
Securing Your Enterprise:
Web Application and Web
Services Security

Rima Patel Sriganesh
Staff Engineer
Sun Microsystems, Inc.

Security is panoptic...
• Applicable at all levels of a solution

▸ Hardware
▸ OS
▸ Network
▸ Application / Web server

> Standalone application OR Web tier
> Application server tier

– Component security such as EJB security or Web service security
▸ Data

> Database
> Other sources of data such as directory services

This is just an example of layers of security for a typical
three tier application!

What does “security” imply in the world
of computing?
• Security implies ensuring that the following is achieved

▸ Confidentiality (of data en route network)
▸ Authentication (of subjects)
▸ Integrity (of data en route network)
▸ Non-repudiation (of origin and destination)
▸ Authorization (of subjects)
▸ Trust (of subjects)
▸ Privacy (of subjects)

Subject = Users (at origin and destination), Code (at origin and destination),
any entity that need security assurance

All that can be ensured using various
mechanisms...
• Encryption / decryption
• Digital signing
• Identity and federation based security mechanisms

What is in our scope today?

• Web application security
• Web service security
• SSO and Federations

▸ SAML 2.0
▸ Liberty
▸ Sun Java System Identity Management Platform

Java Security 101

J2SE Platform Security Model

Local or
Remote Code

domain domain

domain

Security Manager

System Resources
(files, network,
connections, etc.)

Full
Access
to Resource

 Sandbox Restricted
 Access

Security Policy (java.policy)

JRE Runtime Security

Java Platform Security – APIs

JAAS

X.500 KerberosJNDI NT UNIX

X
M

L
D

ig
ita

l S
ig

n
at

u
re

E
n

cr
yp

tio
n

GSS-API DigestCRAM

Java SASL

JSSE Java GSS

Kerberos

Kerberos

Directory
Server

Certificate
Server

JCA/JCE

PKCS 11SW Crypto

HW Crypto
Accelerator

Smart
Card

P
K

I
C

R
Ls

C
er

tP
at

h
K

ey
s

C
er

ts

Web Application
Security

J2EE Web Application Security Model

Authentication

HTTP
Client EIS

EJB

Servlet/JSP

Web
Container

Implied
Trust

Client Web and EJB Container

Credential Mapping

EJB
Container

EJB

EJB

The Open Web Application Security
Project
• www.owasp.org

> Non-profit organization funded by a foundation
• Provides minimum standard for Web application security
• Lots of documentation on best practices of security
• Many tools to secure J2EE applications
• We have a lot to learn from them!

OWASP Top 10 Web Security Threats
1. Unvalidated input
2. Broken access control
3. Broken authentication
4. Cross-site scripting (XSS)
5. Buffer overflows
6. Injection flaws
7. Improper error handling
8. Insecure storage
9. Application denial-of-service
10. Insecure configuration management

Source: www.owasp.org

Let's see what we can learn about the
security vulnerabilities of a typical Web
application!

#1: Unvalidated Input (Description)
• Attacker can easily tamper any part of the HTTP request before

submitting
> URL
> Cookies
> Form fields
> Hidden fields
> Headers

• Common names for common input tampering attacks
> forced browsing, command insertion, cross site scripting, buffer

overflows, format string attacks, SQL injection, cookie poisoning, and
hidden field manipulation

#1: Unvalidated Input (Solutions)

• Do rigorous input data validation
> All parameters should be validated before use

• Do server-side validation
> Client side validation could be bypassed by the attacker

easily
• Do canonicalization of input data

> The process of simplifying the encoding

• Stinger Project
> Defines validation rules for every part of HTTP request

handled by a J2EE Web application

#1: Unvalidated Input (Example)
public void doPost(HttpServletRequest req,…) {
 String customerId =
 req.getParameter(“customerId”);
 String sku = req.getParameter(“sku”);
 String stringPrice = req.getParameter(“price”);
 Integer price = Integer.valueOf(stringPrice);
 // Store in the database
 orderManager.submitOrder(sku,customerId,price);
} // end doPost

#2: Broken Access Control (Examples)

• Insecure ID's
• Forced browsing past access control checking
• Path traversal
• File permissions
• Client side caching

#3: Broken Authentication & Session
Management

• Includes all aspects of handling user
authentication and managing active sessions

