS Form, Fit, Function Radio Modules
- Interoperability and new services implementation are the basic drivers in term of Standard Open Architecture requirements.
- Smart Acquisition" must recognise change in emphasis of industry's added value for a Business Model to develop.

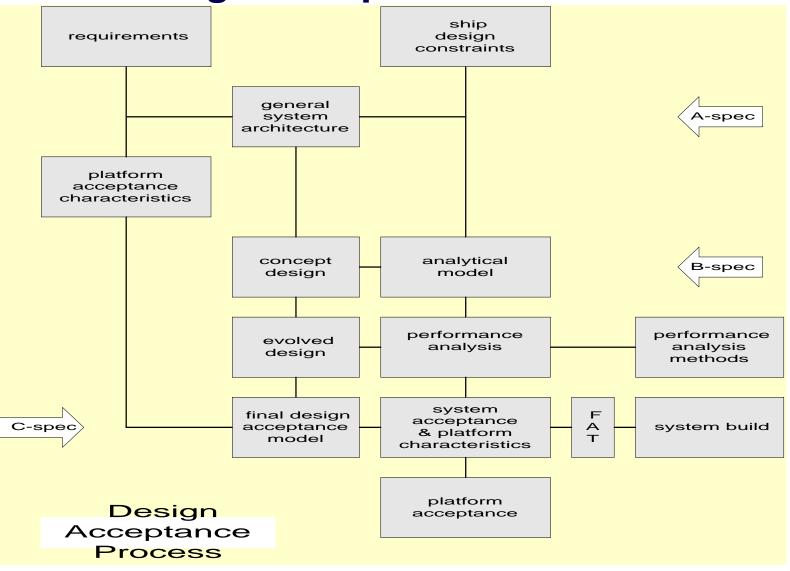
Evolution of European Market

> Political

OCCAR (Organisation for Joint Armaments Co-operation (UK/F/It./D))

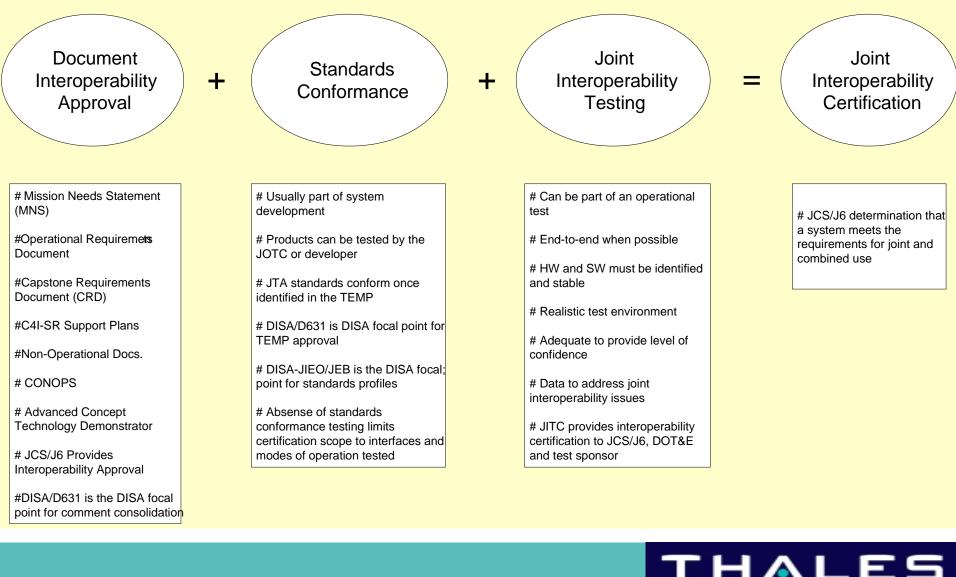
- It is OCCAR's mission to become the best multinational defence procurement agency
- > System

Common Definition of an Open Architecture


- NATO STANAGs offer potential of open architecture at waveform level
- Not the panacea e.g. many different implementations of SATURN waveform
- Unique Waveform Description Language may resolve inadequacies
- > Product

SDR Product Validation

- Design Acceptance Process
- Process of Accreditation for Interoperability
- Creation of a Recognised Certification Body


Design Acceptance Process

Joint Interoperability Certification Components

Joint Interoperability testing should be conducted throughout a systems lifecycle.

COMMUNICATIONS

Evolution of European Market

Does SCA (Software Communication Architecture) meet European Requirements?

- Current SCA definition appears to be a realistic framework for pursuing Global Standardisation effort.
- But... current SCA definition must be widened to address:
 - Reconfigurability at the various levels: Network, Sub-System, Radio,...
 - Various national Security constraints (Crypto,...)
 - Waveform Description Language
 - UK WDL initiative to improve waveform description / implementation / portability
 - All the related standardisation effort: RT_CORBA (OMG),...
- But...current SCA definition work must also take into account new emergent technologies

■ JAVA as a complement CORBA,...

And... performances, cost and IPR impacts remain unresolved issues.

Short / Medium / Long Term Vision

Short Term (2000 - 2003)

- Policy of incremental acquisition to capitalise on the installed base
- Advanced R&D programmes to prepare the future
- Define interoperability needs and security constraints

European "Open Architecture & Standard" initiative to be launched between Industry and MoDs based on current SCA definition to address specific outstanding issues

Medium Term (2004 - 2007)

Interoperable Software Defined Radio products compliant with "Open Architecture Standard (V1)"

Long Term (2007 - 2010)

Reconfigurable Radio Networks compliant with "Open Architecture Standard (V2)"

Conclusions

- Turn-key delivery by Industry of affordable Systems and Products will remain the baseline for foreseeable MoDs procurement policy
- Interoperability between various national forces is the key driver for the European market
 - Must be addressed at various level: Network, Subsystem, Radio....
 - Will integrate STANAG implementation
 - Influenced by the speed with which Procurement Agencies recognise the requirements and the changing model (e.g. OCCAR)
- Will remain a cost driven market
 - Service provision versus acquisition cost
 - Cost of acquisition versus through life cost

Conclusions

- SDR technologies are a basic enabler to answer to these requirements
- Current SCA definition is a realistic framework for pursuing Global Standardisation efforts
- European "Standard Open Architecture Initiative" must be launched and promoted under European Industry leadership and MoDs support:
 - to address the multi-national security aspects
 - to define legacy and new waveform portability
 - to define, evaluate and promote the related key technologies

