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CHAPTER

4

Access Control

Going all the way back to early time-sharing systems, we systems people regarded the

users, and any code they wrote, as the mortal enemies of us and each other. We were like

the police force in a violent slum.
—ROGER NEEDHAM

Microsoft could have incorporated effective security measures as standard, but good

sense prevailed. Security systems have a nasty habit of backfiring, and there is no doubt

they would cause enormous problems.
—RICK MAYBURY

4.1 Introduction

Access control is the traditional center of gravity of computer security. It is where se-
curity engineering meets computer science. Its function is to control which principals
(persons, processes, machines, . . .) have access to which resources in the sys-
tem—which files they can read, which programs they can execute, how they share data
with other principals, and so on.

NOTE

This chapter necessarily assumes more computer science background than previous

chapters, but I try to keep it to a minimum.
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Figure 4.1 Access controls at different levels in a system.

Access control works at a number of levels, as shown in Figure 4.1, and described in
the following:

1. The access control mechanisms, which the user sees at the application level,
may express a very rich and complex security policy. A modern online busi-
ness could assign staff to one of dozens of different roles, each of which could
initiate some subset of several hundred possible transactions in the system.
Some of these (such as credit card transactions with customers) might require
online authorization from a third party while others (such as refunds) might
require dual control.

2. The applications may be written on top of middleware, such as a database
management system or bookkeeping package, which enforces a number of
protection properties. For example, bookkeeping software may ensure that a
transaction that debits one ledger for a certain amount must credit another
ledger for the same amount.

3. The middleware will use facilities provided by the underlying operating sys-
tem. As this constructs resources such as files and communications ports from
lower-level components, it acquires the responsibility for providing ways to
control access to them.

4. Finally, the operating system access controls will usually rely on hardware
features provided by the processor or by associated memory management
hardware. These control which memory addresses a given process can access.

As we work up from the hardware through the operating system and middleware to
the application layer, the controls become progressively more complex and less reli-
able. Most actual computer frauds involve staff accidentally discovering features of the
application code that they can exploit in an opportunistic way, or just abusing features
of the application that they were trusted not to. But in this chapter, we will focus on the
fundamentals: access control at the hardware and operating system level. (Application-
level controls aren’t different in principle, but I leave detailed discussion to Part 2 of
this book.)

As with the other building blocks discussed so far, access control makes sense only
in the context of a protection goal, typically expressed as a security policy. This puts
us at a slight disadvantage when discussing PCs running single-user operating systems
such as DOS and Win95/98, which have no overt security policy: any process can
modify any data. People do have implicit protection goals, though; you don’t expect a
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shrink-wrap program to trash your hard disk. So an explicit security policy is a good
idea, especially when products support some features that appear to provide protection,
such as login IDs.

I mention one protection technique—sandboxing—later, but leave off a substantial
discussion of viruses and the like to Section 18.4. In what follows, the focus will be on
protection mechanisms for systems that support the isolation of multiple processes. I
discuss operating system mechanisms first, as it is their requirements that usually drive
hardware protection system design.

4.2 Operating System Access Controls

The access controls provided with an operating system typically authenticate principals
using some mechanism such as passwords or Kerberos, then mediate their access to
files, communications ports, and other system resources.

Their effect can often be modelled by a matrix of access permissions, with columns
for files and rows for users. We’ll write r for permission to read, w for permission to
write, x for permission to execute a program, and (–) for no access at all, as shown in
Figure 4.2.

In this simplified example, Sam is the system administrator, and has universal access
(except to the audit trail, which even he should only be able to read). Alice, the man-
ager, needs to execute the operating system and application, but only through the ap-
proved interfaces—she mustn’t have the ability to tamper with them. She also needs to
read and write the data. Bob, the auditor, can read everything.

Figure 4.2 Naive access control matrix.

Figure 4.3 Example access control matrix for bookkeeping.

This is often enough, but in the specific case of a bookkeeping system, it’s not quite
what we need. We want to ensure that transactions are well formed—that each debit is
matched by a credit somewhere else—so we would not want Alice to have uninhibited
write access to the account file. We would also prefer that Sam didn’t have this access;
so that all write access to the accounting data file was via the accounting program. The
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access permissions might now look like those shown in Figure 4.3. (There is still an
indirect vulnerability in that Sam could overwrite the accounts program with an unau-
thorised one of his own devising, but we’ll leave off discussing that till Chapter 9.)

Another way of expressing a policy of this type would be with access triples of user,
program, file. In the general case, our concern isn’t with a program as much as a pro-
tection domain, which is a set of processes or threads that share access to the same re-
sources (though at any given time they might have different files open or different
scheduling priorities).

Access control matrices (whether in two or three dimensions) can be used to imple-
ment protection mechanisms, as well as just model them. But they do not scale well.
For instance, a bank with 50,000 staff and 300 applications would have an access con-
trol matrix of 15 million entries. This is inconveniently large. It might not only impose
a performance problem but also be vulnerable to administrators’ mistakes. We will
usually need a more compact way of storing and managing this information. The two
main ways of doing this are to use groups or roles to manage the privileges of large
sets of users simultaneously, or to store the access control matrix either by columns
(access control lists) or rows (capabilities, sometimes known as “tickets”) or certifi-
cates [662, 804].

4.2.1 Groups and Roles

When we look at large organizations, we usually find that most staff fit into one or
other of a small number of categories. A bank might have 40 or 50 such categories:
teller, chief teller, branch accountant, branch manager, and so on. The remainder (such
as the security manager, and chief foreign exchange dealer,...), who need to have their
access rights defined individually, may amount to only a few dozen people.

So we want a small number of predefined groups, or functional roles, to which staff
can be assigned. Some people use the words group and role interchangeably, and with
many systems they are; but the more careful definition is that a group is a list of prin-
cipals, while a role is a fixed set of access permissions that one or more principals may
assume for a period of time using some defined procedure. The classic example of a
role is the officer of the watch on a ship. There is exactly one watchkeeper at any one
time, and there is a formal procedure whereby one officer relieves another when the
watch changes. In fact, in most military applications, it’s the role that matters rather
than the individual.