• Session hi-jacking
> If the session tokens are not properly protected, an

attacker can hijack an active session and assume the
identity of a user

#3: Broken Account/Session
Management (Client Example—SSO)

public void doGet(HttpServletRequest req,…) {
 // Get user name
 String userId = req.getRemoteUser();
 Cookie ssoCookie = new Cookie(“userid”,userId);
 ssoCookie.setPath(“/”);
 ssoCookie.setDomain(“cisco.com”);
 response.addCookie(ssoCookie);
 …
}

#3: Broken Account/Session Management
(Server Example—SSO)

public void doGet(HttpServletRequest req,…) {
 // Get user name
 Cookie[] cookies = req.Cookies();
 for (i=0; i < cookies.length; i++) {
 Cookie cookie = cookies[i];
 if (cookie.getName().equals(“ssoCookie”)) {

 String userId = cookie.getValue();
 HttpSession session = req.getSession();
 session.setAttribute(“userId”,userId);

 } // end if
 } // end for
} // end doGet

#3: Broken Account/Session
Management (Client Solution—SSO)

public void doGet(HttpServletRequest req,…) {
 // Get user name
 String userId = req.getRemoteUser();
 encryptedUserId = Encrypter.encrypt(userId);
 Cookie ssoCookie =
 new Cookie(“userid”,encrypteduserId);
 ssoCookie.setPath(“/”);
 ssoCookie.setDomain(“cisco.com”);
 response.addCookie(ssoCookie);
 …
}

#3: Broken Account/Session
Management (Server Solution—SSO)

public void doGet(HttpServletRequest req,…) {
 // Get user name
 Cookie[] cookies = req.Cookies();
 for (i=0; i < cookies.length; i++) {
 Cookie cookie = cookies[i];
 if (cookie.getName().equals(“ssoCookie”)) {

 String encryptedUserId = cookie.getValue();
 String userId = Encrypter.decrypt(encryptedUserId);
 if (isValid(userId)) {
 HttpSession session = req.getSession();
 session.setAttribute(“userId”,userId);
 } // end if isValid…

 } // end if cookie = ssoCookie…
 } // end for
} // end doGet

#4: Cross Site Scripting (Description)

• An attacker can use cross site scripting to send malicious
script to an unsuspecting user

• The end user’s browser has no way to know that the script
should not be trusted, and will execute the script
> Because it thinks the script came from a trusted source, the malicious

script can access any cookies, session tokens, or other sensitive
information retained by your browser and used with that site

> These scripts can even rewrite the content of the HTML page

#4: Cross Site Scripting (Description)

• XSS attacks usually come in the form of embedded
JavaScript
> However, any embedded active content is a potential source of

danger, including: ActiveX (OLE), VBscript, Shockwave, Flash and
more

#4: Cross Site Scripting (Examples)

• Disclosure of the user’s session cookie – session high-jacking

• Disclosure of end user files
• Installation of Trojan horse programs
• Redirecting the user to some other page or site
• Modifying presentation of content

#4: Cross Site Scripting
(Counter Measures)
• Validate input against a rigorous positive specification of

what is expected
> Validation of all headers, cookies, query strings, form fields, and

hidden fields (i.e., all parameters) against a rigorous specification of
what should be allowed

> ‘Negative’ or attack signature based policies are difficult to maintain
and are likely to be incomplete

> White-listing: a-z, A-Z, 0-9, etc.
> Truncate input fields to reasonable length

#4: Cross-Site Scripting (Flaw)
protected void doPost(HttpServletRequest req, HttpServletResponse res) {

String title = req.getParameter(“TITLE”);
String message = req.getParameter(“MESSAGE”);

 try {
 connection = DatabaseUtilities.makeConnection(s);
 PreparedStatement statement =
 connection.prepareStatement

(“INSERT INTO messages VALUES(?,?)”);
 statement.setString(1,title);
 statement.setString(2,message);
 statement.executeUpdate();
} catch (Exception e) {
 …
} // end catch

} // end doPost

#4: Cross-Site Scripting (Solution)
private static String stripEvilChars(String evilInput) {

Pattern evilChars = Pattern.compile(“[^a-zA-Z0-9]”);
return evilChars.matcher(evilInput).replaceAll(“”);

}
protected void doPost(HttpServletRequest req, HttpServletResponse res) {
 String title = stripEvilChars(req.getParameter(“TITLE”));
 String message = stripEvilChars(req.getParameter(“MESSAGE”));
 try {

 connection = DatabaseUtilities.makeConnection(s);
 PreparedStatement statement =
 connection.prepareStatement

(“INSERT INTO messages VALUES(?,?)”);
 statement.setString(1,title);
 statement.setString(2,message);
 statement.executeUpdate();
} catch (Exception e) {
 …
} // end catch

} // end doPost

#6: Injection Flaws (Description)

• Injection flaws allow attackers to relay malicious code
through a web application to another system
> Calls to the operating system via system calls
> The use of external programs via shell commands
> Calls to backend databases via SQL (i.e., SQL injection)

• Any time a web application uses an interpreter of any
type there is a danger of an injection attack

#6: Injection Flaws (Description)

• Many web applications use operating system features
and external programs to perform their functions
> Runtime.exec() to external programs (like sendmail)

• When a web application passes information from an
HTTP request through as part of an external request, the
attacker can inject special (meta) characters, malicious
commands, or command modifiers into the information

#6: Injection Flaws (Example)

• SQL injection is a particularly widespread and dangerous
form of injection
> To exploit a SQL injection flaw, the attacker must find a

parameter that the web application passes through to a database
> By carefully embedding malicious SQL commands into the

content of the parameter, the attacker can trick the web
application into forwarding a malicious query to the database

#6: Injection Flaws (Examples)
• Path traversal

> “../” characters as part of a filename request
• Additional commands could be tacked on to the end of a

parameter that is passed to a shell script to execute an
additional shell command
> “; rm –r *”

• SQL queries could be modified by adding additional
‘constraints’ to a where clause
> “OR 1=1”

#6: Injection Flaws (How to find them)

• Search the source code for all calls to external resources
> e.g., system, exec, fork, Runtime.exec, SQL queries, or whatever

the syntax is for making requests to interpreters in your
environment

#6: Injection Flaws (Counter Measures)
• Avoid accessing external interpreters wherever possible

> Use library API's instead
• Structure many requests in a manner that ensures that all

supplied parameters are treated as data, rather than potentially
executable content
> For SQL, use PreparedStatement or Stored procedures

• Ensure that the web application runs with only the privileges it
absolutely needs to perform its function

#6: SQL Injection (Counter Measures)

• When making calls to backend databases, carefully
validate the data provided to ensure that it does not
contain any malicious content

• Use PreparedStatement or Stored procedures

#9: Application DOS (Description)

• Types of resources
> bandwidth, database connections, disk storage, CPU, memory, threads,

or application specific resources

• Application level resources
> Heavy object allocation/reclamation
> Overuse of logging
> Unhandled exceptions
> Unresolved dependencies on other systems

> Web services
> Databases

#9: Application DOS (How to determine
you vulnerability)
• Load testing tools, such as JMeter can generate web traffic so

that you can test certain aspects of how your site performs
under heavy load
> Certainly one important test is how many requests per second

your application can field
> Testing from a single IP address is useful as it will give you an

idea of how many requests an attacker will have to generate in
order to damage your site

• To determine if any resources can be used to create a denial of
service, you should analyze each one to see if there is a way to
exhaust it

#9: Application DOS (Counter Measures)
• Limit the resources allocated to any user to a bare minimum
• For authenticated users

> Establish quotas so that you can limit the amount of load a particular
user can put on your system

> Consider only handling one request per user at a time by
synchronizing on the user’s session

> Consider dropping any requests that you are currently processing
for a user when another request from that user arrives

#9: Application DOS (Counter Measures)
• For un-authenticated users

> Avoid any unnecessary access to databases or other expensive
resources

> Caching the content received by un-authenticated users instead of
generating it or accessing databases to retrieve it

• Check your error handling scheme to ensure that an error cannot affect
the overall operation of the application

Security Principles
1. Minimize attack surface area
2. Secure defaults
3. Principle of least privilege
4. Principle of defense in depth
5. Fail securely
6. External systems are insecure
7. Separation of duties
8. Do not trust security through obscurity
9. Simplicity
10.Fix security issues correctly

Minimize Attack Surface Area
• The aim for secure development is to reduce

the overall risk by reducing the attack surface
area

• Every feature that is added to an application
adds a certain amount of risk to the overall
application

Secure Defaults
• There are many ways to deliver an “out of the box”

experience for users. However, by default, the
experience should be secure, and it should be up to the
user to reduce their security – if they are allowed

• Example:
> By default, password aging and complexity should be enabled
> Users might be allowed to turn these two features off to

simplify their use of the application and increase their risk.