Groups and roles can be combined. The officers of the watch of all ships currently at
sea is a group of roles. In banking, the manager of the Cambridge branch might have
his or her privileges expressed by membership of the group manager and assumption
of the role acting manager of Cambridge branch. The group manager might express a
rank in the organization (and perhaps even a salary scale) while the role acting man-
ager might include an assistant accountant standing in while the manager, deputy man-
ager, and branch accountant are all sick.

Whether we need to be careful about this distinction is a matter for the application.
In a warship, we want even an able seaman to be allowed to stand watch if all the offi-
cers have been killed. In a bank, we might have a policy that “transfers over $10 mil-
lion must be approved by two staff, one with the rank of manager and one with the
rank of assistant accountant.” In the event of sickness, the assistant accountant acting
as manager would have to get the regional head office to provide the second signature
on a large transfer.
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Until recently, some support for groups and roles existed but was not very widely
used. Developers either implemented this kind of functionality in their application
code, or as custom middleware (in the 1980s, I worked on two bank projects where
group support was hand-coded as extensions to the mainframe operating system). Re-
cently, Windows 2000 (Win2K) has been launched with very extensive support for
groups, while academic researchers have started working on role-based access control
(RBAC), which I discuss further in Chapter 7. We will have to wait and see whether
either of these has a major effect on application development practices.

Figure 4.4 Access control list (ACL).

4.2.2 Access Control Lists

Another way of simplifying access rights management is to store the access control
matrix a column at a time, along with the resource to which the column refers. This is
called an access control list, or ACL. In the first of the examples, the ACL for file 3
(the account file) might look as shown in Figure 4.4.

ACLs have a number of advantages and disadvantages as a means of managing secu-
rity state. These can be divided into general properties of ACLs and specific properties
of particular implementations.

ACLs are widely used in environments where users manage their own file security,
such as the Unix systems common in universities and science labs. Where access con-
trol policy is set centrally, they are suited to environments where protection is data-
oriented; they are less suited where the user population is large and constantly chang-
ing, or where users want to be able to delegate their authority to run a particular pro-
gram to another user for some set period of time. ACLs are simple to implement, but
are not efficient as a means of doing security checking at runtime, as the typical oper-
ating system knows which user is running a particular program, rather than which files
it has been authorized to access since it was invoked. The operating system must either
check the ACL at each file access or keep track of the active access rights in some
other way.

Finally, distributing the access rules into ACLs can make it tedious to find all the
files to which a user has access. Revoking the access of an employee who has just been
fired, for example, will usually have to be done by cancelling their password or other
authentication mechanism. It may also be tedious to run systemwide checks, such as
verifying that no files have been left world-writable. This could involve checking
ACLs on millions of user files.

Let’s look at two important examples of ACLs: their implementation in Unix and
NT.
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4.2.3 Unix Operating System Security

In Unix (and its popular variant Linux), files are not allowed to have arbitrary access
control lists, but simply rwx attributes for the resource owner, the group, and the world.
These attributes allow the file to be read, written, and executed. The access control list
as normally displayed has a flag to show whether the file is a directory; then flags r, w,
and x for owner, group, and world respectively; it then has the owner’s name and the
group name. A directory with all flags set would have the ACL:

drwxrwxrwx Alice Accounts

In the first example in Figure 4.4, the ACL of file 3 would be:
-rw-r—–---Alice Accounts

This records that the file is not a directory; the file owner can read and write it;
group members can read it but not write it; nongroup members have no access at all;
the file owner is Alice; and the group is Accounts.

In Unix, the program that gets control when the machine is booted (the operating
system kernel) runs as the supervisor, and has unrestricted access to the whole ma-
chine. All other programs run as users, and have their access mediated by the supervi-
sor. Access decisions are made on the basis of the userid associated with the program.
However if this is zero (root), then the access control decision is “yes.” So root can do
what it likes—access any file, become any user, or whatever. What’s more, there are
certain things that only root can do, such as starting certain communication processes.
The root userid is typically made available to the system administrator.

This means that (with most flavors of Unix) the system administrator can do any-
thing, so we have difficulty implementing an audit trail as a file that he cannot modify.
This not only means that, in our example, Sam could tinker with the accounts, and have
difficulty defending himself if he were falsely accused of tinkering, but that a hacker
who managed to become the system administrator could remove all evidence of his
intrusion. A common defense is to send the system log to a printer in a locked room
or—if the volumes of data are too great—to another machine that is administered by
somebody else.

The Berkeley distributions, including FreeBSD, go some way toward fixing the
problem. Files can be set to be append-only, immutable or undeletable for user, system
or both. When set by a user at a sufficient security level during the boot process, they
cannot be overridden or removed later, even by root. Various military variants go to
even greater trouble to allow separation of duty. However, the simplest and most
common way to protect logs against root compromise is to keep them on a separate
server.

Second, ACLs contain only the names of users, not of programs, so there is no
straightforward way to implement access triples of (user, program, file). Instead, Unix
provides an indirect method: the suid and sgid file attributes.

The owner of a program can mark it as suid. This enables it to run with the privilege
of its owner rather than the privilege of the user who has invoked it; sgid does the
same for groups. Thus, in order to achieve the functionality needed by Figure 4.3, we
could create a user “account-package” to own file 2 (the accounts package), make the
file suid, and place it in a directory to which Alice has access. This special user could
then be given the access control attributes we want for the accounts program.

One way of looking at this is that an access control problem that is naturally mod-
elled in three dimensions—the triples (user, program, data)—is being implemented
using two-dimensional mechanisms. These mechanisms are much less intuitive than
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triples, and people make many mistakes implementing them. Programmers are often
lazy or facing tight deadlines; so they just make the application suid root, and it can do
anything.

This practice leads to some rather shocking security holes. The responsibility for
making access control decisions is moved from the operating system environment to
the program, and most programmers are insufficiently experienced and careful to check
everything that they should. In particular, the person invoking a suid root program
controls its environment and can often manipulate this to cause protection failures.

Third, ACLs are not very good at expressing changing state. Managing stateful ac-
cess rules, such as dual control, becomes difficult; one either has to do it at the appli-
cation level or use suid/sgid again. Also, it’s hard to track the files that a user might
have open (as you typically want to do when revoking their rights on a system).