Principle of Least Privilege
• Accounts have the least amount of privilege required to

perform their business processes.
> This encompasses user rights, resource permissions

such as CPU limits, memory, network, and file system
permissions

• Example
> If a middleware server only requires access to the

network, read access to a database table, and the
ability to write to a log, this describes all the
permissions that should be granted

Principle of Defense In Depth
• Controls, when used in depth, can make severe

vulnerabilities extraordinarily difficult to exploit and thus
unlikely to occur.
> With secure coding, this may take the form of tier-based

validation, centralized auditing controls, and requiring users to
be logged on all pages

Fail Safely
• Applications regularly fail to process transactions for

many reasons. How they fail can determine if an
application is secure or not

• Example: In the code below, if codeWhichMayFail() fails,
the attacker gets an admin priviledge
isAdmin = true;
try {
 codeWhichMayFail();
 isAdmin = isUserInRole(“Administrator”);
}
catch (Exception ex) {
 log.write(ex.toString());
}

External Systems Are Insecure
• Implicit trust of externally run systems is not warranted

> All external systems should be treated in a similar fashion
• Example:

> A loyalty program provider provides data that is used by
Internet Banking, providing the number of reward points and a
small list of potential redemption items

> However, the data should be checked to ensure that it is safe
to display to end users, and that the reward points are a
positive number, and not improbably large

Separation of Duties
• A key fraud control is separation of duties
• Certain roles have different levels of trust than normal

users
> In particular, Administrators are different to normal users. In

general, administrators should not be users of the application
• Example

> An administrator should be able to turn the system on or off,
set password policy but shouldn’t be able to log on to the
storefront as a super privileged user, such as being able to
“buy” goods on behalf of other users.

Do Not Trust Security Through Obscurity
• Security through obscurity is a weak security control,

and nearly always fails when it is the only control
> This is not to say that keeping secrets is a bad idea, it simply

means that the security of key systems should not be reliant
upon keeping details hidden

• Example
> The security of an application should not rely upon only on

knowledge of the source code being kept secret
> The security of an application should rely upon many other

factors, including reasonable password policies, defense in
depth, business transaction limits, solid network architecture,
and fraud and audit controls

Tools
• WebScarab - a web application vulnerability

assessment suite including proxy tools
• Validation Filters – (Stinger for J2EE, filters for PHP)

generic security boundary filters that developers can use
in their own applications

• CodeSpy – look for security issues using reflection in
J2EE apps

Tools
• CodeSeeker - an commercial quality application level

firewall and Intrusion Detection System that runs on
Windows and Linux and supports IIS, Apache and
iPlanet web servers,

• WebGoat - an interactive training and benchmarking
tool that users can learn about web application security
in a safe and legal environment

• WebSphinx – web crawler looking for security issues in
web applications

• OWASP Portal - our own Java based portal code
designed with security as a prime concern

Web Service
Security

Approaches to Web Services Security

➢ Most messaging still uses
transport-layer security
between services and
consumers
✔ SSL/TLS with mutual

authentication
✔ VPNs with IPsec

➢ Some use of message-layer
security technologies
✔ SOAP-aware
✔ Non-SOAP-aware

Transport Security: Pros and Cons
✔ Well-understood, standard technology
✔ Built-in way to do mutual authentication
✔ Few moving parts
✔ Captures message attachments as well as the main message body
✗ Unaware of the “XML inside”

- No selective encryption, auditing, or routing
- Can't sign the data

✗ Protection is transient
- No protection at OS layer or across system tiers

✗ Not end-to-end; can be used for only one hop
- The consumer and provider might never talk directly

Message Security: Pros and Cons
✔ Secures the message itself
✔ 'Sticks' to the message when it is stored or transmitted

✔ Can be validated on multiple occasions
✔ Over a wide span of time
✔ Remains secure even after initial access

✔ Fine grained
✔ Different pieces of the message can be operated on separately

✔ Intermediaries aren't a problem
✔ Makes possible selective encryption, auditing, routing, and signing
✔ Scales better to arbitrary partners
✗ More moving parts
✗ More complex key management

Transport Security via TLS/SSL

➢ SSL is good only for POINT-TO-POINT communication.

➢ Authentication becomes difficult on SSL

➢ SSL is fasten to HTTP protocol whereas WSS can bind to
HTTP, SMTP, FTP and JMS transports as the technology
matures.

➢ Encrypting/Signing partly in the Message not possible with
SSL

➢ Security only when data is on the wire, does not secure data
off the wire so doesn't support non-repudiation.

Client Intermediaries Server

Web Service Security Technologies

Standard Venue Status

XML Signature W3C, IETF Recommendation

XML Encryption W3C Recommendation

Web Service Security OASIS Standard

X.509 ITU, IETF Well established
authentication
technology using
public/private keys

Web Services Security Technologies
XML Encryption

• W3C started XML Encryption activity in late January
2001

• Defines the process of encrypting and decrypting XML
content

• Java Specification Request (JSR) 106
http://www.jcp.org/jsr/detail/106.jsp

Web Services Security Technologies
XML Encryption (Contd.)

➢ XML vocabulary and process for encrypting and decrypting a
whole or partial XML document

➢ Also uses XML for representing the information that enables
recipients of the encrypted content to decrypt it

➢ XML Encryption is not a replacement to SSL/TLS
➢ Allows encryption of data at different granularities

Web Services Security Technologies
XML Encryption on the Wire

<SOAP-ENV:Envelope SOAP-ENV:encodingStyle='http://schemas.xmlsoap.org/soap/encoding/'
 xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/'>
 <SOAP-ENV:Header>
 <Security SOAP-ENV:mustUnderstand='1'
xmlns='http://schemas.xmlsoap.org/ws/2003/06/secext'>
 <ReferenceList xmlns='http://www.w3.org/2001/04/xmlenc#'>
 <DataReference URI='#ed1'/>
 </ReferenceList>
 </Security>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <PaymentInfo xmlns='http://example.org/paymentv2'>
 <Name>John Smith</Name>
 <EncryptedData Id='ed1' Type='http://www.w3.org/2001/04/xmlenc#Element'

 xmlns='http://www.w3.org/2001/04/xmlenc#'>
 <EncryptionMethod
Algorithm='http://www.w3.org/2001/04/xmlenc#tripledes-cbc'/>
 <KeyInfo xmlns='http://www.w3.org/2000/09/xmldsig#'>
 <KeyName>John Smith</KeyName>
 </KeyInfo>
 <CipherData>
 <CipherValue>ydUNqHkMrD...</CipherValue>
 </CipherData>
 </EncryptedData>
 </PaymentInfo>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

<SOAP-ENV:Envelope
 SOAP-ENV:enc='http://schemas.xmlsoap.org/soap/enc...'
 xmlns:SOAP-ENV='http://schemas.xmlsoap.org/.../'>
 <SOAP-ENV:Body>
 <PaymentInfo xmlns='http://example.org/paymentv2'>
 <Name>John Smith</Name>
 <CreditCard Limit='5,000' Currency='USD'>
 <Number>4019 2445 0277 5567</Number>
 <Issuer>Example Bank</Issuer>
 <Expiration>04/02</Expiration>
 </CreditCard>
 </PaymentInfo>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Web Services Security Technologies
XML Signature

➢ Authentication, data integrity (tamper-proofing),
non-repudiation

➢ Joint W3C/IETF effort
- XML syntax for representing signature of web
 resources and portions thereof
- Procedures for computing and verifying such
 signatures
- Canonicalization of XML data

➢ JSR-105

Web Services Security Technologies
XML Signature

➢ XML vocabulary and process for digitally signing whole or partial XML
documents (or non-XML content) and validating signatures

➢ Provides a mechanism for applying digital signatures to XML documents
➢ A signature can be enveloped in the signed XML content, can envelope

that content, or can be detached
➢ Its <KeyInfo> element identifies the relevant key; it’s reused (profiled)

in many other specs
➢ Provide strong integrity for

• Message authentication
• Signer authentication
• Non-repudiation

➢ http://www.w3.org/Signature/

Web Services Security Technologies
XML Signature on the Wire

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header>
 <SOAP-SEC:Signature xmlns:SOAP-SEC="http://schemas.xmlsoap.org/soap/security/2000-12"

SOAP-ENV:mustUnderstand="1">
 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignedInfo>
 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2000/CR-xml-c14n-20001026"/>
 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ds:Reference URI="#Body">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/TR/2000/CR-xml-c14n-20001026"/>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>MC0CFFrVLtRlk=...</ds:SignatureValue>
 <ds:KeyInfo>
 <ds:KeyName>Michael</ds:KeyName>
 </ds:KeyInfo>
 </ds:Signature>
 </SOAP-SEC:Signature>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body xmlns:SOAP-SEC="http://schemas.xmlsoap.org/soap/security/2000-12" SOAP-
SEC:id="Body">
 <order:buy xmlns:order="http://www.onlinetrade.com/order">
 <order:ticker-symbol>SUNW</order:ticker-symbol>
 <order:quantity>1000</order:quantity>
 <order:market>New York</order:market>
 </order:buy>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