Fourth, the Unix ACL names only one user. Older versions allow a process to hold
only one group ID at a time and force it to use a privileged program to access other
groups; newer Unix systems put a process in all groups that the user is in. This is still
much less expressive than one might like. In theory, the ACL and su mechanisms can
often be used to achieve the desired effect. In practice, programmers are often too lazy
to figure out how to do this, and so design their code to require much more privilege
than it really ought to.

4.2.4 Windows NT

Another important operating system whose protection is largely based on access con-
trol lists is Windows NT. The current version of NT (version 5, or Win2K) is fairly
complex, so it’s helpful to trace its antecedents. (This can also be useful if you have to
help manage upgrades from NT4 to Win2K).

NT4 protection is very much like Unix, and appears to be inspired by it, so it’s sim-
pler to describe the main innovations.

First, rather than just read, write, and execute, there are separate attributes for take
ownership, change permissions, and delete, which means that more flexible delegation
can be supported. These attributes apply to groups as well as users, and group permis-
sions allow you to achieve much the same effect as sgid programs in Unix. Attributes
are not simply on or off, as in Unix, but have multiple values: you can set Access-
Denied, AccessAllowed, or SystemAudit. These are parsed in that order. If an Access-
Denied is encountered in an ACL for the relevant user or group, then no access is
permitted, regardless of any conflicting AccessAllowed flags.

A benefit of the richer syntax is that you can arrange matters so that much less than
full administrator privileges are required for everyday configuration tasks, such as in-
stalling printers. (This is rarely done, though.)

Second, users and resources can be partitioned into domains with distinct adminis-
trators, and trust can be inherited between domains in one direction or both. In a typi-
cal large company, you might put all the users into a domain administered by the
personnel department, while resources such as servers and printers could be in resource
domains under departmental control; individual workstations might even be adminis-
tered by their users. Things would be arranged so that the departmental resource do-
mains trust the user domain, but not vice versa—so a corrupt or careless departmental
administrator couldn’t do much damage outside his or her own domain. The individual
workstations would in turn trust the department (but not vice versa) so that users could
perform tasks that require local privilege (installing many software packages requires
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this). Administrators are all-powerful (so you can’t create truly tamper-resistant audit
trails without using write-once storage devices), but the damage they can do can be
limited by suitable organization. The data structure used to manage all this, and hide
the ACL details from the user interface, is called the Registry.

Problems with designing an NT architecture in very large organizations include
naming issues (which we’ll explore later), the way domains scale as the number of
principals increases (badly), and the restriction that a user in another domain can’t be
an administrator (which can cause complex interactions between local and global
groups).

One peculiarity of NT is that everyone is a principal, not a default or an absence of
control, so remove everyone means just prevent a file being generally accessible. A
resource can be locked quickly by setting everyone to have no access. This brings us
naturally to the subject of capabilities.

4.2.5 Capabilities

The next way to manage the access control matrix is to store it by rows. These are
called capabilities. In the example in Figure 4.2, Bob’s capabilities would be as shown
in Figure 4.5.

The strengths and weaknesses of capabilities are more or less the opposite of ACLs.
Runtime security checking is more efficient, and we can do delegation without much
difficulty: Bob could create a certificate saying “Here is my capability, and I hereby
delegate to David the right to read file 4 from 9 A.M. to 1 P.M.; signed Bob.” On the
other hand, changing a file’s status can suddenly become more tricky, as it can be dif-
ficult to find out which users have access. This can be tiresome when investigating an
incident or preparing evidence of a crime.

There were a number of experimental implementations in the 1970s, which were
rather like file passwords; users would get hard-to-guess bitstrings for the various read,
write, and other capabilities to which they were entitled. It was found that such an ar-
rangement could give very comprehensive protection [804]. It was not untypical to find
that almost all of an operating system could run in user mode, rather than as supervi-
sor, so operating system bugs were not security critical. (In fact, many operating sys-
tem bugs caused security violations, which made debugging the operating system much
easier.)

The IBM AS/400 series systems employed capability-based protection, and enjoyed
some commercial success. Now capabilities are making a comeback in the form of
public key certificates. We’ll discuss the mechanisms of public key cryptography in
Chapter 5, and give more concrete details of certificate-based systems, such as
SSL/TLS, in Section 19.5. For now, think of a public key certificate as a credential
signed by some authority, which declares that the holder of a certain cryptographic key
is a certain person, a member of some group, or the holder of some privilege.

Figure 4.5 A capability.
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As an example of where certificate-based capabilities can be useful, consider a hos-
pital. If we implemented a rule stating “a nurse will have access to all the patients who
are on her ward, or who have been there in the last 90 days,” naively, each access con-
trol decision in the patient record system would require several references to adminis-
trative systems, to find out which nurses and which patients were on which ward,
when. This means that a failure of the administrative systems can now affect patient
safety much more directly than was previously the case, which is a clearly bad thing.
Matters can be much simplified by giving nurses certificates that entitle them to access
the files associated with their current ward. Such a system is starting to be fielded at
our university hospital.

One point to bear in mind is that as public key certificates are often considered to be
“crypto” rather than “access control,” their implications for access control policies and
architectures are not always thought through. The lessons that could have been learned
from the capability systems of the 1970s are generally having to be rediscovered (the
hard way). In general, the boundary between crypto and access control is a fault line
where things can easily go wrong. The experts often come from different backgrounds,
and the products from different suppliers.

4.2.6 Added Features in Windows 2000

A number of systems, from mainframe access control products to research systems,
have combined ACLs and capabilities in an attempt to get the best of both worlds. But
the most important application of capabilities is in Win2K.

Win2K adds capabilities in two ways that can override or complement the ACLs of
NT4. First, users or groups can be either whitelisted or blacklisted by means of pro-
files. (Some limited blacklisting was also possible in NT4.) Security policy is set by
groups rather than for the system as a whole. Groups are intended to be the primary
method for centralized configuration management and control (group policy overrides
individual profiles). Group policy can be associated with sites, domains, or organiza-
tional units, so it can start to tackle some of the real complexity problems with naming.
Policies can be created using standard tools or by custom-coding (Microsoft has an-
nounced that group policy data will be exposed in a standard schema). Groups are de-
fined in the Active Directory, an object-oriented database which organizes users,
groups, machines, and organizational units within a domain in a hierarchical name-
space, indexing them so they can searched for on any attribute. There are also finer-
grained access control lists on individual resources.