Web Services Security Technologies
Web Services Security

• OASIS standard that profiles XML Encryption and XML
Signatures, mainly, to protect SOAP communication

• Defines token profiles to exchange security tokens
across Web services

• Most widely adopted standard for security Web services

Web Services Security Technologies
WS-I Basic Security Profile

• WS-I focuses on interoperability at various layers of web
services

• Profiled
▸ SOAP, WSDL, UDDI
▸ SOAP w/ Attachments
▸ Security

Web Service Security in the Java Land

Web Services Security
JSR 183

XML Digital Signatures
JSR 105

XML Encryption
Apache XML Encryption

(JSR 106)

Secured SOAP

JCE/JCA

XML Canonicalizaion

Web Services Security Support in
Java WSDP 1.6
• Implements OASIS WSS 1.0

- Encryption & Signatures
- Authentication - X509, Username Token Profile

• Ease of Use
- Declarative: Security configuration files
- Configurable at Service, Port and Operation

• Interoperable: 100% with all vendors

Simple HelloWorld Example on JWSDP
 Client signs the SOAP request message

body and Server verifies signature
 Server signs the SOAP response message

body and the client verifies signature
 No encryption, uses plain HTTP transport
 Security properties
 Mutual Client/Server authentication using X.509 PKI

Steps
 Programmatic security
 Start with unsecured JAX-RPC server code
 Add JAX-RPC ServiceLifecycle.init() method

 Container is required to call init() if endpoint implements
ServiceLifecycle interface

 Method init() creates a ServerHelper to
 Bind ServerHelper to endpoint
 Configure security policy for endpoint

 Alternatively
 Use Wscompile tool with -security option to generate

security code
> Need to supply a XWS-Security configuration file to wscompile

tool
> Security enabled JAXRPC artifacts (stubs, ties etc.) are

generated

Server
01 public class HelloImpl implements HelloIF,
02 ServiceLifecycle {
03 public String sayHello(String s) {
04 return prompt + s;
05 }
06 public void init(Object context) throws
07 ServiceException {
08 // Configure security for endpoint
09 // 1) Bind context to ServerHelper
10 ServerHelper sh = ServerHelper.createFor(context);
11 // 2) Config server security actions
12 sh.addVerifyRequest().addSignResponse();
13 }
14 }

The ServerHelper API

 ServerHelper integrated with JAAS (Java™
Authorization and Authentication Service)

 JAAS is used to locate credentials
Server private key
Server X509 certificate containing public key
Trusted client certificates and Certification Authorities (Cas)

Client

01 Remote proxy = (Remote) createProxy();0203 // Following steps are to enable security04 // 1) Create and bind ClientHelper to proxy05 CertificateClientHelper cch =06 CertificateClientHelper.createFor(proxy);0708 // 2) Config security actions09 cch.addSignRequest().addVerifyResponse();1011 HelloIF hello = (HelloIF) proxy;12 hello.sayHello("Duke!");

The ClientHelper API
 Similar to server-side, uses ClientHelpers
 Different kinds of ClientHelpers
 ClientHelper has no client credential
 CertificateClientHelper has client certificate credential
 UsernameClientHelper has username

password client credential
 ClientHelpers integrated with JAAS

Client side security config file
<xwss:Service>

<xwss:SecurityConfiguration dumpMessage=”true”>
<xwss:Sign>

<xwss:X509Token certificateAlias=”my_cert”
keyReferenceType=”Direct”/>

</xwss:Sign>
</xwss:SecurityConfiguration>
<xwss:Port name="{http://myserver.com/hello}HelloWorldIF">

<xwss:Operation name="{...}sayHello”>
<xwss:SecurityConfiguration>

<xwss:UsernameToken useNonce=”true” id=”login”/>
<xwss:Encrypt certificateAlias=”server_cert”>

<xwss:Target type=”uri”>#login</xwss:Target>
<xwss:Target type=”qname”>

{http://myserver.com/hello}name
</xwss:Target>

</xwss:Encrypt>
</xwss:Operation>

</xwss:Port>

 Sign the enire message

 Login to use the
service

 Encrypt the login name
and the company name

Server side security config file
<xwss:Service>

<xwss:SecurityConfiguration dumpMessage=”true”>
</xwss:SecurityConfiguration>
<xwss:Port name="{http://myserver.com/hello}HelloWorldIF">