As already mentioned, Win2K uses Kerberos as its main means of authenticating us-
ers across networks.1 This is encapsulated behind the Security Support Provider Inter-
face (SSPI), which enables administrators to plug in other authentication services.

                                                            
1In fact, it’s a proprietary variant, with changes to the ticket format, which prevent

Win2K clients from working with existing Unix Kerberos infrastructures. The documenta-
tion for the changes is released on condition that it not be used to make compatible imple-
mentations. Microsoft’s goal is to get everyone to install Win2K Kerberos servers. This has
caused an outcry in the open systems community [76].
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This brings us to the second way in which capabilities insinuate their way into
Win2K: in many applications, people are likely to use the public key protocol
SSL/TLS, which is widely used on the Web, and which is based on public key certifi-
cates. The management of these certificates can provide another, capability-oriented,
layer of access control outside the purview of the Active Directory. (I discuss SSL/TLS
in Section 19.5.)

There are various backward-compatibility issues. For example, high-security con-
figurations of Win2K with full cryptographic authentication can’t interwork with NT4
systems. This is because an active directory can exist alongside the registry of NT4,
but the registry can’t read it. So the deployment of Win2K’s high-security features in
large organizations is likely to be delayed until all the important applications have mi-
grated.

Win2K provides a richer and more flexible set of access control tools than any sys-
tem previously sold in mass markets. It does still have design limitations. Implement-
ing roles whose requirements differ from those of groups could be tricky in some
applications; SSL certificates are the obvious way to do this, but would require an ex-
ternal management infrastructure. Second, Windows is still (in most of its incarna-
tions) a single-user operating system, in the sense that only one person can operate a
PC at a time. Thus, if I want to run an unprivileged, sacrificial user on my PC for ac-
cessing untrustworthy Web sites that might contain malicious code, I have to log off
and log on again, or use other techniques that are so inconvenient that few users will
bother. So users still do not get the benefit from the operating system’s protection
properties that they might wish when browsing the Web.

4.2.7 Granularity

A practical problem with all current flavors of access control system is granularity. As
the operating system works with files, this will usually be the smallest object with
which its access control mechanisms can deal. So it will be application-level mecha-
nisms that, for example, ensure that a bank customer at a cash machine can see his or
her own balance but not anybody else’s.

But it goes deeper than that. Many applications are built using database tools that
give rise to some problems that are much the same whether running DB2 on MVS or
Oracle on Unix. All the application data is bundled together in one file, and the oper-
ating system must either grant or deny a user access to the lot. So, if you developed
your branch accounting system under a database product, then you’ll probably have to
manage one access mechanism at the operating system level and another at the data-
base or application level. Many real problems result. For example, the administration
of the operating system and the database system may be performed by different de-
partments, which do not talk to each other; and often user pressure drives IT depart-
ments to put in crude hacks that make the various access control systems seem to work
as one, but that open up serious holes.

Another granularity problem is single sign-on. Despite the best efforts of computer
managers, most large companies accumulate systems of many different architectures,
so users get more and more logons to different systems; consequently, the cost of ad-
ministering them escalates. Many organizations want to give each employee a single
logon to all the machines on the network. A crude solution is to endow their PCs with a
menu of hosts to which a logon is allowed, and hide the necessary userids and pass-
words in scripts. More sophisticated solutions may involve a single security server
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through which all logons must pass, or a smartcard to do multiple authentication proto-
cols for different systems. Such solutions are hard to engineer properly. Whichever
route one takes, the security of the best system can easily be reduced to that of the
worst.

4.2.8 Sandboxing and Proof-Carrying Code

Another way of implementing access control is a software sandbox. Here users want to
run some code that they have downloaded from the Web as an applet. Their concern is
that the applet might do something nasty, such as taking a list of all their files and
mailing it off to a software marketing company.

The designers of Java tackle this problem by providing a “sandbox” for such
code—a restricted environment in which it has no access to the local hard disk (or at
most only temporary access to a restricted directory), and is only allowed to communi-
cate with the host it came from. These security objectives are met by having the code
executed by an interpreter—the Java Virtual Machine (JVM)—which has only limited
access rights [346]. Java is also used on smartcards, but (in current implementations at
least) the JVM is, in effect, a compiler external to the card, which raises the issue of
how the code it outputs can be gotten to the card in a trustworthy manner.

An alternative is proof-carrying code. Here, code to be executed must carry with it a
proof that it doesn’t do anything that contravenes the local security policy. This way,
rather than using an interpreter with the resulting speed penalty, one merely has to trust
a short program that checks the proofs supplied by downloaded programs before al-
lowing them to be executed. The huge overhead of a JVM is not necessary [585].

Both of these are less general alternatives to an architecture that supports proper su-
pervisor-level confinement.

4.2.9 Object Request Brokers

There has been much interest of late in object-oriented software development, as it has
the potential to cut the cost of software maintenance. An object consists of code and
data bundled together, accessible only through specified externally visible methods.
This also gives the potential for much more powerful and flexible access control. Much
research is underway with the goal of producing a uniform security interface that is
independent of the underlying operating system and hardware.

The idea is to base security functions on the object request broker, or ORB, a soft-
ware component that mediates communications between objects. Many research efforts
focus on the Common Object Request Broker Architecture (CORBA), which is an at-
tempt at an industry standard for object-oriented systems. The most important aspect of
this is that an ORB is a means of controlling calls that are made across protection do-
mains. This approach appears promising but is still under development. (A book on
CORBA security is [112].)



Chapter 4: Protocols

62

4.3 Hardware Protection

Most access control systems set out not just to control what users can do, but to limit
what programs can do as well. In most systems, users can either write programs or
download and install them. Programs may be buggy or even malicious.

Preventing one process from interfering with another is the protection problem. The
confinement problem is usually defined as that of preventing programs communicating
outward other than through authorized channels. This comes in several flavors. The
goal may be to prevent active interference, such as memory overwriting, and to stop
one process reading another’s memory directly. This is what commercial operating
systems set out to do. Military systems may also try to protect metadata—data about
other data, subjects, or processes—so that, for example, a user can’t find out which
other users are logged on to the system or which processes they are running. In some
applications, such as processing census data, confinement means allowing a program to
read data but not release anything about it other than the results of certain constrained
queries; this is covered further in Chapter 7.

Unless one uses sandboxing techniques (which are too restrictive for general pro-
gramming environments), solving the confinement problem on a single processor
means, at the very least, having a mechanism that will stop one program from over-
writing another’s code or data. There may be areas of memory that are shared in order
to allow interprocess communication; but programs must be protected from accidental
or deliberate modification, and they must have access to memory that is similarly pro-
tected.

This usually means that hardware access control must be integrated with the proces-
sor’s memory management functions. A typical mechanism is segment addressing.
Memory is addressed by two registers, a segment register that points to a segment of
memory, and another address register that points to a location within that segment. The
segment registers are controlled by the operating system, and often by a special com-
ponent of it called the reference monitor, which links the access control mechanisms
with the hardware.

The actual implementation has become more complex as the processors themselves
have. Early IBM mainframes had a two-state CPU: the machine was either in author-
ized state or it was not. In the latter case, the program was restricted to a memory seg-
ment allocated by the operating system. In the former, it could alter the segment
registers at will. An authorized program was one that was loaded from an authorized
library.

Any desired access control policy can be implemented on top of this, given suitable
authorized libraries, but this is not always efficient; and system security depends on
keeping bad code (whether malicious or buggy) out of the authorized libraries. Later
processors have offered more complex hardware mechanisms. Multics, an operating
system developed at MIT in the 1960s and that inspired the development of Unix, in-
troduced rings of protection which express differing levels of privilege: ring 0 pro-
grams had complete access to disk, supervisor states ran in ring 2, and user code at
various less privileged levels [687]. Its features have to some extent been adopted in
more recent processors, such as the Intel main processor line from the 80286 onward.
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There are a number of general problems with interfacing hardware and software se-
curity mechanisms. For example, it often happens that a less privileged process such as
application code needs to invoke a more privileged process such as a device driver.
The mechanisms for doing this need to be designed with some care, or security bugs
can be expected. The IBM mainframe operating system MVS, for example, had a bug
in which a program that executed a normal and an authorized task concurrently could
make the former authorized too [493]. Also, performance may depend quite drastically
on whether routines at different privilege levels are called by reference or by value
[687].

4.3.1 Intel 80_86/Pentium Processors

Early Intel processors, such as the 8088/8086 used in early PCs, had no distinction
between system and user mode, and thus no protection at all—any running program
controlled the whole machine. The 80286 added protected segment addressing and
rings, so for the first time it could run proper operating systems. The 80386 had built-
in virtual memory and large enough memory segments (4 Gb) that they could be ig-
nored and the machine treated as a 32-bit flat-address machine. The 486 and Pentium
series chips added more performance (caches, out-of-order execution and MMX). The
Pentium 3 finally added a new security feature—a processor serial number. This
caused such a storm of protest, driven by privacy advocates who feared it could be
used for all sorts of “big brother” purposes, that it will apparently be discontinued in
future Pentium products. (But identifying a PC will remain easy, as there are many
other serial numbers in disk controllers and other components that a snooping program
can read.)

The rings of protection are supported by a number of mechanisms. The current
privilege level can be changed only by a process in ring 0 (the kernel). Procedures can-
not access objects in lower-level rings directly; but there are gates that allow execution
of code at a different privilege level and that manage the supporting infrastructure,
such as multiple stack segments for different privilege levels and exception handling.
(For more details, see [404].)

The Pentium’s successor architecture, the IA-64, was not yet available at the time of
writing. According to the advance publicity, its memory management is based on di-
viding the virtual address space of each process into several regions whose identifiers
specify the set of translations belonging to a process, and provide a unique intermedi-
ate virtual address. This is to help avoid thrashing problems in caches and in transla-
tion lookaside buffers. Regions also provide efficient shared areas between processes.
Like the Pentium, the IA-64 has four protection rings [382].

4.3.2 ARM Processors

The ARM is the 32-bit processor core most commonly licensed to third-party vendors
of embedded systems. The original ARM (which stood for Acorn Rise Machine) was
the first commercial RISC design. Its modern day successors are important because
they are incorporated in all sorts of security-sensitive applications from mobile phones
to the Capstone chips used by the U.S. government to protect secret data. A fast multi-
ply-and-accumulate instruction and low-power consumption make the ARM very at-
tractive for embedded applications doing public key cryptography and/or signal
processing. (The standard reference is [325].)
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The ARM is licensed as a processor core, which chip designers can include in their
products, plus a number of optional add-ons. The basic core contains separate banks of
registers for user and system processes, plus a software-interrupt mechanism that puts
the processor in supervisor mode and transfers control to a process at a fixed address.
The core contains no memory management, so ARM-based designs can have their
hardware protection extensively customized. A system control coprocessor is available
to help with this. It can support domains of processes that have similar access rights
(and thus share the same translation tables) but that retain some protection from each
other. This enables fast context switching. Standard product ARM CPU chips, from the
model 600 onward, have this memory support built in.

One version, the Amulet, uses self-timed logic. Eliminating the clock saves power
and reduces RF interference, but makes it necessary to introduce hardware protection
features, such as register locking, into the main processor itself so that contention be-
tween different hardware processes can be managed. This is an interesting example of
protection techniques typical of an operating system being recycled in mainline proces-
sor design.

4.3.3 Security Processors

Some modern smartcards are based on ARM processors, and the preceding remarks
apply (though memory limitations mean that only basic hardware protection may be
used). But the great majority of the microprocessor smartcards in the field still have 8-
bit processors. Some of them have memory management routines that let certain ad-
dresses be read only when passwords are entered into a register in the preceding few
instructions. The goal is that the various principals with a stake in the card—perhaps a
card manufacturer, an OEM, a network, and a bank—can all have their secrets on the
card and yet be protected from each other. This may be a matter of software; but some
cards have small, hardwired access control matrices to enforce this protection.