<xwss:Operation name="{...}GetCreditScore”>
<xwss:SecurityConfiguration>

<xwss:RequireSignature>
<xwss:Target type=”qname”>

{http://schemas.xmlsoap.org/.../envelop/}Body
</xwss:Target>

</xwss:RequireSignature>
<xwss:RequireEncryption>

<xwss:Target type=”uri”>#login</xwss:Target>
<xwss:Target type=”qname”>

{http://myserver.com/rate}name
</xwss:Target>

</xwss:RequireEncryption>
<xwss:RequireUsernameToken id=”login”/>

</xwss:SecurityConfiguration>
</xwss:Operation>

</xwss:Port>

Verify signature

 Decrypt the
login/password and the

company name

 Login to the service

WSS Security Samples in JWSDP 1.6

• Under <JWSDP_HOME>/xws-security/samples/
▸ Simple sample

> Lets you plug in different client and server side config
> Support for digital signatures, username token authentication,

encryption
▸ Jaas-sample

> Uses the Java Authentication and Authorization service
> Obtain username and password at run-time
> Use JAAS to authenticate username and password
> http://java.sun.com/products/jaas

Web Services Security Roadmap for the
JWSDP and SJAS Platforms
➢ WSS 1.1 support
➢ JSR 183 support
➢ SAML2.0 support
➢ Internal use of JSR 106 for Encryption
➢ Support for Policy Standards
➢ Integrate XWS-Security into JAXRPC 2.0

● JAXRPC 2.0 defines Security APIs and
Annotations

➢ Enhancements to JSR 196 Security Provider
● Java Authentication SPI for Containers
● Defines a way for authentication modules to

integrate with containers so that container's
identities can be used by providers

SAML, Liberty,
Java Identity Management

Suite

SSO

• Sign in once, don't sign in again to use other services
secured through that security domain

• Simple SSO
• Cross-domain SSO
• Provides ease of use and better experience for end

users

The concept of Federation

• Federation is a collection of entities that have formed a
liasion for a purpose

• Identity federation
▸ Federation wherein identity owning entities (companies) can

come together and share identities of employees, customers,
etc.

• Identity federation serves a lot of business goals
▸ Better end user experience
▸ Enable ways to form new partnerships and drive revenue

SAML

• XML-based framework for marshaling security and
identity information and exchanging it across domain
boundaries
▸ Wraps existing security technologies rather than inventing new

ones
▸ Its profiles offer interop for a variety of use cases, but you can

extend and profile it further
• At SAML's core: assertions about subjects

▸ Assertions contain statements: authentication, attribute,
entitlement, or roll-your-own

SSO Using SAML
Intranet App.

Liberty

• Complete set of technical solutions for secure network
identity management and usage in web applications and
web services

• Circles of trust use a hub-and-spoke model
▸ One (or a few) identity providers (IdPs), potentially many service

providers (SPs)
• Supports many different devices and systems

▸ Mobile clients and gateways are given special attention
• Privacy and permission-based attribute sharing are

enabled throughout
▸ Individual deployments might not need these features

Architecture

Sources of
identity data
(IdP)

Application
Services
(SP)

Principals

Identity Web Service Provider Identity Web Service Consumer

Identity Web Service
The Back Channel

Identity Federation
The Front Channel

Liberty Architectural Modules
 Liberty Identity Federation Framework (ID-FF)
 Enables identity federation and management
 Identity and account linkage
 Simplified SSO
 Simple session management

 Liberty Identity Web Services Framework (ID-WSF)
 Framework for building Web services that can
 Do permission based attribute sharing with IdP
 Describe and discover user's IdP
 Associate security profiles with identity services

Liberty Architectural Modules (Contd.)
 Liberty Identity Services Interface Specification (ID-SIS)
 Collection of specifications of interoperable services

built on top of ID-WSF
 Services such as identity registration, contact book,

calendar, geo-location, presence or alerts
 First ID-SIS: Personal Profile Identiy Service
 Defines schemas for basic profile information of a

user
 Enables organizations to share a common dictionary

or vocabulary of identity

Example of Liberty In Action

Sun Java System Identity Management
Suite
• Access Manager

▸ Access control, SSO (simple, federation, Windows Desktop)
• Federation Manager

▸ Extends trust domain to include service providers as part of hub-
and-spoke architecture

▸ Provides secure federated services to let spokes leverage the
core security and identity infrastructure services of the hub

• Identity Manager
▸ User provisioning and identity synchronization (with active

directory as well)

Sun Java System Identity Management
Suite (Contd.)
• Identity Auditor

▸ Provides a review of identity controls to help compliance and
improve audit performance
> Packaged audit policies for SOX and HIPAA

• Identity Manager Service Provider Edition
• Directory Server EE

▸ Directory infrastructure for identities, policies, etc.

How Access Manager Works

• Intercept access to resource
• Authenticate user
• Issue token
• Repeat

▸ Intercept access to resource
▸ Use token to authorize access depending on policy
▸ Provide identity data to resource
▸ Log everything that happens

• Until session expires

Access Manager Architecture

C Applications

Java Applications

Web / Application Server Java Applications

Policy Agent

Web / J2EE Container

Custom
Plugin

Modules

Custom
Plugin

Modules

Plugin
Modules

Plugin
Modules

Access Manager
Services

Access Manager APIs

Access Manager Framework

SPI (Service Provider Interface)

Admin CLI
(XML)

Provided by Sun Java System Access Manager Java APIs

Java APIs

HTTP(S)

HTTP(S) XML/HTTP(S)XML/HTTP(S)

Sun Java
System

Directory
Server

Web Browser

SDKSDK

SDK

Deployment Architecture

Authentication
• Standards-based, extensible authentication framework (JAAS: Java

Authentication and Authorization Services)
• Supports multiple pluggable Authentication mechanisms
• LDAP, RADIUS, Certificate, SafeWord, RSA SecurID, Unix, Windows NT,

Anonymous, Membership
• Custom authentication mechanisms using the SPI
• Multi-factor Authentication (Chained authentication mechanisms)
• Levels-based Authentication
• Levels assigned to authentication mechanisms
• Resource-based Authentication

Authorization

• Policy = Rules + Subjects + Conditions
▸ Rules

> Resource being protected – URL, access method, allow/deny
▸ Subjects

> Who is allowed access? User/role/group etc
▸ Condition

> Additional constraints – IP address, authN level/mechanism, day/time,
session timeout

▸ Referral policies, SPI allow customization

Web SSO Flow
Access Manager

Policy Agent
Access Manager

Policy Agent

Sun Java System
Access ManagerUser White Pages

Application
Paycheck
Application

1. Request resource

4. Authenticate + create SSO token

5. Redirect to resource with SSO token

9. Subsequent request for resource

11. Provide or refuse resource

6. Request resource

2. Agent checks for
SSO token + policies

10. Agent checks for
SSO token + policies

3. Redirect to login page

8. Provide or refuse resource
7. Agent checks for
SSO token + policies

Session Features

• Session upgrade
▸ User provides additional credentials to access a resource with

higher authentication requirements
• Client detection

▸ Provide content based on client type – standard browser, WAP,
etc.

• Resource-based session timeout
• Java & C Session/SSO APIs

Windows Desktop SSO

• User-eye view
▸ Log in to Windows
▸ Surf to a protected resource
▸ The resource recognizes me and gives me access based on

policies, role etc

• That's it – the user logs in exactly once
▸ No need for password sync process
▸ Transparent integration for desktop users into web applications

IT WILL ALL BE FREE. REMEMBER TO
TRY IT OUT.

FOR NOW, CHECK OUT OPENSSO
[opensso.dev.java.net]

Panorama: Identity, Federation, and WSS

XML Digital Signatures

Encrypt
and Sign

<pOrder>
<name>Alice
</pOrder>

SOAP
<pOrder>
<name>Alice
</pOrder>

<pOrder>
<enc>xA5d..
<signature>...

XML Encryption

 Validate and
 Decrypt

WS-Security
(via Intermediaries)

<policy>
<name>Alice
</policy>

XACML

31 4

Trust
Services

XKMS
Validate Key2

Federated
Service

Authenticate

0Identity
Service

0

<pOrder>
<enc>xA5d..
<signature>...

Project
Liberty/SAML

In summary...

Resources

• opensso.dev.java.net
• jwsdp.dev.java.net
• Paper on building identity enabled Web services

developers.sun.com/prodtech/identserver/reference/tech
art/id-enabled-ws.html#3

• Standards and Technologies
▸ www.w3.org
▸ www.oasis-open.org
▸ www.ws-i.org

Rima Patel Sriganesh
rima.patel@sun.com