There are other kinds of specialized hardware security support for cryptography and
access control. Some of the encryption devices used in banking to handle ATM PINs
have an authorized state, which must be set (by two console passwords or a physical
key) when PINs are to be printed. This enables a shift supervisor to control when this
job is run. Similar devices are used by the military to distribute keys. We’ll discuss
cryptoprocessors in more detail in Chapter 14, “Physical Tamper Resistance.”

4.3.4 Other Processors

Some research systems in the 1970s implemented very extensive security checking in
the hardware, from Multics to various capability systems. Some systems have a fence
address, a boundary in the hardware below which only the operating system has ac-
cess. More recent work has looked at quality of service (QoS) issues, and for ways in
which one can guarantee that no process will hog the CPU to the extent that other
processes are blocked. Such mechanisms are now starting to be introduced commer-
cially (‘Quality of Service Technology is promised by Microsoft for ‘the Win2K
timeframe’.) The interaction of such features with access control and protection gener-
ally is one of the things to watch out for in the future.
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4.4 What Goes Wrong

Popular operating systems such as Unix/Linux and Windows are very large and com-
plex, so they have many bugs. They are used in a huge range of systems, so their fea-
tures are tested daily by millions of users under very diverse of circumstances.
Consequently, many of the bugs are found and reported. Thanks to the Net, knowledge
spreads widely and rapidly. Thus, at any one time, there may be dozens of security
flaws that are known and for which attack scripts may be circulating on the Net. Until
recently, this problem was limited. The banking industry used mainframes that ran less
widely understood operating systems, while the military used custom “multilevel se-
cure” operating systems, which were not available to outsiders at all. Nowadays, both
of these industries are being forced by cost pressures to adopt commodity operating
systems, so the publication of attack scripts has the potential to undermine a great
range of systems.

The usual goal of an attacker is to get a normal account on the system and then be-
come the system administrator, in order to take over the system completely. A surpris-
ing number of operating system bugs allow the transition from user to root. Such flaws
can be classified in a number of ways, such as by the type of programming error, by
the stage in the development process at which it was introduced, or by the level in the
system at which things go wrong [493]. The failure might not even be in the technical
implementation, but in the higher-level design. The user interface might induce people
to mismanage access rights or do other stupid things that cause the access control to be
bypassed (see Section 4.4.3 for some examples).

In general, the higher in a system we build the protection mechanisms, the more
complex they’ll be, the more other software they’ll rely on, and the closer they’ll be to
the error-prone mark 1 human being, thus, the less dependable they are likely to be.

4.4.1 Smashing the Stack

Many, if not most, of the technical attacks on operating systems that are reported in
Computer Emergency Response Team (CERT) bulletins and security mailing lists in-
volve memory-overwriting attacks, colloquially known as “smashing the stack” (see
Figure 4.6).

Programmers are often careless about checking the size of arguments. A classic ex-
ample was a vulnerability in the Unix finger command. A widespread implementation
of this would accept an argument of any length, although only 256 bytes had been allo-
cated for this argument by the program. The result was that when an attacker used the
command with a longer argument, the trailing bytes of the argument ended up being
executed by the CPU.

The usual technique is to arrange for the trailing bytes of the argument to have a
landing pad, a long space of no-operation (NOP) commands or other register com-
mands that don’t change the control flow, and whose task is to catch the processor if it
executes any of them. The landing pad delivers the processor to the attack code, which
will do something like creating a root account with no password or starting a shell with
administrative privilege directly.

Many of the vulnerabilities reported routinely by CERT and bugtraq are variants on
this theme. There is really no excuse for the problem to continue, as it has been well
known for a generation. Most of the early 1960s time-sharing systems suffered from it,
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and fixed it [349]. Penetration analysis efforts at the System Development Corporation
in the early 1970s showed that the problem of “unexpected parameters” was still one of
the most frequently used attack strategies [503]. Intel’s 80286 processor introduced
explicit parameter-checking instructions—verify read, verify write, and verify
length—in 1982, but they were avoided by most software designers to prevent archi-
tecture dependencies. In 1988, large numbers of Unix computers were brought down
simultaneously by the “Internet worm,” which used the finger vulnerability just de-
scribed, and thus brought memory-overwriting attacks to the notice of the mass media
[724]. Yet programmers still don’t check the size of arguments, and holes continue to
be found. The attack isn’t even limited to networked computer systems: at least one
smartcard could be defeated by passing it a message longer than its programmer had
anticipated.

Figure 4.6 Stack Smashing Attack.

A recent survey paper describes memory-overwriting attacks as the “attack of the
decade” [207].

4.4.2 Other Technical Attacks

After memory-overwriting attacks, race conditions are probably next. These are where
a transaction is carried out in two or more stages, and it is possible for someone to alter
it after the stage that involves verifying access rights.

For example, the Unix command to create a directory, mkdir, formerly worked in
two steps: the storage was allocated, then ownership was transferred to the user. Since
these steps were separate, a user could initiate a mkdir in background; and if this com-
pleted orly the first step before being suspended, a second process could be used to
replace the newly created directory with a link to the password file. Then the original
process would resume, and change ownership of the password file to the user. The /
tmp directory, used for temporary files, can often be abused in this way; the trick is to
wait until an application run by a privileged user writes a file here, then change it to a
symbolic link to another file somewhere else—which will be removed when the privi-
leged user’s application tries to delete the temporary file.

A wide variety of other bugs have enabled users to assume root status and take over
the system. For example, the PDP-10 TENEX operating system had the bug that the
program address could overflow into the next bit of the process state word, which was
the privilege-mode bit; this meant that a program overflow could put a program in su-



Security Engineering: A Guide to Building dependable Distributed Systems

67

pervisor state. In another example, some Unix implementations had the feature that if a
user tried to execute the command su when the maximum number of files were open,
then su was unable to open the password file, and responded by giving the user root
status.

There have also been a number of bugs that allowed service denial attacks. For ex-
ample, Multics had a global limit on the number of files that could be open at once, but
no local limits. A user could exhaust this limit and lock the system so that not even the
administrator could log on [493]. And until the late 1990s, most implementations of the
Internet protocols allocated a fixed amount of buffer space to process the SYN packets
with which TCP/IP connections are initiated. The result was SYN flooding attacks. By
sending a large number of SYN packets, an attacker could exhaust the available buffer
space and prevent the machine accepting any new connections. This is now fixed using
syncookies, discussed in Chapter 18, in Part 2.

4.4.3 User Interface Failures

One of the earliest attacks to be devised was the Trojan Horse, a program that the ad-
ministrator is invited to run and that will do some harm if he does so. People would
write games that checked occasionally whether the player was the system administra-
tor, and if so would create another administrator account with a known password.

Another trick is to write a program that has the same name as a commonly used
system utility, such as the Is command which lists all the files in a Unix directory, and
design it to abuse the administrator privilege (if any) before invoking the genuine util-
ity. The next step is to complain to the administrator that something is wrong with this
directory. When the administrator enters the directory and types Is to see what’s there,
the damage is done. The fix is simple: an administrator’s PATH variable (the list of
directories that will be searched for a suitably named program when a command is in-
voked) shouldn’t contain ‘.’ (the symbol for the current directory). Recent Unix ver-
sions are shipped with this as a default; but it’s still an unnecessary trap for the
unwary.

Perhaps the most serious example of user interface failure, in terms of the number of
systems at risk, is in Windows NT. In this operating system, a user must be the system
administrator to install anything. This might be useful, as a configuration option, to
prevent staff in a bank branch from running games on their PCs at lunchtime, and
picking up viruses. However, most environments are much less controlled, and people
need to be able to install software to get their work done. In practice, this means that
millions of people have administrator privileges who shouldn’t need them, and are vul-
nerable to attacks in which malicious code simply pops up a box telling them to do
something. Microsoft’s response to this has been the one-way trust mechanism already
discussed, which makes it possible to configure systems so that people can administer
their own machines without having too much power to damage other IT resources in
the company. However, this requires some care to implement properly. It also provides
no protection where applications such as Web servers must run as root, are visible to
the outside world, and contain software bugs that enable them to be taken over.

Another example, which might be argued is an interface failure, comes from the use
of active content of various kinds such as ActiveX controls. These can be a menace
because users have no intuitively clear way of controlling them, and they can be used
to launch serious attacks. Even Java, for all its supposed security, has suffered a num-
ber of attacks that exploited careless implementations [226]. However, many people
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(and many companies) are unwilling to forgo the bells and whistles that active content
can provide.

4.4.4 Why So Many Things Go Wrong

We’ve already mentioned the basic problems faced by operating system security de-
signers: their products are huge and therefore buggy, and are tested by large numbers
of users in parallel, some of whom will publicize their discoveries rather than reporting
them to the vendor. There are other structural problems, too.

One of the more serious causes of failure is kernel bloat. Under Unix, all device
drivers, filesystems, and so on must be in the kernel. The Windows 2000 kernel con-
tains drivers for a large number of smartcards, card readers, and the like, many of
which were written by equipment vendors. So large quantities of code are trusted, in
that they are put inside the security perimeter. It can’t really be a good idea for soft-
ware companies to enable so many of their suppliers to break their systems, whether on
purpose or accidentally. Some other systems, such as MVS, introduced mechanisms
that decrease the level of trust needed by many utilities. However, the means to do this
in the most common operating systems are few and relatively nonstandard.

Even more seriously, application developers often make their programs run as root.
This may be easier, as it avoids permission problems. It also often introduces horrible
vulnerabilities where more limited privilege could have been used with only a modi-
cum of thought and a minor redesign. There are many systems—such as 1pr / 1pd, the
Unix lineprinter subsystem—that do not need to run as root but do anyway on most
systems. This has also been a source of security failures in the past (e.g., getting the
printer to spool to the password file).

Some applications need a certain amount of privilege. For example, mail delivery
agents must be able to deal with user mailboxes. But while a prudent designer would
restrict this privilege to a small part of the application, most agents are written so that
the whole program needs to run as root. The classic example is sendmail, which has a
long history of serious security holes; but many other MTAs also have problems. The
general effect is that a bug that ought to compromise only one person’s mail may end
up giving root privilege to an outside attacker.

Sometimes the cure is almost as bad as the disease. Some programmers avoid root
bloat and the difficulty of getting non-root software installed and working securely by
leaving important shared data structures and resources accessible to all users. Many
systems store mail in a file per user in a world-writeable directory, which makes mail
forgery easy. The Unix file utmp—the list of users logged in—is frequently used for
security checking of various kinds, but is also frequently world-writeable! This should
have been built as a service rather than a file, but fixing problems like these once the
initial design decisions have been made can be difficult.
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4.4.5 Remedies

Some classes of vulnerability can be fixed using automatic tools. Stack-overwriting
attacks, for example, are largely due to the lack of proper bounds checking in C (the
language most commonly used to write operating systems). Various tools are available
on the Net for checking C programs for potential problems; there is even a compiler
patch called StackGuard, which puts a canary next to the return address on the stack.
This can be a random 32-bit value chosen when the program is started, and checked
when a function is torn down. If the stack has been overwritten meanwhile, then with
high probability the canary will change [207].

But, in general, much more effort needs to be put into design, coding, and testing.
Rather than overusing powerful tools such as setuid in Unix and administrator privi-
lege in NT, designers should create groups with limited powers, and be clear about
what the compromise of that group should mean for the rest of the system. Programs
should have only as much privilege as necessary: the principle of least privilege [662].

Software should also be designed so that the default configuration, and in general,
the easiest way of doing something, is safe. But, many systems are shipped with dan-
gerous defaults.

Finally, there’s a contrarian view, of which you should be aware, as it’s held by
some senior Microsoft people: that access control doesn’t matter. Computers are be-
coming single-purpose or single-user devices. Single-purpose devices, such as Web
servers that deliver a single service, don’t need much in the way of access control as
there’s nothing for operating system access controls to do; the job of separating users
from each other is best left to the application code. As for the PC on your desk, if all
the software on it comes from a single source, then again there’s no need for the oper-
ating system to provide separation [588]. Not everyone agrees with this: the NSA view
is at the other extreme, with deep distrust of application-level security and heavy em-
phasis on using the mechanisms of trusted operating systems [510]. But one way or
another, it’s remarkable how little effective use is made of the access control mecha-
nisms shipped with modern operating systems.

4.4.6 Environmental Creep

I have pointed out repeatedly that many security failures result from environmental
change undermining a security model. Mechanisms that were adequate in a restricted
environment often fail in a more general one.

Access control mechanisms are no exception. Unix, for example, was originally de-
signed as a “single-user Multics” (hence the name). It then became an operating system
to be used by a number of skilled and trustworthy people in a laboratory who were
sharing a single machine. In this environment, the function of the security mechanisms
is primarily to contain mistakes, to prevent one user’s typing errors or program crashes
from deleting or overwriting another user’s files. The original security mechanisms
were quite adequate for this purpose.

But Unix security became a classic “success disaster.” Unix was repeatedly extended
without proper consideration being given to how the protection mechanisms also
needed to be extended. The Berkeley extensions (rsh, rhosts, etc.) were based on an
extension from a single machine to a network of machines that were all on one LAN
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and all under one management. Mechanisms such as rhosts were based on a tuple
(username,hostname) rather than just a user name, and saw the beginning of the trans-
fer of trust.

The Internet mechanisms (telnet, ftp, DNS, SMTP), which grew out of Arpanet in
the 1970s, were written for mainframes on what was originally a secure WAN. Main-
frames were autonomous, the network was outside the security protocols, and there
was no transfer of authorization. Remote authentication, which the Berkeley model
was starting to make prudent, was simply not supported. The Sun contributions (NFS,
NIS, RPC, etc.) were based on a workstation model of the universe, with a multiple
LAN environment with distributed management, but still usually in a single organiza-
tion. (A proper tutorial on topics such as DNS and NFS is beyond the scope of this
book, but there is some more detailed background material in Chapter 18, “Network
Attack and Defense,” Section 18.2.)

Mixing all these different models of computation together has resulted in chaos.
Some of their initial assumptions still apply partially, but none of them applies globally
any more. The Internet now has hundreds of millions of PCs and workstations, millions
of LANs, thousands of interconnected WANs, and managements that are not just inde-
pendent but may be in conflict (including nation states and substate groups at war with
each other). Many workstations have no management at all.

Users, instead of being trustworthy but occasionally incompetent, are now largely
incompetent—but some are both competent and hostile. Code used to be simply
buggy—but now there is a significant amount of malicious code out there. Attacks on
communications networks used to be the purview of national intelligence agen-
cies—now they can be done by script kiddies, a term used to refer to relatively un-
skilled people who have downloaded attack tools from the Net and launched them
without any real idea of how they work.

Unix and Internet security gives us yet another example of a system that started out
reasonably well designed but that was undermined by a changing environment.

Win2K and its predecessors in the NT product series have more extensive protection
mechanisms than Unix, but have been around for much less time. Realistically, all we
can say is that the jury is still out.

4.5 Summary

Access control mechanisms operate at a number of levels in a system, from applica-
tions down through the operating system to the hardware. Higher-level mechanisms
can be more expressive, but also tend to be more vulnerable to attack, for a variety of
reasons ranging from intrinsic complexity to implementer skill levels. Most attacks
involve the opportunistic exploitation of bugs; and software that is very large, very
widely used, or both (as with operating systems) is particularly likely to have security
bugs found and publicized. Operating systems are also vulnerable to environmental
changes that undermine the assumptions used in their design.

The main function of access control in computer operating systems is to limit the
damage that can be done by particular groups, users, and programs whether through
error or malice. The most important fielded examples are Unix and NT, which are
similar in many respects, though NT is more expressive. Access control is also an im-
portant part of the design of special-purpose hardware such as smartcards and other
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encryption devices. New techniques are being developed to cope with object-oriented
systems and mobile code. But implementation remains generally awful.

The general concepts of access control from read, write, and execute permissions to
groups and roles will crop up again and again. In some distributed systems, they may
not be immediately obvious, as the underlying mechanisms can be quite different. An
example comes from public key infrastructures, which are a reimplementation of an
old access control concept, the capability.

Research Problems

Most of the issues in access control were identified by the 1960s or early 1970s, and
were worked out on experimental systems such as Multics [687] and the CAP [804].
Much of the research in access control systems since has involved reworking the basic
themes in new contexts, such as object-oriented systems and mobile code.

A recent thread of research is how to combine access control with the admission
control mechanisms used to provide quality of service guaranteed in multimedia oper-
ating systems. Another topic is how to implement and manage access control effi-
ciently in large complex systems, using techniques such as roles.

Further Reading

The best textbook to use for a more detailed introduction to access control issues is
Dieter Gollmann’s Computer Security [344]. A technical report from U.S. Navy Labs
gives a useful reference to many of the flaws found in operating systems over the last
30 years or so [493]. One of the earliest reports on the subject (and indeed on computer
security in general) is by Willis Ware [791]. One of the most influential early papers is
by Jerry Saltzer and Mike Schroeder [662]; Butler Lampson’s influential paper on the
confinement problem is at [488].

The classic description of Unix security is in the paper by Fred Grampp and Bob
Morris [350]. The most comprehensive textbook on this subject is Simson Garfinkel
and Gene Spafford’s Practical Unix and Internet Security [331]; the classic on the In-
ternet side of things is Bill Cheswick and Steve Bellovin’s Firewalls and Internet Se-
curity [94], with many examples of network attacks on Unix systems.

The protection mechanisms of Windows NT4 are described briefly in Gollmann, but
much more thoroughly in Karanjit Siyan’s reference book, Windows NT Server 4 [711].
For Win2K, I’ve used the Microsoft online documentation; no doubt a number of text-
books will appear very soon. There is a history of microprocessor architectures at [79],
and a reference book for Java security written by its architect Li Gong [346].

All these topics are fast-moving; the attacks that are making the headlines change
significantly (at least in their details) from one year to the next. To keep up, you should
not just read textbooks, but follow the latest notices from CERT, and mailing lists such
as bugtraq.


